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“Nobody can be uncheered with a balloon”  A. A. Milne, Winnie the Pooh 10 
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1. The Role of Ozonesondes in the Global Ozone Measurement Framework 13 

 14 

1.1 Sondes in the Context of a Global Ozone Measurement Strategy 15 

The ozonesonde instrument, although more than 50 years old in design, and simple to 16 

operate, remains an essential component of the global observing strategy for stratospheric and 17 

tropospheric ozone. The profiles from ozonesondes are foundational in the development of 18 

satellite ozone retrievals and are used for validating satellite products from a growing 19 

constellation of ozone-measuring sensors.  The ozonesonde instrument is unique in providing 20 

readings at (5-10)% uncertainty or better throughout the troposphere to the mid-stratosphere at 21 

100-150 m resolution independent of conditions of cloudiness or precipitation (Figure 1). 22 

Because it is relatively inexpensive and easy to operate – launching with a standard radiosonde 23 

instrument -- the ozonesonde can be used virtually anywhere.  Ozone sounding records provide 24 

the longest record of the vertical distribution of ozone and thus play a key role in monitoring 25 

changes in stratospheric ozone in accordance with the Montreal Protocol (WMO/UNEP, 2019).   26 

Figure 2 illustrates how ozonesondes fit into the global ozone observing strategy that 27 

employs various ground-based spectroscopic and lidar techniques, ozone instruments on aircraft 28 

and balloons as well as from space-borne platforms. The altitude ranges of sonde operation, 29 

aircraft, and Low-Earth Orbit (LEO) satellites are illustrated. Note that ozone-measuring 30 

instruments have been hosted on the International Space Station (SAGE III is currently 31 

operational). Geostationary satellites (e.g., the Korean GEMS, NOAA’s GOES series) also carry 32 

ozone measuring instruments; these are typically 36,000 km above earth. The tropospheric and 33 

stratospheric segments of the atmosphere are usually measured by two separate lidar instruments 34 

(McDermid et al., 1990; McGee et al., 1991). An advantage of ozonesondes is that a single 35 

sounding encompasses the troposphere and lower and middle stratosphere. 36 

In addition to monitoring and validation of other sensors, ozonesonde data are important 37 

in understanding atmospheric dynamics, lifetimes, and sources and sinks of ozone. Above the 38 

atmospheric boundary layer, the ozone lifetime is weeks to months. Thus, in the troposphere, 39 

sonde data are used to study the transport of pollution throughout the troposphere and lowermost 40 

stratosphere. Pollution from biomass fires in the tropics (Thompson et al., 1996; 2001; 2003a,b), 41 

throughout mid-latitudes by intercontinental transport (Stauffer et al., 2017) and from boreal fires 42 

(Moeini et al., 2020) has been investigated. Recently sonde data across the midlatitude northern 43 

hemisphere quantified a significant drop in tropospheric ozone due to the global economic crisis 44 

instigated by the 2020 COVID-19 pandemic (Steinbrecht et al., 2021).  45 

 46 
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1.2 Chapter Overview 47 

The purpose of this chapter is to present the capabilities and applications of the 48 

ozonesonde measurement as they relate to remote sensing (Sections 3 and 4). We begin with a 49 

description of the ozonesonde instrument and ongoing research related to the quaality assurance 50 

(QA) of the data (Section 2).  51 

 52 

2.  The Ozonesonde Instrument, Operation and Data Quality Control  53 

 54 

2.1 Electrochemical Ozonesondes 55 

Ozonesondes are small, light-weight instruments that are flown on weather balloons 56 

coupled via interfacing electronics to radiosondes for data transmission and measurements of 57 

meteorological parameters: pressure, temperature, humidity, wind, and position. The total weight 58 

of the ozonesonde-radiosonde flight package is ~1 kg so the payload can be flown on relatively 59 

small balloons (typically 1200-1500 g). Using the telemetry of the radiosonde, the measured data 60 

are transmitted to the ground station for further processing. Normally, data are taken during 61 

ascent at a rise rate of about 5 m/s to a balloon burst altitude of 30-33 km altitude. The inherent 62 

response time of the chemical measurement of the ozonesonde is 20-30 s, which provides an 63 

effective height resolution in the ozone profile data of 100-150 m. 64 

Since their first design in the 1960’s, the most commonly used ozonesonde instruments 65 

are based on electrochemical detection methods that convert the sampled ozone into an electrical 66 

current. Smit (2014) describes the common ozonesonde types in use over the past 50 years. At 67 

the present time, the most widely used ozonesonde type is the Electrochemical Concentration 68 

Cell (ECC). Although widely deployed in the past, the Brewer Mast sonde is presently only 69 

launched at the Meteorological Observatory Hohenpeissenberg in Germany in a time series that 70 

started in 1967. Two other major electrochemical sonde types, developed by the India 71 

Meteorological Department and the Japan Meteorological Agency, are no longer used. 72 

Each ozonesonde instrument is unique and is prepared and provisionally calibrated prior 73 

to launch. It is important for remote sensing researchers to understand operational aspects of the 74 

ozonesonde and the procedures that sonde data providers take to minimize uncertainties within 75 

an individual profile and to ensure consistency of the global ozonesonde record over time. The 76 

instrument and data treatment are described in the following sections. 77 

 78 

2.2 The ECC Ozonesonde: Principles of Operation and Sources of Uncertainty 79 

The ECC ozonesonde (Figure 3) developed by Komhyr (1969) consists of two cells, 80 

made of Teflon or molded plastic, which serve as a cathode and anode chamber. There are two 81 

widely used ECC ozonesonde types, manufactured by Science Pump Corporation and the EN-82 

SCI Corporation, producing the SPC-6A and EN-SCI instrument, respectively. The design of 83 

both ECCs resembles Figure 3 but there is a consistent 4-5% difference in their performance 84 

(Figures 4A and 4B) when the different instrument types are operated under the same conditions 85 

(Smit et al., 2007; Thompson et al., 2007c; Smit, 2014). Both cells contain platinum mesh 86 

electrodes. They are immersed in aqueous potassium iodide (KI) solutions of different 87 

concentrations, whereby the cathode cell is charged with a solution of low KI concentration and 88 

the anode cell with a solution saturated with KI. The two chambers are linked together by an ion-89 

bridge to provide an ion-pathway and to prevent mixing of the cathode and anode electrolytes. 90 

The detection is based on the titration of ozone in KI according to the redox reaction: 91 

2 KI   +   O3   +   H2O →   I2     +      O2   +      2 KOH    (R-1) 92 
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In the cathode cell, the iodine (I2) is converted back into two iodide ions (I-) by the uptake 93 

of two electrons from the platinum electrode surface. Continuous sampling is achieved by a 94 

small battery-driven gas pump made of Teflon that bubbles ambient air through the sensing 95 

solution of the electrochemical cell. The iodine molecules that are produced by the reaction are 96 

transported towards the cathode electrode to be converted back to I-; this process generates an 97 

electrical current in an external circuit that is proportional to the sampled ozone per unit time. 98 

Given the pump flow rate (ΦP in cm3 s-1), the pump temperature (TP in K), the overall efficiency 99 

(T) of the sensor cell, the measured electrical current (IM in µA), after a correction for a 100 

background current (IB in µA), is converted to the ozone partial pressure (PO3 in mPa): 101 

𝑃𝑂3 = 0.043085 ∗
𝑇𝑃

(𝜂𝑇∗𝛷𝑃)
∗ (𝐼𝑀 − 𝐼𝐵)    (E-1) 102 

The constant 0.043085 is determined by the ratio of the gas constant (R) to two times the 103 

Faraday constant (for each O3 molecule two electrons flow in the electrical circuit from reaction 104 

R-1). The overall efficiency, T, includes: the absorption efficiency A of O3 into the sensing 105 

solution (usually 1.00), the pressure dependent pump efficiency P and the conversion efficiency 106 

C of the ECC sensor cell. The last efficiency is predominantly determined by the stoichiometry 107 

of redox reaction R-1 followed by the conversion of the produced iodine into the measured 108 

electrical current IM. In practice, most operators add a sodium-hydrogen phosphate buffer to the 109 

cathode KI-solution to maintain the pH at 7.0 to keep the stoichiometry of the redox reaction R-1 110 

close to one.  111 

The uncertainty of the ECC sonde measurements of the ozone partial pressure (PO3) is a 112 

composite of the contributions of the individual uncertainties of the instrumental parameters (IM, 113 

IB, TP, FP, T = A*P*C), as described in detail by Tarasick et al. (2021). Tarasick et al. (2021) 114 

assumed that all systematic uncertainty components are known and corrected for. All 115 

instrumental uncertainties are assumed to be random and uncorrelated such that they follow 116 

Gaussian statistics to determine the overall uncertainty of the measured PO3. In the troposphere 117 

the background current IB is the dominant uncertainty, particularly in the upper troposphere 118 

where the ozone concentration is generally low (mid-latitudes) to very low (near the tropical 119 

tropopause).  120 

In the stratosphere, uncertainties of pump characteristics (Johnson et al., 2002) and 121 

conversion efficiencies are the major contributors to the overall uncertainty (WMO/GAW Report 122 

No. 268, 2021). Since 2000-2010, the radiosondes flown with the ozonesondes are equipped to 123 

measure GNSS altitude. This means that the ambient air pressure is determined from the altitude 124 

measurement (e.g. Stauffer et al. 2014) in which case the pressure uncertainty is better than 0.05-125 

0.10 hPa above 50 hPa, making only a minor contribution to the overall uncertainty.  However, 126 

in case of ozonesondes flown with non-GNSS radiosondes, generally those prior to ~2000, the 127 

uncertainty of the radiosonde pressure sensor measurement above 50 hPa could be the dominant 128 

source of error. 129 

 130 

2.3 Quality Assurance (QA) of Ozonesondes: Approach and Current Status  131 

There has been considerable research activity to understand the performance of the 132 

ozonesonde instrument and to establish standard operating procedures (SOP). Twenty-five years 133 

ago, the ozonesonde measurement was assigned a 15-20% accuracy (SPARC/IOC/GAW, 1998). 134 

The total column ozone (TCO) amount is now typically accurate to within 2-3% when evaluated 135 

against co-located ground-based instruments. Accuracy throughout the column, when best 136 

practices are followed, is ~(5-10)%, with the potential to improve to (3-5)%.  137 
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2.3.1 Overview of Ozonesonde Community Quality Assurance (QA) Activities  138 

The ozonesonde community, working together under the auspices of World 139 

Meteorological Organization/Global Atmospheric Watch (WMO/GAW) and groups like 140 

NDACC, the International Ozone Commission (IO3C), and, in the past decade, the GCOS 141 

Reference Upper Air Network (GRUAN), has organized QA research around three important 142 

activities. The first of these was the creation of a testing facility for ozonesondes. In the mid-143 

1990s, as part of the WMO/GAW Quality Assurance plan (WMO/GAW Report No. 104, 1995), a 144 

World Calibration Centre for OzoneSondes (WCCOS) was established at Germany’s 145 

Forschungszentrum-Jülich (Smit et al., 2000). The heart of the WCCOS is an environmental 146 

simulation chamber in which up to four ozonesondes can be intercompared and calibrated 147 

against a dual beam UV-photometer (OPM; Proffitt and McLaughlin, 1983) that is traceable to 148 

the NIST standard for ozone. During testing, pressure, temperature and ozone concentration are 149 

varied at the rate of an actual ascent from the surface until burst altitude at 33-35 km altitude. In 150 

its first five years of operation a set of campaigns, each referred to as a Jülich Ozone Sonde 151 

Intercomparison Experiment (JOSIE; WMO/GAW Report No. 130 (1998), No. 157 (2004a) and 152 

No. 158 (2004b)), quantified biases among ozonesonde types, ECC or otherwise, between the 153 

two major ECC types of instruments, among different sensing solution types (SST). Smit et al. 154 

(2007) summarized a JOSIE-2000 in which eight groups compared instruments and preparation 155 

methods over 10 simulations of various environments: polar, tropical, mid-latitude. 156 

The second ozonesonde QA activity has been intercomparisons of ECC ozonesondes in 157 

the field. For example, JOSIE-2000 results on biases were confirmed in the field during the 158 

Balloon Experiment on Standards for Ozone (BESOS) campaign in 2004 (Deshler et al., 2008), 159 

with 18 sondes flown on a single gondola along with the WCCOS standard OPM.  160 

Examples from laboratory and field comparisons appear in Figure 4. In Figures 4A and 161 

4B, offsets in the measurement of ozone between the two instruments from JOSIE-2000 and 162 

BESOS, respectively, are shown. The OPM was the absolute reference in both experiments. 163 

2.3.2    Development of Consensus-based Standard Operating Procedures (ASOPOS) 164 

The third component of enhancing QA was the establishment in 2004 of an international 165 

team of 15-20 sonde experts to review laboratory and field tests in an Assessment of Standard 166 

Operating Procedures (SOPs) for OzoneSondes (ASOPOS). The first ASOPOS led to a 167 

community consensus for SOPs. Largely based on the 1996-2000 JOSIE campaigns and BESOS, 168 

the recommended SOPs were published as WMO/GAW Report No. 201 (2014).  169 

The 2017 JOSIE campaign, with simulations of only tropical conditions (Thompson et 170 

al., 2019), was the basis for a ASOPOS 2.0 evaluation (WMO/GAW No. Report 268, 2021). The 171 

ASOPOS 2.0 report outlines (1) an improved treatment to correct the pump flow rate that falls 172 

off at low pressures; (2) a correction of the ozone exposure dependent stoichiometry of the 173 

O3+KI redox reaction (R-1) to account for both slow (20-25 min) and fast (20-25 sec) 174 

reactions that take place in the ECC during an ascent (Vömel et al., 2020); (3) a new conversion 175 

efficiency in Eq. E-1 that relates the final calculation of ozone amount to the OPM used at the 176 

WCCOS, making every reported sounding traceable to a common standard; (4) an extended list 177 

of metadata to be collected at launch time so data can be reprocessed; (5) continuous monitoring 178 

of station QA by comparing sonde ozone amounts to ground-based and satellite overpass 179 

measurements for detecting problems like the post-2013 total ozone “dropoff” observed at a 180 

number of stations (Stauffer et al. 2020; see Section 4.2). Figure 4C displays some JOSIE-2017 181 

results. Operators prepared their sondes used for determining the average labeled “nominal SOP” 182 

according to their home station practices; for 7 of 8 stations tested, the preparation followed the 183 

first ASOPOS Report (WMO/GAW Report No. 201, 2014). For the “Low Buffer” tests all 184 
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operators used a sensing solution with 1% KI and 10% of the standard buffer solution. Ozone 185 

measured with the low-buffer solution, irrespective of instrument type, measured closer to the 186 

OPM near the simulated tropopause altitude (~15 km) but always lower than the OPM elsewhere 187 

in the profile. 188 

2.3.3 Homogenization of Long Ozonesonde Time-Series 189 

The bias effects, i.e., discontinuities and trends introduced by instrumental artifacts, as 190 

described in the first ASOPOS Report (WMO/GAW Report No. 201, 2014), need to be accounted 191 

for in calculating reliable ozone profile trends. ECC ozonesondes were first manufactured 50 192 

years ago and have undergone modifications of the instrument and in some cases, operational 193 

procedures, resulting in inhomogeneities in some station records and biases among stations. 194 

Discontinuities in total ozone or profile segments have appeared in the time-series at various 195 

stations. This phenomenon was recognized in a 2011/2012 Ozone Sonde Data Quality 196 

Assessment (O3S-DQA) that reviewed 40 years of ozonesonde records from a number of 197 

stations. The O3S-DQA activity led to guidelines for data providers to resolve inhomogeneities 198 

in long-term sonde records (Smit et al., 2012; https://www.wccos-josie.org/o3s-dqa). Generic 199 

transfer functions were developed (Deshler et al., 2017) to aid the process of harmonizing sonde 200 

records to the common standard of the combinations recommended in the WMO/GAW Report 201 

No. 201 (2014).  202 

Since 2015, ~40 of the long-term ozonesonde records within the global network have 203 

been re-processed following the O3S-DQA guidelines, removing known inhomogeneities to 204 

achieve overall uncertainties of 5-10 %. These include the Canadian stations (Tarasick et al., 205 

2016), several European stations (Van Malderen et al., 2016), those of the SHADOZ network 206 

(Witte et al., 2017, 2018; Thompson et al., 2017), Wallops Island, VA (Witte et al., 2019), and 207 

eight stations in the NOAA network (Sterling et al., 2018). Figure 5 shows the result of the 208 

homogenization effort of the ozonesonde time series at Boulder, CO (cyan triangle on the Figure 209 

6 map), by comparing the total ozone column (TCO) derived from the sondes with TCO 210 

measured by the Dobson spectrophotometer before (Figure 5A) and after the re-processing 211 

(Figure 5B). 212 

 213 

3. Ozonesonde Networks 214 

 215 

3.1. The Global Network: Long-term Sites 216 

 Stations launching ozonesondes on a regular basis are displayed in Figure 6. All except 217 

one launch ECC type ozonesonde instruments. WOUDC archives the sonde profiles along with 218 

co-located total column ozone amounts from Dobson, Brewer, and SAOZ spectrometers where 219 

these are available. NDACC is another repository for ozonesonde data. Other oft-used archives 220 

are NOAA/GML (https://gml.noaa.gov/aftp/data/ozwv/Ozonesonde/) and NASA’s SHADOZ 221 

(https://tropo.gsfc.nasa.gov/shadoz). Surface ozone concentrations are archived with other 222 

reactive gases at the WDCRG.  223 

The global ozonesonde network, consisting of stations operated by meteorological 224 

services, space agencies, and several universities, has evolved over more than 80 years. A 225 

number of stations originated in the 1950s during the International Geophysical Year. Other 226 

sounding stations became operational as the number of ozone-measuring satellites increased after 227 

1990 (Figure 7). Because most Antarctic ozonesonde stations began operating before the 1980s, 228 

a robust record exists of the lower stratospheric ozone depletion associated with the Antarctic 229 

“ozone hole” in the Austral winter to early spring when UV-based satellites have limited views. 230 

The discovery of extreme Antarctic ozone loss was first reported at the 1984 Quadrennial Ozone 231 

https://gml.noaa.gov/aftp/data/ozwv/Ozonesonde/
https://tropo.gsfc.nasa.gov/shadoz
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Symposium (Chubashi, 1985) based on soundings from the Japanese Syowa station (black 232 

triangle on Figure 6) and on column ozone losses at the British Halley Bay station in 1985 233 

(Farman et al., 1985). Figure 8A displays an example from South Pole station (magenta triangle 234 

on the Figure 6 map) in 2018 of the morphology of low-ozone profiles that occur during 235 

September and October when there is a sustained Antarctic polar vortex. The contrasting profiles 236 

are from July 2018 at South Pole. 237 

  238 

3.2  Strategic Networks: Global and Campaign Operations 239 

 Ozonesondes have been organized for targeted purposes in what are referred to as 240 

strategic ozonesonde networks (Thompson et al., 2011). The global SHADOZ network (blue 241 

circles in Figure 6), organized in 1998 (Thompson et al., 2003a), consists of tropical and 242 

subtropical stations that launch 2-5 sondes monthly, generally coordinated with a midday 243 

overpass of one or more instruments on a polar-orbiting satellite. The zonal distribution of 244 

SHADOZ stations (Thompson et al., 2003b) was chosen to investigate the wave-one pattern in 245 

tropical total column ozone (Figure 9) first reported in the 1980s by Fishman et al. (1987). An 246 

important contribution of SHADOZ has been the characterization of a distinct tropical 247 

tropopause layer (TTL, sometimes referred to as a tropopause transition layer [Gettelman and 248 

Forster, 2002; Fuglistaler et al., 2009; Thompson et al., 2012]). This region is typically given as 249 

between 13-18 km; note steep ozone gradients at ~ 13 km in Figure 9). 250 

 Other strategic ozonesonde networks operate on a campaign basis (Thompson et al., 251 

2011); a list of major campaigns is given in Table 1. These soundings provide fixed-site ozone 252 

profiles to complement the multi-species payloads that aircraft deploy to study chemical and 253 

meteorological processes influencing ozone in the stratosphere and/or troposphere. The Match 254 

campaigns (von der Gathen et al., 1995; Rex et al., 1999) have coordinated polar and midlatitude 255 

soundings to study in situ ozone losses during two Antarctic and 19 Arctic springs since the 256 

1991-1992 Arctic winter (Table 1). Using forecast trajectories to predict where layers of 257 

depleted ozone observed in one sounding will travel, the projected arrival of such a parcel over 258 

another station triggers a timed launch. Match has also supported a number of international 259 

aircraft experiments (Table 1). For the first time, in the 2019-2020 winter-spring season, Match 260 

showed that the magnitude of Arctic ozone profile loss, recorded by soundings over Greenland, 261 

Ny-Ålesund (Svalbard, Norway), Canada and Finland, could approach the magnitude of 262 

Antarctic “ozone hole” loss, with ozone mixing ratio values at < 0.2 ppmv at 18 km (Figure 8B; 263 

Wohltmann et al., 2020).  264 

 Over North America, a series of Intensive Ozonesonde Network Studies (IONS) 265 

supported multi-aircraft and satellite validation studies from 2004 through 2013. For four IONS 266 

campaigns, sondes were coordinated at 6 to as many as 23 sites (August 2006) for midday 267 

satellite overpasses from 3-7 times/week. The IONS experiments led to a deeper understanding 268 

of tropospheric ozone during North American summers and have been especially useful in 269 

identifying stratosphere-troposphere exchange (STE) episodes. STE turns out to be more 270 

prevalent than previously thought, with significant intrusions of stratospheric air taking place 271 

after April-May, the typical “springtime” maximum in STE activity (Ott et al., 2016; Kuang et 272 

al., 2017; Tarasick et al., 2019). During the July-August 2004 IONS, ozonesonde observations 273 

along with satellite data, showed that ~1/4 of the free tropospheric ozone budget from mid-274 

Atlantic states to southeastern Canada originated from the stratosphere (Thompson et al., 275 

2007a,b). Figure 8C illustrates ozone profiles below 18 km at a Houston site during SEACIONS 276 

(2013). Varying ozone concentrations in the upper troposphere reflect stratospheric influences as 277 

well as lightning, as Thompson et al. (2008) showed with the identification of ozone laminae and 278 
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satellite data analysis with IONS-06 summertime soundings over Houston. These same 279 

influences are reflected in the 2013 SEACIONS profiles (Figure 8C).   280 

 281 

4. Applications of Ozonesonde Data with Remote Sensing Observations 282 

  283 

Ozonesonde observations and remote sensing observations have a symbiotic relationship 284 

in that they are both useful to each other for producing high quality datasets. The simple satellite 285 

retrieval flowchart of Figure 10A demonstrates that climatologies based on ozonesonde profiles 286 

(e.g., McPeters and Labow, 2012) are used in satellite algorithms as a priori or first guess 287 

information. Limb-measuring satellites rely on comparisons with sonde ozone profiles for 288 

validation of their products. With a number of ozone-measuring satellites lasting a decade or 289 

more (Figure 7), ozonesonde data are being used to evaluate drift in the satellite instruments 290 

(Hubert et al., 2016). The latter application has been an important factor in increasing demand 291 

for sonde data with reduced uncertainty and more rapid data delivery. Total column ozone 292 

(TCO) or tropospheric column ozone (TrCO) from sondes, as well as ground-based 293 

spectrometers, are routinely compared with the satellite TCO or TrCO.  Examples are given in 294 

the next section.  295 

 296 

4.1  Satellite Ozone Product Evaluation using Ozonesonde Data     297 

 Ozonesonde data are typically used to evaluate two types of satellite products: profiles 298 

and column amounts. For example, stratospheric ozone profiles from the SAGE III instrument on 299 

the International Space Station (ISS/SAGE III) were recently examined by Wang et al., (2020). 300 

The satellite profiles are based on limb-viewing observations at sunrise and sunset. Twenty 301 

ozonesonde stations (between +55 degrees latitude) provided the statistics, using a total of 273 302 

profiles. Wang et al. (2020) also compared the SAGE III data to ozone from four other limb-303 

measuring satellites, OSIRIS, Aura/MLS, ACE-FTS and OMPS-LP. Agreement of the satellites 304 

as a whole was somewhat better at midlatitudes than in the tropics.  305 

 Extracting profiles from nadir-viewing UV-measuring satellites is challenging. Huang et 306 

al. (2017) presents a 10-year record of tropospheric profiles derived from OMI. The record is 307 

somewhat compromised due to a partial detector failure in 2009, which introduced a sampling 308 

bias into the ozone readings. For the newer  TROPOMI (2017-), Mettig et al. (2021a) employed 309 

a novel technique (TOPAS, Tikhonov regularized Ozone Profile retrievAl with SCIATRAN) to 310 

nadir retrievals in tropical and mid-latitudes to estimate ozone throughout the troposphere and 311 

lower-mid stratosphere; the method follows the simple flowchart in Figure 10A. The vertical 312 

resolution of the TOPAS method is fairly coarse (~9 km on average) based on the averaging 313 

kernels reported with only 1-2 degrees of freedom (DOFs) in the troposphere, which is not unlike 314 

other UV-only satellite instruments. This indicates that similar instruments are highly dependent 315 

on the a priori profile (eg. an ozonesonde climatology) in the troposphere. However, agreement 316 

between the TROPOMI-retrieved ozone profiles and ozonesonde measurements is generally 317 

within 20% (Figure 10B). New retrievals that combine observations from UV-satellite 318 

instruments and IR instruments (eg. NOAA’s CrIS) can improve both tropospheric and 319 

stratospheric comparisons with ozonesondes due to increased sensitivity throughout the ozone 320 

profile (Mettig et al., 2021b). 321 

  Other techniques for estimating tropospheric ozone are based on column amounts, 322 

following the heritage of Fishman et al. (1991; 1996). Their “residual” approach to tropospheric 323 

ozone consists of subtracting the stratospheric column extracted from one satellite sensor from a 324 

highly accurate TCO from a backscattered UV instrument, initially from TOMS (several 325 
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instruments from 1978-2005). The OMI/MLS series (Ziemke et al. 2006; 2019) is one of the 326 

most-used tropospheric column ozone (TrCO) datasets based on a residual technique. Figure 11 327 

shows the monthly mean TrCO from SHADOZ sondes from 10 tropical sites (latitude within 328 

+20 degrees) compared to the corresponding monthly average OMI/MLS estimated tropospheric 329 

column. The offset is ~25% where the sonde TrCO is 40 DU although the correlation (r2 = 0.66) 330 

is reasonably good. Part of the offset may be sampling differences (daily satellite data, with 331 

averaging over several pixels, vs. 2-4 sondes/month). The satellite measurements do not typically 332 

capture the full-range of ozone extremes measured by the sondes.  333 

Cloud-slicing techniques (Ziemke et al., 2001; Heue et al., 2017) constitute an alternative 334 

approach to estimating upper and lower tropospheric column amounts; this has been applied to 335 

TROPOMI (Hubert et al., 2021). Agreement with ozonesonde-based totals is ~15%. A 336 

shortcoming of both cloud-slicing and residual methods is incomplete knowledge of the 337 

tropopause height, i.e., what the column actually represents. This limitation is particularly 338 

relevant in the extra-tropics where the tropopause height can vary greatly and change from < 10 339 

km to more than 15 km within hours. Time-series with residual products (Ziemke et al., 2019) 340 

capture seasonal variability and oscillations like the ENSO but caution is warranted for trends. 341 

 Figure 12 shows examples of ozonesonde comparisons from two instruments on the 342 

Aura satellite (OMI and MLS) that has operated for 17 years. The comparisons are for soundings 343 

taken at the Wallops Island, VA (green triangle marks location in Figure 6). Good agreement 344 

between the ozonesondes and MLS (Figure 12A) is observed throughout the stratosphere (Witte 345 

et al., 2019. Dobson spectrophotometer measurements at Wallops Island are within ±5% of the 346 

ozonesonde TCO over the 25-year record illustrated (1995-2020), demonstrating the stability and 347 

high-quality of the sounding record); the Dobson is calibrated regularly against the world 348 

reference instrument at Boulder, CO. Figure 12B shows that agreement between OMI (October 349 

2004-) and ozonesonde TCO also averages 5% or better to 2020. 350 

 351 

      4.2   Use of Satellite Ozone Data to Track the Performance of the Ozonesonde 352 

 The examples above illustrate how ozonesonde data are used for evaluation of satellite 353 

products. Conversely, because several satellite records have been processed and improved 354 

multiple times, high-accuracy satellite data can be useful in monitoring the quality of sonde data. 355 

The ozonesonde community has been systematically reprocessing long-term sonde records over 356 

the past decade. Comparisons in total column ozone between integrated total ozone from 357 

soundings and coincident satellite overpasses may show a discontinuity that signifies a problem 358 

in the sonde measurements. For example, Witte et al. (2017; 2018) showed that an inadvertent 359 

change in the sensing solution in soundings at La Réunion led to an artificial 18 DU increase in 360 

the mean TCO from 2007 to 2016 compared to the average TCO from 1998 to 2006. Witte et al. 361 

(2017; 2018) corrected the affected ozone profiles to remove the discontinuities, using the 362 

homogenization procedures recommended by ASOPOS in Deshler et al. (2017).  363 

 In the past 5 years there have been concerns about drifts or discontinuities in the 364 

ozonesonde TCO at ~20% of the global ozonesonde record since 2005. The direction of change 365 

is a loss of 3% or more in TCO since 2013. Figure 13 illustrates how data from 5 operational 366 

satellite instruments, MLS (stratosphere), OMI, OMPS and two GOME-2 instruments (TCO), 367 

are used to evaluate the ozonesonde data quality in the Aura era. In the upper panels of Figures 368 

13A and 13B, comparisons of sonde stratospheric ozone are made with ozone at standard MLS 369 

pressure levels. The lower panels show TCO comparisons with the 4 UV-based satellite 370 

instruments. The Wallops Island record (Figures 12 and 13A) is stable in both TCO and 371 

stratospheric ozone above 50 hPa whereas, after 2013, the Samoa data (Figure 13B) display 372 
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more variability and an overall TCO decline (lower panel in Figure 13B) that averages 3-4% 373 

(Stauffer et al., 2020); the cause is partially due to changes in one sonde instrument type. The 374 

ASOPOS 2.0 Report (WMO/GAW Report No. 268, 2021), in which procedures are detailed to 375 

maximize quality in ozonesonde measurements, recommends ongoing comparisons of both the 376 

TCO and the stratospheric profile. The goal is to detect any change in procedure or instrument 377 

performance as quickly as possible. 378 

 379 

5.  Summary and Conclusions  380 

  381 

 5.1   Scientific Perspective: On-going Need for Profiles from Global Ozonesondes 382 

The vertical profiles of the ozonesonde instrument provide unique information in the global 383 

ozone observing system for several reasons. First, no other widely used method is as free of 384 

weather effects. Second, although lidar has high vertical resolution, there are many fewer lidar 385 

stations compared to ozonesonde monitoring sites.  386 

The near-real time measurement of the ozonesonde is ideal for tracking layers of 387 

stratospheric ozone (Match campaigns) and ozone pollution in the troposphere (IONS 388 

campaigns). Interest in ingesting sonde profiles into regional air-quality forecasts in near-real 389 

time and global chemistry-climate models is another motivator for adding to the number of 390 

ozonesonde stations. Unfortunately, numbers of sonde records have been declining in the past 391 

years. The combined WOUDC, NDACC, SHADOZ and NOAA/GML archives include >2800 392 

soundings for 2017 but fewer than 2400 records in 2019. Key Arctic and mid-latitude stations 393 

have reduced or eliminated soundings. 394 

The satellite community continues to be an important user of ozonesonde data as well as a 395 

driver for faster data delivery and more stringent quality assurance. With 5% uncertainty in TCO 396 

now achievable, ozonesonde data can be used to detect drifts of profiling ozone monitoring 397 

satellites and to evaluate new algorithms and satellite ozone products in a timely manner. 398 

Conversely, satellite data have been shown to be an important component in ensuring continuous 399 

evaluation of ozonesonde instrument and operational QA. 400 

 401 

 5.2   Quality Assurance: Need for Sonde Intercomparisons and a Global Ozone Reference 402 

 Changes in ozonesonde instrumentation is unavoidable as individual components may be 403 

modified by manufacturers. Operational and data processing practices may also change at 404 

individual stations. Accordingly, there is an ongoing need for periodic evaluation of ozonesonde 405 

performance and intercomparisons with a global ozone reference as the ASOPOS process has 406 

demonstrated. Essential elements of QA assessments are: (1) regular laboratory evaluation of 407 

instruments and operational practices, such as the JOSIE experiments; (2) field tests; (3) a 408 

process whereby global data and SOPs are continuously evaluated by a broad team of 409 

ozonesonde experts. These assessments must be supported by maintaining a world ozone 410 

standard photometer and one or more environmental test centers, e.g., the WCCOS. A strength of 411 

the ASOPOS process has been the inclusion of dedicated researchers who provide and archive 412 

ozone profiles, data users and instrument manufacturers. The recommendations, supported by 413 

analyses in the peer-reviewed literature, are consensus-based. The ASOPOS Reports are 414 

themselves peer-reviewed and are publicly available through the WMO/GAW website. 415 

 416 

5.3  Conclusions 417 

 418 
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The ozonesonde instrument is unmatched in producing profiles of ozone with high vertical 419 

resolution throughout the troposphere and lower-mid stratosphere. Over the past 25 years, 420 

dedicated attention to ozonesonde QA has led to significant advances. This in turn led to new 421 

laboratory and field experiments to further refine SOP and guidelines for traceable ozonesonde 422 

records, bringing the target of 5% uncertainty throughout the ozone profile within reach. With 423 

reprocessed data, it has been possible to reduce residual uncertainties, biases, and discontinuities 424 

in ozonesonde time-series. We can expect that there will be further homogenization efforts of 425 

ozonesonde data and evaluation of the new data within the global network in the coming years. 426 

 427 
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 759 

Figure Captions: 760 

Figure 1:  Ozone profile from an ECC ozonesonde with the temperature and humidity recorded 761 

by the accompanying radiosonde. The radiosonde also measures wind speed and direction. Data 762 

from a launch at Wallops Island, VA (37.9N, 75.5W) on 17 July 2019. 763 
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Figure 2:  Altitude ranges of techniques used to measure ozone, ground-based, airborne and 764 

satellites. Other ground-based instrumentation (lidar, surface monitors) show context for the 765 

ozonesonde measurement. The schematic shows lidar that measure in the troposphere only 766 

(Sullivan et al., 2015) and that cover troposphere and stratosphere. In fact, only one or two of the 767 

most widely used ozone lidar instruments, e.g., within NDACC, detect both troposphere and 768 

stratosphere; most ozone lidars report data only in the stratosphere.  769 

Figure 3: (A) Cross-section of the electrochemical concentration cells (ECC) in (B) the 770 

ozonesonde sensor. There are two widely used ECC ozonesonde types, manufactured by Science 771 

Pump Corporation and the EN-SCI Corporation, producing the SPC-6A and EN-SCI instrument, 772 

respectively. The design of both ECCs is similar but there is a consistent 4-5% difference in their 773 

performance (Figures 4A and 4B) when launched under the same conditions (Smit et al., 2007; 774 

Thompson et al., 2007c; Smit, 2014). Since 2014, a third ECC-type instrument manufactured at 775 

the Institute of Atmospheric Physics (IAP), Beijing, China, has been flown at several East Asian 776 

stations; the new instrument has not been extensively intercompared with the SPC-6A or EN-SCI 777 

in laboratory or field tests. 778 

 779 

Figure 4: (A) JOSIE 2000 & BESOS (B): Relative differences between measurements of ozone 780 

by EN-SCI and SPC-6A using different combinations of 1%KI & full buffer and 0.5%KI & half 781 

buffer sensing solution strength. Data are averaged over 5 km altitude. All profiles were first 782 

referenced to the WMO/GAW standard ozone photometer (OPM). In JOSIE-2000 the OPM was 783 

in the Jülich (Germany) WCCOS facility; in BESOS the OPM flew on a gondola with 18 784 

ozonesonde instruments in Laramie, Wyoming (US). (C) Mean percent differences between 785 

ozone measured by EN-SCI and SPC-6A sondes following WMO/GAW (2014) 786 

recommendations and sondes using 1%KI and 0.1buffer, during JOSIE-2017. Both sets of 787 

measurements were referenced to the OPM.  788 

 789 

Figure 5:  Total column ozone (TCO) derived from Boulder, CO, sondes compared with TCO 790 

measured by the Boulder Dobson spectrophotometer before (A) and after (B) re-processing of 791 

sonde data (Source: Sterling et al. 2018). An artifact step-function drop has been eliminated with 792 

the reprocessing. 793 

 794 

Figure 6:  Distribution of 64 most active ozone sounding stations in the global network (after 795 

WMO/GAW Report No. 268, 2021). These stations deposit data in major public archives. The 796 

latter include the archive WOUDC (World Ozone and Ultraviolet Data Center) sponsored by the 797 

World Meteorological Organization Global Atmospheric Watch (WMO/GAW; see Acronym 798 

List). Other commonly used archives are those of the Network for Detection of Atmospheric 799 

Composition Change (NDACC; deMazière et al., 2018), at the websites of NASA for the 800 

Southern Hemisphere ADditional OZonesonde Network (SHADOZ; Thompson et al., 2012; 801 

2017), or at the NOAA/Global Monitoring Laboratory (GML). 802 

Figure 7:  Ozone-measuring satellites that have used sonde data for algorithm development and 803 

validation since 1995. 804 

Figure 8:  Examples of dynamic and/or chemical processes affecting the ozone profile, as 805 

captured by soundings. (A) Ozonesonde profiles over NOAA’s South Pole station that illustrate 806 

extreme ozone loss due to catalytic chemical destruction in the region ~15-20 km [above 100 807 
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hPa] in October of 2018, compared to July 2018 (pre-ozone hole); (B) 2019-2020 winter-spring 808 

season Match ozone soundings over Greenland, Ny-Ålesund (Svalbard, Norway), Canada, and 809 

Finland (Source: Wohltmann et al., 2020); Used by permission from AGU. (C) A series of ozone 810 

profiles during the 2013 SEACIONS campaign (https://tropo.gsfc.nasa.gov/seacions/) at 811 

Ellington Field, Texas (29.6N, 95.2W). STE influences appear in profiles of 7. 9 August and 4 812 

September (green line) 2013. An example of low-ozone air lofted in convection appears in the 813 

profile of 4 September (maroon).  814 

Figure 9:  Composite data from a strategic global network, SHADOZ, displaying the zonal 815 

ozone structure (mixing ratios) that gives rise to the wave-one pattern in satellite TCO. The 816 

contours are based on annually averaged profile data over 1998-2020. 817 

Figure 10: (A) Generalized flowchart indicating how ozonesonde data is used for a first guess or 818 

a priori profile in the retrieval process and for validation of the final satellite product. (B) 819 

Comparison of ozone profiles retrieved from TROPOMI and those from ozonesondes for 820 

different zonal bands. The relative mean difference between the retrieval results and the high-821 

resolution sonde data (solid line), as well as the standard deviation of the differences 822 

(dashed line), is shown in black. The comparison with the sonde profiles convolved with the 823 

averaging kernels is shown in red. In grey, the relative difference between the a priori ozone 824 

profiles and high-resolution ozonesonde profiles is displayed, along with the corresponding 825 

standard deviations. (Source: Mettig et al., 2021a). 826 

Figure 11:  Scatterplot of monthly mean TrCO estimated by the tropospheric residual OMI/MLS 827 

product (Ziemke et al., 2019) vs the corresponding TrCO from 10 SHADOZ sites, the latter 828 

computed by integrating ozone from surface to tropopause determined from the coupled 829 

radiosonde. Comparisons are for SHADOZ stations with latitude within + 20 degrees.  830 

Figure 12: (A) Comparison of ozone from Wallops Island, VA, USA, ozonesondes (red) and 831 

Aura/MLS data (black) at the standard levels of the MLS measurement (mean over 2004-2020) 832 

with standard deviations indicated by horizontal bars; (B) TCO from Wallops sondes (red) 833 

compared to TCO from the Aura/OMI (black), 2004-2020, and Dobson spectrophotometer 834 

(blue), 1995-2020.  835 

Figure 13:  Comparisons between data from ECC sondes and Aura MLS stratospheric ozone 836 

profiles (top panels), and OMI, GOME 2A and GOME 2B (blue dots), and OMPS (red dots) 837 

TCO (bottom panels). (A) Wallops Island, VA, record; (B) Samoa SHADOZ record. Red (blue) 838 

colors in the top panels indicate where the ECC ozone is greater (less) than MLS. Horizontal 839 

dashed lines in the lower panels indicate the 0% line for TCO differences. Note a post-2014 drop 840 

in Samoa TCO relative to satellite measurements. 841 

 842 

Acronym List  843 

 844 

AASE II Airborne Arctic Stratospheric Experiment II 845 

ACE-FTS Atmospheric Chemistry Experiment – Fourier Transform Spectrometer on 846 

Canadian SCISAT satellite 847 

ASOPOS Assessment of Standard Operating Procedures for OzoneSondes 848 

BESOS Balloon Experiment on Standards for OzoneSondes 849 

https://tropo.gsfc.nasa.gov/seacions/


21 – Chapter 4. Ozonesondes 

 

BORTAS Quantifying the impaoct of BOReal forest fires on Tropospheric oxidants over the 850 

Atlantic using Aircraft and Satellites 851 

DU Dobson Unit, the unit to express vertical ozone column abundances,1 DU= 852 

2.69x1016 molecules per cm2 at STP 1x10-3 atm.cm at STP) 853 

EASOE European Arctic Stratospheric Ozone Experiment 854 

ECC Electrochemical Concentration Cell 855 

EN-SCI Environmental Science Corporation; ECC ozonesonde manufacturer 856 

ESRL Earth System Research Laboratories 857 

GAW Global Atmospheric Watch 858 

GCOS Global Climate Observing System 859 

GEMS  Geostationary Environment Monitoring Spectrometer 860 

GML Global Monitoring Laboratory (division of NOAA’s ESRL; formerly GMD) 861 

GOES Geostationary Operational Environmental Satellites 862 

GOME Global Ozone Monitoring Experiment (onboard MetOp satellites) 863 

GNSS Global Navigational Satellite System 864 

GRUAN GCOS Reference Upper Air Network 865 

IAP Institute of Atmospheric Physics, Beijing, China 866 

IGACO Integrated Global Atmospheric Chemistry Observations 867 

IOC International Ozone Commission 868 

IONS Intensive Ozonesonde Network Study 869 

IPCC Intergovernmental Panel on Climate Change 870 

ISS International Space Station 871 

JOSIE Jülich OzoneSonde Intercomparison Experiment 872 

KI Potassium Iodide 873 

LEO Low Earth Orbit 874 

MLS Microwave Limb Sounder (on Aura satellite) 875 

NASA National Aeronautics and Space Administration 876 

NDACC Network for the Detection of Atmospheric Composition Change 877 

NOAA National Oceanic and Atmospheric Administration 878 

OMI Ozone Monitoring Instrument (on Aura satellite) 879 

OMPS-LP Ozone Mapping and Profiler Suite – Limb Profiler (onboard Suomi-NPP and 880 

JPSS satellites) 881 

OPM Ozone PhotoMeter Instrument (used as UV-reference) 882 

OSIRIS Optical Spectrograph and InfraRed Imaging System, on Odin satellite 883 

O3S-DQA Ozone Sonde Data Quality Assessment 884 

QA Quality Assurance 885 

RECONCILE Reconciliation of essential process parameters for an enhanced predictability of 886 

Arctic stratospheric ozone loss and its climate interactions 887 

SAGE III Stratospheric Aerosol and Gas Experiment (fourth generation on ISS) 888 

SBUV Solar Backscatter Ultraviolet (referring to instrument type on satellites measuring 889 

ozone) 890 

SCIAMACHY SCanning Imaging Absorption SpectroMeter for Atmospheric CHartographY 891 

SCIATRAN    Radiative transfer and retrieval code used by Univ. Bremen SCIAMACHY and 892 

TROPOMI algorithm group 893 

SCOUT-O3 Stratospheric-Climate links with emphasis On the Upper Troposphere and lower 894 

stratosphere 895 

SEACIONS Southeast America Consortium for Intensive Ozonesonde Network Study 896 
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SESAME Second European Stratospheric Arctic and Mid-latitude Experiment 897 

SHADOZ Southern Hemisphere ADditional OZonesondes 898 

SI2N Ozone trend assessment study supported by SPARC, IOC, IGACO, and NDACC 899 

SMILES Submillimeter-Wave Limb Emission Sounder onboard ISS  900 

SOLVE SAGE III Ozone Loss and Validation Experiment 901 

SOP Standard Operating Procedure 902 

SPARC Stratosphere-troposphere Processes And their Role in Climate 903 

SPC Science Pump Corporation; ECC ozonesonde manufacturer 904 

SST Sensing Solution Type  905 

STP Standard Temperature (=273.15 K) and Pressure (=1013.25 hPa) conditions  906 

StratoClim Stratospheric and upper tropospheric processes for better climate predictions 907 

TCO Total Column Ozone 908 

TEMPO Tropospheric Emissions: Monitoring of Pollution 909 

THESEO Third European Stratospheric Experiment on Ozone 910 

TOMS Total Ozone Mapping Spectrometer 911 

TOPAS Tikhonov regularized Ozone Profile retrievAl with SCIATRAN 912 

TROPOMI TROPOspheric Monitoring Instrument 913 

TrCO Tropospheric Column Ozone 914 

UNEP United Nations Environment Programme 915 

UV Ultraviolet 916 

VINTERSOL Validation of INTERnational satellites and Study of Ozone Loss 917 

WCCOS World Calibration Center for OzoneSonde 918 

WDCRG World Data Centre for Reactive Gases 919 

WMO World Meteorological Organization 920 

WOUDC World Ozonesonde and Ultraviolet Data Centre 921 
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“Nobody can be uncheered with a balloon”  A. A. Milne, Winnie the Pooh 10 

 12 

1. The Role of Ozonesondes in the Global Ozone Measurement Framework 13 

 14 

1.1 Sondes in the Context of a Global Ozone Measurement Strategy 15 

The ozonesonde instrument, although more than 50 years old in design, and simple to 16 

operate, remains an essential component of the global observing strategy for stratospheric and 17 

tropospheric ozone. The profiles from ozonesondes are foundational in the development of 18 

satellite ozone retrievals and are used for validating satellite products from a growing 19 

constellation of ozone-measuring sensors.  The ozonesonde instrument is unique in providing 20 

readings at (5-10)% uncertainty or better throughout the troposphere to the mid-stratosphere at 21 

100-150 m resolution independent of conditions of cloudiness or precipitation (Figure 1). 22 

Because it is relatively inexpensive and easy to operate – launching with a standard radiosonde 23 

instrument -- the ozonesonde can be used virtually anywhere.  Ozone sounding records provide 24 

the longest record of the vertical distribution of ozone and thus play a key role in monitoring 25 

changes in stratospheric ozone in accordance with the Montreal Protocol (WMO/UNEP, 2019).   26 

Figure 2 illustrates how ozonesondes fit into the global ozone observing strategy that 27 

employs various ground-based spectroscopic and lidar techniques, ozone instruments on aircraft 28 

and balloons as well as from space-borne platforms. The altitude ranges of sonde operation, 29 

aircraft, and Low-Earth Orbit (LEO) satellites are illustrated. Note that ozone-measuring 30 

instruments have been hosted on the International Space Station (SAGE III is currently 31 

operational). Geostationary satellites (e.g., the Korean GEMS, NOAA’s GOES series) also carry 32 

ozone measuring instruments; these are typically 36,000 km above earth. The tropospheric and 33 

stratospheric segments of the atmosphere are usually measured by two separate lidar instruments 34 

(McDermid et al., 1990; McGee et al., 1991). An advantage of ozonesondes is that a single 35 

sounding encompasses the troposphere and lower and middle stratosphere. 36 

In addition to monitoring and validation of other sensors, ozonesonde data are important 37 

in understanding atmospheric dynamics, lifetimes, and sources and sinks of ozone. Above the 38 

atmospheric boundary layer, the ozone lifetime is weeks to months. Thus, in the troposphere, 39 

sonde data are used to study the transport of pollution throughout the troposphere and lowermost 40 

stratosphere. Pollution from biomass fires in the tropics (Thompson et al., 1996; 2001; 2003a,b), 41 

throughout mid-latitudes by intercontinental transport (Stauffer et al., 2017) and from boreal fires 42 

(Moeini et al., 2020) has been investigated. Recently sonde data across the midlatitude northern 43 

hemisphere quantified a significant drop in tropospheric ozone due to the global economic crisis 44 

instigated by the 2020 COVID-19 pandemic (Steinbrecht et al., 2021).  45 

 46 
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1.2 Chapter Overview 47 

The purpose of this chapter is to present the capabilities and applications of the 48 

ozonesonde measurement as they relate to remote sensing (Sections 3 and 4). We begin with a 49 

description of the ozonesonde instrument and ongoing research related to the quaality assurance 50 

(QA) of the data (Section 2).  51 

 52 

2.  The Ozonesonde Instrument, Operation and Data Quality Control  53 

 54 

2.1 Electrochemical Ozonesondes 55 

Ozonesondes are small, light-weight instruments that are flown on weather balloons 56 

coupled via interfacing electronics to radiosondes for data transmission and measurements of 57 

meteorological parameters: pressure, temperature, humidity, wind, and position. The total weight 58 

of the ozonesonde-radiosonde flight package is ~1 kg so the payload can be flown on relatively 59 

small balloons (typically 1200-1500 g). Using the telemetry of the radiosonde, the measured data 60 

are transmitted to the ground station for further processing. Normally, data are taken during 61 

ascent at a rise rate of about 5 m/s to a balloon burst altitude of 30-33 km altitude. The inherent 62 

response time of the chemical measurement of the ozonesonde is 20-30 s, which provides an 63 

effective height resolution in the ozone profile data of 100-150 m. 64 

Since their first design in the 1960’s, the most commonly used ozonesonde instruments 65 

are based on electrochemical detection methods that convert the sampled ozone into an electrical 66 

current. Smit (2014) describes the common ozonesonde types in use over the past 50 years. At 67 

the present time, the most widely used ozonesonde type is the Electrochemical Concentration 68 

Cell (ECC). Although widely deployed in the past, the Brewer Mast sonde is presently only 69 

launched at the Meteorological Observatory Hohenpeissenberg in Germany in a time series that 70 

started in 1967. Two other major electrochemical sonde types, developed by the India 71 

Meteorological Department and the Japan Meteorological Agency, are no longer used. 72 

Each ozonesonde instrument is unique and is prepared and provisionally calibrated prior 73 

to launch. It is important for remote sensing researchers to understand operational aspects of the 74 

ozonesonde and the procedures that sonde data providers take to minimize uncertainties within 75 

an individual profile and to ensure consistency of the global ozonesonde record over time. The 76 

instrument and data treatment are described in the following sections. 77 

 78 

2.2 The ECC Ozonesonde: Principles of Operation and Sources of Uncertainty 79 

The ECC ozonesonde (Figure 3) developed by Komhyr (1969) consists of two cells, 80 

made of Teflon or molded plastic, which serve as a cathode and anode chamber. There are two 81 

widely used ECC ozonesonde types, manufactured by Science Pump Corporation and the EN-82 

SCI Corporation, producing the SPC-6A and EN-SCI instrument, respectively. The design of 83 

both ECCs resembles Figure 3 but there is a consistent 4-5% difference in their performance 84 

(Figures 4A and 4B) when the different instrument types are operated under the same conditions 85 

(Smit et al., 2007; Thompson et al., 2007c; Smit, 2014). Both cells contain platinum mesh 86 

electrodes. They are immersed in aqueous potassium iodide (KI) solutions of different 87 

concentrations, whereby the cathode cell is charged with a solution of low KI concentration and 88 

the anode cell with a solution saturated with KI. The two chambers are linked together by an ion-89 

bridge to provide an ion-pathway and to prevent mixing of the cathode and anode electrolytes. 90 

The detection is based on the titration of ozone in KI according to the redox reaction: 91 

2 KI   +   O3   +   H2O →   I2     +      O2   +      2 KOH    (R-1) 92 
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In the cathode cell, the iodine (I2) is converted back into two iodide ions (I-) by the uptake 93 

of two electrons from the platinum electrode surface. Continuous sampling is achieved by a 94 

small battery-driven gas pump made of Teflon that bubbles ambient air through the sensing 95 

solution of the electrochemical cell. The iodine molecules that are produced by the reaction are 96 

transported towards the cathode electrode to be converted back to I-; this process generates an 97 

electrical current in an external circuit that is proportional to the sampled ozone per unit time. 98 

Given the pump flow rate (ΦP in cm3 s-1), the pump temperature (TP in K), the overall efficiency 99 

(T) of the sensor cell, the measured electrical current (IM in µA), after a correction for a 100 

background current (IB in µA), is converted to the ozone partial pressure (PO3 in mPa): 101 

𝑃𝑂3 = 0.043085 ∗
𝑇𝑃

(𝜂𝑇∗𝛷𝑃)
∗ (𝐼𝑀 − 𝐼𝐵)    (E-1) 102 

The constant 0.043085 is determined by the ratio of the gas constant (R) to two times the 103 

Faraday constant (for each O3 molecule two electrons flow in the electrical circuit from reaction 104 

R-1). The overall efficiency, T, includes: the absorption efficiency A of O3 into the sensing 105 

solution (usually 1.00), the pressure dependent pump efficiency P and the conversion efficiency 106 

C of the ECC sensor cell. The last efficiency is predominantly determined by the stoichiometry 107 

of redox reaction R-1 followed by the conversion of the produced iodine into the measured 108 

electrical current IM. In practice, most operators add a sodium-hydrogen phosphate buffer to the 109 

cathode KI-solution to maintain the pH at 7.0 to keep the stoichiometry of the redox reaction R-1 110 

close to one.  111 

The uncertainty of the ECC sonde measurements of the ozone partial pressure (PO3) is a 112 

composite of the contributions of the individual uncertainties of the instrumental parameters (IM, 113 

IB, TP, FP, T = A*P*C), as described in detail by Tarasick et al. (2021). Tarasick et al. (2021) 114 

assumed that all systematic uncertainty components are known and corrected for. All 115 

instrumental uncertainties are assumed to be random and uncorrelated such that they follow 116 

Gaussian statistics to determine the overall uncertainty of the measured PO3. In the troposphere 117 

the background current IB is the dominant uncertainty, particularly in the upper troposphere 118 

where the ozone concentration is generally low (mid-latitudes) to very low (near the tropical 119 

tropopause).  120 

In the stratosphere, uncertainties of pump characteristics (Johnson et al., 2002) and 121 

conversion efficiencies are the major contributors to the overall uncertainty (WMO/GAW Report 122 

No. 268, 2021). Since 2000-2010, the radiosondes flown with the ozonesondes are equipped to 123 

measure GNSS altitude. This means that the ambient air pressure is determined from the altitude 124 

measurement (e.g. Stauffer et al. 2014) in which case the pressure uncertainty is better than 0.05-125 

0.10 hPa above 50 hPa, making only a minor contribution to the overall uncertainty.  However, 126 

in case of ozonesondes flown with non-GNSS radiosondes, generally those prior to ~2000, the 127 

uncertainty of the radiosonde pressure sensor measurement above 50 hPa could be the dominant 128 

source of error. 129 

 130 

2.3 Quality Assurance (QA) of Ozonesondes: Approach and Current Status  131 

There has been considerable research activity to understand the performance of the 132 

ozonesonde instrument and to establish standard operating procedures (SOP). Twenty-five years 133 

ago, the ozonesonde measurement was assigned a 15-20% accuracy (SPARC/IOC/GAW, 1998). 134 

The total column ozone (TCO) amount is now typically accurate to within 2-3% when evaluated 135 

against co-located ground-based instruments. Accuracy throughout the column, when best 136 

practices are followed, is ~(5-10)%, with the potential to improve to (3-5)%.  137 
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2.3.1 Overview of Ozonesonde Community Quality Assurance (QA) Activities  138 

The ozonesonde community, working together under the auspices of World 139 

Meteorological Organization/Global Atmospheric Watch (WMO/GAW) and groups like 140 

NDACC, the International Ozone Commission (IO3C), and, in the past decade, the GCOS 141 

Reference Upper Air Network (GRUAN), has organized QA research around three important 142 

activities. The first of these was the creation of a testing facility for ozonesondes. In the mid-143 

1990s, as part of the WMO/GAW Quality Assurance plan (WMO/GAW Report No. 104, 1995), a 144 

World Calibration Centre for OzoneSondes (WCCOS) was established at Germany’s 145 

Forschungszentrum-Jülich (Smit et al., 2000). The heart of the WCCOS is an environmental 146 

simulation chamber in which up to four ozonesondes can be intercompared and calibrated 147 

against a dual beam UV-photometer (OPM; Proffitt and McLaughlin, 1983) that is traceable to 148 

the NIST standard for ozone. During testing, pressure, temperature and ozone concentration are 149 

varied at the rate of an actual ascent from the surface until burst altitude at 33-35 km altitude. In 150 

its first five years of operation a set of campaigns, each referred to as a Jülich Ozone Sonde 151 

Intercomparison Experiment (JOSIE; WMO/GAW Report No. 130 (1998), No. 157 (2004a) and 152 

No. 158 (2004b)), quantified biases among ozonesonde types, ECC or otherwise, between the 153 

two major ECC types of instruments, among different sensing solution types (SST). Smit et al. 154 

(2007) summarized a JOSIE-2000 in which eight groups compared instruments and preparation 155 

methods over 10 simulations of various environments: polar, tropical, mid-latitude. 156 

The second ozonesonde QA activity has been intercomparisons of ECC ozonesondes in 157 

the field. For example, JOSIE-2000 results on biases were confirmed in the field during the 158 

Balloon Experiment on Standards for Ozone (BESOS) campaign in 2004 (Deshler et al., 2008), 159 

with 18 sondes flown on a single gondola along with the WCCOS standard OPM.  160 

Examples from laboratory and field comparisons appear in Figure 4. In Figures 4A and 161 

4B, offsets in the measurement of ozone between the two instruments from JOSIE-2000 and 162 

BESOS, respectively, are shown. The OPM was the absolute reference in both experiments. 163 

2.3.2    Development of Consensus-based Standard Operating Procedures (ASOPOS) 164 

The third component of enhancing QA was the establishment in 2004 of an international 165 

team of 15-20 sonde experts to review laboratory and field tests in an Assessment of Standard 166 

Operating Procedures (SOPs) for OzoneSondes (ASOPOS). The first ASOPOS led to a 167 

community consensus for SOPs. Largely based on the 1996-2000 JOSIE campaigns and BESOS, 168 

the recommended SOPs were published as WMO/GAW Report No. 201 (2014).  169 

The 2017 JOSIE campaign, with simulations of only tropical conditions (Thompson et 170 

al., 2019), was the basis for a ASOPOS 2.0 evaluation (WMO/GAW No. Report 268, 2021). The 171 

ASOPOS 2.0 report outlines (1) an improved treatment to correct the pump flow rate that falls 172 

off at low pressures; (2) a correction of the ozone exposure dependent stoichiometry of the 173 

O3+KI redox reaction (R-1) to account for both slow (20-25 min) and fast (20-25 sec) 174 

reactions that take place in the ECC during an ascent (Vömel et al., 2020); (3) a new conversion 175 

efficiency in Eq. E-1 that relates the final calculation of ozone amount to the OPM used at the 176 

WCCOS, making every reported sounding traceable to a common standard; (4) an extended list 177 

of metadata to be collected at launch time so data can be reprocessed; (5) continuous monitoring 178 

of station QA by comparing sonde ozone amounts to ground-based and satellite overpass 179 

measurements for detecting problems like the post-2013 total ozone “dropoff” observed at a 180 

number of stations (Stauffer et al. 2020; see Section 4.2). Figure 4C displays some JOSIE-2017 181 

results. Operators prepared their sondes used for determining the average labeled “nominal SOP” 182 

according to their home station practices; for 7 of 8 stations tested, the preparation followed the 183 

first ASOPOS Report (WMO/GAW Report No. 201, 2014). For the “Low Buffer” tests all 184 
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operators used a sensing solution with 1% KI and 10% of the standard buffer solution. Ozone 185 

measured with the low-buffer solution, irrespective of instrument type, measured closer to the 186 

OPM near the simulated tropopause altitude (~15 km) but always lower than the OPM elsewhere 187 

in the profile. 188 

2.3.3 Homogenization of Long Ozonesonde Time-Series 189 

The bias effects, i.e., discontinuities and trends introduced by instrumental artifacts, as 190 

described in the first ASOPOS Report (WMO/GAW Report No. 201, 2014), need to be accounted 191 

for in calculating reliable ozone profile trends. ECC ozonesondes were first manufactured 50 192 

years ago and have undergone modifications of the instrument and in some cases, operational 193 

procedures, resulting in inhomogeneities in some station records and biases among stations. 194 

Discontinuities in total ozone or profile segments have appeared in the time-series at various 195 

stations. This phenomenon was recognized in a 2011/2012 Ozone Sonde Data Quality 196 

Assessment (O3S-DQA) that reviewed 40 years of ozonesonde records from a number of 197 

stations. The O3S-DQA activity led to guidelines for data providers to resolve inhomogeneities 198 

in long-term sonde records (Smit et al., 2012; https://www.wccos-josie.org/o3s-dqa). Generic 199 

transfer functions were developed (Deshler et al., 2017) to aid the process of harmonizing sonde 200 

records to the common standard of the combinations recommended in the WMO/GAW Report 201 

No. 201 (2014).  202 

Since 2015, ~40 of the long-term ozonesonde records within the global network have 203 

been re-processed following the O3S-DQA guidelines, removing known inhomogeneities to 204 

achieve overall uncertainties of 5-10 %. These include the Canadian stations (Tarasick et al., 205 

2016), several European stations (Van Malderen et al., 2016), those of the SHADOZ network 206 

(Witte et al., 2017, 2018; Thompson et al., 2017), Wallops Island, VA (Witte et al., 2019), and 207 

eight stations in the NOAA network (Sterling et al., 2018). Figure 5 shows the result of the 208 

homogenization effort of the ozonesonde time series at Boulder, CO (cyan triangle on the Figure 209 

6 map), by comparing the total ozone column (TCO) derived from the sondes with TCO 210 

measured by the Dobson spectrophotometer before (Figure 5A) and after the re-processing 211 

(Figure 5B). 212 

 213 

3. Ozonesonde Networks 214 

 215 

3.1. The Global Network: Long-term Sites 216 

 Stations launching ozonesondes on a regular basis are displayed in Figure 6. All except 217 

one launch ECC type ozonesonde instruments. WOUDC archives the sonde profiles along with 218 

co-located total column ozone amounts from Dobson, Brewer, and SAOZ spectrometers where 219 

these are available. NDACC is another repository for ozonesonde data. Other oft-used archives 220 

are NOAA/GML (https://gml.noaa.gov/aftp/data/ozwv/Ozonesonde/) and NASA’s SHADOZ 221 

(https://tropo.gsfc.nasa.gov/shadoz). Surface ozone concentrations are archived with other 222 

reactive gases at the WDCRG.  223 

The global ozonesonde network, consisting of stations operated by meteorological 224 

services, space agencies, and several universities, has evolved over more than 80 years. A 225 

number of stations originated in the 1950s during the International Geophysical Year. Other 226 

sounding stations became operational as the number of ozone-measuring satellites increased after 227 

1990 (Figure 7). Because most Antarctic ozonesonde stations began operating before the 1980s, 228 

a robust record exists of the lower stratospheric ozone depletion associated with the Antarctic 229 

“ozone hole” in the Austral winter to early spring when UV-based satellites have limited views. 230 

The discovery of extreme Antarctic ozone loss was first reported at the 1984 Quadrennial Ozone 231 

https://gml.noaa.gov/aftp/data/ozwv/Ozonesonde/
https://tropo.gsfc.nasa.gov/shadoz
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Symposium (Chubashi, 1985) based on soundings from the Japanese Syowa station (black 232 

triangle on Figure 6) and on column ozone losses at the British Halley Bay station in 1985 233 

(Farman et al., 1985). Figure 8A displays an example from South Pole station (magenta triangle 234 

on the Figure 6 map) in 2018 of the morphology of low-ozone profiles that occur during 235 

September and October when there is a sustained Antarctic polar vortex. The contrasting profiles 236 

are from July 2018 at South Pole. 237 

  238 

3.2  Strategic Networks: Global and Campaign Operations 239 

 Ozonesondes have been organized for targeted purposes in what are referred to as 240 

strategic ozonesonde networks (Thompson et al., 2011). The global SHADOZ network (blue 241 

circles in Figure 6), organized in 1998 (Thompson et al., 2003a), consists of tropical and 242 

subtropical stations that launch 2-5 sondes monthly, generally coordinated with a midday 243 

overpass of one or more instruments on a polar-orbiting satellite. The zonal distribution of 244 

SHADOZ stations (Thompson et al., 2003b) was chosen to investigate the wave-one pattern in 245 

tropical total column ozone (Figure 9) first reported in the 1980s by Fishman et al. (1987). An 246 

important contribution of SHADOZ has been the characterization of a distinct tropical 247 

tropopause layer (TTL, sometimes referred to as a tropopause transition layer [Gettelman and 248 

Forster, 2002; Fuglistaler et al., 2009; Thompson et al., 2012]). This region is typically given as 249 

between 13-18 km; note steep ozone gradients at ~ 13 km in Figure 9). 250 

 Other strategic ozonesonde networks operate on a campaign basis (Thompson et al., 251 

2011); a list of major campaigns is given in Table 1. These soundings provide fixed-site ozone 252 

profiles to complement the multi-species payloads that aircraft deploy to study chemical and 253 

meteorological processes influencing ozone in the stratosphere and/or troposphere. The Match 254 

campaigns (von der Gathen et al., 1995; Rex et al., 1999) have coordinated polar and midlatitude 255 

soundings to study in situ ozone losses during two Antarctic and 19 Arctic springs since the 256 

1991-1992 Arctic winter (Table 1). Using forecast trajectories to predict where layers of 257 

depleted ozone observed in one sounding will travel, the projected arrival of such a parcel over 258 

another station triggers a timed launch. Match has also supported a number of international 259 

aircraft experiments (Table 1). For the first time, in the 2019-2020 winter-spring season, Match 260 

showed that the magnitude of Arctic ozone profile loss, recorded by soundings over Greenland, 261 

Ny-Ålesund (Svalbard, Norway), Canada and Finland, could approach the magnitude of 262 

Antarctic “ozone hole” loss, with ozone mixing ratio values at < 0.2 ppmv at 18 km (Figure 8B; 263 

Wohltmann et al., 2020).  264 

 Over North America, a series of Intensive Ozonesonde Network Studies (IONS) 265 

supported multi-aircraft and satellite validation studies from 2004 through 2013. For four IONS 266 

campaigns, sondes were coordinated at 6 to as many as 23 sites (August 2006) for midday 267 

satellite overpasses from 3-7 times/week. The IONS experiments led to a deeper understanding 268 

of tropospheric ozone during North American summers and have been especially useful in 269 

identifying stratosphere-troposphere exchange (STE) episodes. STE turns out to be more 270 

prevalent than previously thought, with significant intrusions of stratospheric air taking place 271 

after April-May, the typical “springtime” maximum in STE activity (Ott et al., 2016; Kuang et 272 

al., 2017; Tarasick et al., 2019). During the July-August 2004 IONS, ozonesonde observations 273 

along with satellite data, showed that ~1/4 of the free tropospheric ozone budget from mid-274 

Atlantic states to southeastern Canada originated from the stratosphere (Thompson et al., 275 

2007a,b). Figure 8C illustrates ozone profiles below 18 km at a Houston site during SEACIONS 276 

(2013). Varying ozone concentrations in the upper troposphere reflect stratospheric influences as 277 

well as lightning, as Thompson et al. (2008) showed with the identification of ozone laminae and 278 
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satellite data analysis with IONS-06 summertime soundings over Houston. These same 279 

influences are reflected in the 2013 SEACIONS profiles (Figure 8C).   280 

 281 

4. Applications of Ozonesonde Data with Remote Sensing Observations 282 

  283 

Ozonesonde observations and remote sensing observations have a symbiotic relationship 284 

in that they are both useful to each other for producing high quality datasets. The simple satellite 285 

retrieval flowchart of Figure 10A demonstrates that climatologies based on ozonesonde profiles 286 

(e.g., McPeters and Labow, 2012) are used in satellite algorithms as a priori or first guess 287 

information. Limb-measuring satellites rely on comparisons with sonde ozone profiles for 288 

validation of their products. With a number of ozone-measuring satellites lasting a decade or 289 

more (Figure 7), ozonesonde data are being used to evaluate drift in the satellite instruments 290 

(Hubert et al., 2016). The latter application has been an important factor in increasing demand 291 

for sonde data with reduced uncertainty and more rapid data delivery. Total column ozone 292 

(TCO) or tropospheric column ozone (TrCO) from sondes, as well as ground-based 293 

spectrometers, are routinely compared with the satellite TCO or TrCO.  Examples are given in 294 

the next section.  295 

 296 

4.1  Satellite Ozone Product Evaluation using Ozonesonde Data     297 

 Ozonesonde data are typically used to evaluate two types of satellite products: profiles 298 

and column amounts. For example, stratospheric ozone profiles from the SAGE III instrument on 299 

the International Space Station (ISS/SAGE III) were recently examined by Wang et al., (2020). 300 

The satellite profiles are based on limb-viewing observations at sunrise and sunset. Twenty 301 

ozonesonde stations (between +55 degrees latitude) provided the statistics, using a total of 273 302 

profiles. Wang et al. (2020) also compared the SAGE III data to ozone from four other limb-303 

measuring satellites, OSIRIS, Aura/MLS, ACE-FTS and OMPS-LP. Agreement of the satellites 304 

as a whole was somewhat better at midlatitudes than in the tropics.  305 

 Extracting profiles from nadir-viewing UV-measuring satellites is challenging. Huang et 306 

al. (2017) presents a 10-year record of tropospheric profiles derived from OMI. The record is 307 

somewhat compromised due to a partial detector failure in 2009, which introduced a sampling 308 

bias into the ozone readings. For the newer  TROPOMI (2017-), Mettig et al. (2021a) employed 309 

a novel technique (TOPAS, Tikhonov regularized Ozone Profile retrievAl with SCIATRAN) to 310 

nadir retrievals in tropical and mid-latitudes to estimate ozone throughout the troposphere and 311 

lower-mid stratosphere; the method follows the simple flowchart in Figure 10A. The vertical 312 

resolution of the TOPAS method is fairly coarse (~9 km on average) based on the averaging 313 

kernels reported with only 1-2 degrees of freedom (DOFs) in the troposphere, which is not unlike 314 

other UV-only satellite instruments. This indicates that similar instruments are highly dependent 315 

on the a priori profile (eg. an ozonesonde climatology) in the troposphere. However, agreement 316 

between the TROPOMI-retrieved ozone profiles and ozonesonde measurements is generally 317 

within 20% (Figure 10B). New retrievals that combine observations from UV-satellite 318 

instruments and IR instruments (eg. NOAA’s CrIS) can improve both tropospheric and 319 

stratospheric comparisons with ozonesondes due to increased sensitivity throughout the ozone 320 

profile (Mettig et al., 2021b). 321 

  Other techniques for estimating tropospheric ozone are based on column amounts, 322 

following the heritage of Fishman et al. (1991; 1996). Their “residual” approach to tropospheric 323 

ozone consists of subtracting the stratospheric column extracted from one satellite sensor from a 324 

highly accurate TCO from a backscattered UV instrument, initially from TOMS (several 325 
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instruments from 1978-2005). The OMI/MLS series (Ziemke et al. 2006; 2019) is one of the 326 

most-used tropospheric column ozone (TrCO) datasets based on a residual technique. Figure 11 327 

shows the monthly mean TrCO from SHADOZ sondes from 10 tropical sites (latitude within 328 

+20 degrees) compared to the corresponding monthly average OMI/MLS estimated tropospheric 329 

column. The offset is ~25% where the sonde TrCO is 40 DU although the correlation (r2 = 0.66) 330 

is reasonably good. Part of the offset may be sampling differences (daily satellite data, with 331 

averaging over several pixels, vs. 2-4 sondes/month). The satellite measurements do not typically 332 

capture the full-range of ozone extremes measured by the sondes.  333 

Cloud-slicing techniques (Ziemke et al., 2001; Heue et al., 2017) constitute an alternative 334 

approach to estimating upper and lower tropospheric column amounts; this has been applied to 335 

TROPOMI (Hubert et al., 2021). Agreement with ozonesonde-based totals is ~15%. A 336 

shortcoming of both cloud-slicing and residual methods is incomplete knowledge of the 337 

tropopause height, i.e., what the column actually represents. This limitation is particularly 338 

relevant in the extra-tropics where the tropopause height can vary greatly and change from < 10 339 

km to more than 15 km within hours. Time-series with residual products (Ziemke et al., 2019) 340 

capture seasonal variability and oscillations like the ENSO but caution is warranted for trends. 341 

 Figure 12 shows examples of ozonesonde comparisons from two instruments on the 342 

Aura satellite (OMI and MLS) that has operated for 17 years. The comparisons are for soundings 343 

taken at the Wallops Island, VA (green triangle marks location in Figure 6). Good agreement 344 

between the ozonesondes and MLS (Figure 12A) is observed throughout the stratosphere (Witte 345 

et al., 2019. Dobson spectrophotometer measurements at Wallops Island are within ±5% of the 346 

ozonesonde TCO over the 25-year record illustrated (1995-2020), demonstrating the stability and 347 

high-quality of the sounding record); the Dobson is calibrated regularly against the world 348 

reference instrument at Boulder, CO. Figure 12B shows that agreement between OMI (October 349 

2004-) and ozonesonde TCO also averages 5% or better to 2020. 350 

 351 

      4.2   Use of Satellite Ozone Data to Track the Performance of the Ozonesonde 352 

 The examples above illustrate how ozonesonde data are used for evaluation of satellite 353 

products. Conversely, because several satellite records have been processed and improved 354 

multiple times, high-accuracy satellite data can be useful in monitoring the quality of sonde data. 355 

The ozonesonde community has been systematically reprocessing long-term sonde records over 356 

the past decade. Comparisons in total column ozone between integrated total ozone from 357 

soundings and coincident satellite overpasses may show a discontinuity that signifies a problem 358 

in the sonde measurements. For example, Witte et al. (2017; 2018) showed that an inadvertent 359 

change in the sensing solution in soundings at La Réunion led to an artificial 18 DU increase in 360 

the mean TCO from 2007 to 2016 compared to the average TCO from 1998 to 2006. Witte et al. 361 

(2017; 2018) corrected the affected ozone profiles to remove the discontinuities, using the 362 

homogenization procedures recommended by ASOPOS in Deshler et al. (2017).  363 

 In the past 5 years there have been concerns about drifts or discontinuities in the 364 

ozonesonde TCO at ~20% of the global ozonesonde record since 2005. The direction of change 365 

is a loss of 3% or more in TCO since 2013. Figure 13 illustrates how data from 5 operational 366 

satellite instruments, MLS (stratosphere), OMI, OMPS and two GOME-2 instruments (TCO), 367 

are used to evaluate the ozonesonde data quality in the Aura era. In the upper panels of Figures 368 

13A and 13B, comparisons of sonde stratospheric ozone are made with ozone at standard MLS 369 

pressure levels. The lower panels show TCO comparisons with the 4 UV-based satellite 370 

instruments. The Wallops Island record (Figures 12 and 13A) is stable in both TCO and 371 

stratospheric ozone above 50 hPa whereas, after 2013, the Samoa data (Figure 13B) display 372 
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more variability and an overall TCO decline (lower panel in Figure 13B) that averages 3-4% 373 

(Stauffer et al., 2020); the cause is partially due to changes in one sonde instrument type. The 374 

ASOPOS 2.0 Report (WMO/GAW Report No. 268, 2021), in which procedures are detailed to 375 

maximize quality in ozonesonde measurements, recommends ongoing comparisons of both the 376 

TCO and the stratospheric profile. The goal is to detect any change in procedure or instrument 377 

performance as quickly as possible. 378 

 379 

5.  Summary and Conclusions  380 

  381 

 5.1   Scientific Perspective: On-going Need for Profiles from Global Ozonesondes 382 

The vertical profiles of the ozonesonde instrument provide unique information in the global 383 

ozone observing system for several reasons. First, no other widely used method is as free of 384 

weather effects. Second, although lidar has high vertical resolution, there are many fewer lidar 385 

stations compared to ozonesonde monitoring sites.  386 

The near-real time measurement of the ozonesonde is ideal for tracking layers of 387 

stratospheric ozone (Match campaigns) and ozone pollution in the troposphere (IONS 388 

campaigns). Interest in ingesting sonde profiles into regional air-quality forecasts in near-real 389 

time and global chemistry-climate models is another motivator for adding to the number of 390 

ozonesonde stations. Unfortunately, numbers of sonde records have been declining in the past 391 

years. The combined WOUDC, NDACC, SHADOZ and NOAA/GML archives include >2800 392 

soundings for 2017 but fewer than 2400 records in 2019. Key Arctic and mid-latitude stations 393 

have reduced or eliminated soundings. 394 

The satellite community continues to be an important user of ozonesonde data as well as a 395 

driver for faster data delivery and more stringent quality assurance. With 5% uncertainty in TCO 396 

now achievable, ozonesonde data can be used to detect drifts of profiling ozone monitoring 397 

satellites and to evaluate new algorithms and satellite ozone products in a timely manner. 398 

Conversely, satellite data have been shown to be an important component in ensuring continuous 399 

evaluation of ozonesonde instrument and operational QA. 400 

 401 

 5.2   Quality Assurance: Need for Sonde Intercomparisons and a Global Ozone Reference 402 

 Changes in ozonesonde instrumentation is unavoidable as individual components may be 403 

modified by manufacturers. Operational and data processing practices may also change at 404 

individual stations. Accordingly, there is an ongoing need for periodic evaluation of ozonesonde 405 

performance and intercomparisons with a global ozone reference as the ASOPOS process has 406 

demonstrated. Essential elements of QA assessments are: (1) regular laboratory evaluation of 407 

instruments and operational practices, such as the JOSIE experiments; (2) field tests; (3) a 408 

process whereby global data and SOPs are continuously evaluated by a broad team of 409 

ozonesonde experts. These assessments must be supported by maintaining a world ozone 410 

standard photometer and one or more environmental test centers, e.g., the WCCOS. A strength of 411 

the ASOPOS process has been the inclusion of dedicated researchers who provide and archive 412 

ozone profiles, data users and instrument manufacturers. The recommendations, supported by 413 

analyses in the peer-reviewed literature, are consensus-based. The ASOPOS Reports are 414 

themselves peer-reviewed and are publicly available through the WMO/GAW website. 415 

 416 

5.3  Conclusions 417 

 418 
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The ozonesonde instrument is unmatched in producing profiles of ozone with high vertical 419 

resolution throughout the troposphere and lower-mid stratosphere. Over the past 25 years, 420 

dedicated attention to ozonesonde QA has led to significant advances. This in turn led to new 421 

laboratory and field experiments to further refine SOP and guidelines for traceable ozonesonde 422 

records, bringing the target of 5% uncertainty throughout the ozone profile within reach. With 423 

reprocessed data, it has been possible to reduce residual uncertainties, biases, and discontinuities 424 

in ozonesonde time-series. We can expect that there will be further homogenization efforts of 425 

ozonesonde data and evaluation of the new data within the global network in the coming years. 426 

 427 
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 759 

Figure Captions: 760 

Figure 1:  Ozone profile from an ECC ozonesonde with the temperature and humidity recorded 761 

by the accompanying radiosonde. The radiosonde also measures wind speed and direction. Data 762 

from a launch at Wallops Island, VA (37.9N, 75.5W) on 17 July 2019. 763 
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Figure 2:  Altitude ranges of techniques used to measure ozone, ground-based, airborne and 764 

satellites. Other ground-based instrumentation (lidar, surface monitors) show context for the 765 

ozonesonde measurement. The schematic shows lidar that measure in the troposphere only 766 

(Sullivan et al., 2015) and that cover troposphere and stratosphere. In fact, only one or two of the 767 

most widely used ozone lidar instruments, e.g., within NDACC, detect both troposphere and 768 

stratosphere; most ozone lidars report data only in the stratosphere.  769 

Figure 3: (A) Cross-section of the electrochemical concentration cells (ECC) in (B) the 770 

ozonesonde sensor. There are two widely used ECC ozonesonde types, manufactured by Science 771 

Pump Corporation and the EN-SCI Corporation, producing the SPC-6A and EN-SCI instrument, 772 

respectively. The design of both ECCs is similar but there is a consistent 4-5% difference in their 773 

performance (Figures 4A and 4B) when launched under the same conditions (Smit et al., 2007; 774 

Thompson et al., 2007c; Smit, 2014). Since 2014, a third ECC-type instrument manufactured at 775 

the Institute of Atmospheric Physics (IAP), Beijing, China, has been flown at several East Asian 776 

stations; the new instrument has not been extensively intercompared with the SPC-6A or EN-SCI 777 

in laboratory or field tests. 778 

 779 

Figure 4: (A) JOSIE 2000 & BESOS (B): Relative differences between measurements of ozone 780 

by EN-SCI and SPC-6A using different combinations of 1%KI & full buffer and 0.5%KI & half 781 

buffer sensing solution strength. Data are averaged over 5 km altitude. All profiles were first 782 

referenced to the WMO/GAW standard ozone photometer (OPM). In JOSIE-2000 the OPM was 783 

in the Jülich (Germany) WCCOS facility; in BESOS the OPM flew on a gondola with 18 784 

ozonesonde instruments in Laramie, Wyoming (US). (C) Mean percent differences between 785 

ozone measured by EN-SCI and SPC-6A sondes following WMO/GAW (2014) 786 

recommendations and sondes using 1%KI and 0.1buffer, during JOSIE-2017. Both sets of 787 

measurements were referenced to the OPM.  788 

 789 

Figure 5:  Total column ozone (TCO) derived from Boulder, CO, sondes compared with TCO 790 

measured by the Boulder Dobson spectrophotometer before (A) and after (B) re-processing of 791 

sonde data (Source: Sterling et al. 2018). An artifact step-function drop has been eliminated with 792 

the reprocessing. 793 

 794 

Figure 6:  Distribution of 64 most active ozone sounding stations in the global network (after 795 

WMO/GAW Report No. 268, 2021). These stations deposit data in major public archives. The 796 

latter include the archive WOUDC (World Ozone and Ultraviolet Data Center) sponsored by the 797 

World Meteorological Organization Global Atmospheric Watch (WMO/GAW; see Acronym 798 

List). Other commonly used archives are those of the Network for Detection of Atmospheric 799 

Composition Change (NDACC; deMazière et al., 2018), at the websites of NASA for the 800 

Southern Hemisphere ADditional OZonesonde Network (SHADOZ; Thompson et al., 2012; 801 

2017), or at the NOAA/Global Monitoring Laboratory (GML). 802 

Figure 7:  Ozone-measuring satellites that have used sonde data for algorithm development and 803 

validation since 1995. 804 

Figure 8:  Examples of dynamic and/or chemical processes affecting the ozone profile, as 805 

captured by soundings. (A) Ozonesonde profiles over NOAA’s South Pole station that illustrate 806 

extreme ozone loss due to catalytic chemical destruction in the region ~15-20 km [above 100 807 
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hPa] in October of 2018, compared to July 2018 (pre-ozone hole); (B) 2019-2020 winter-spring 808 

season Match ozone soundings over Greenland, Ny-Ålesund (Svalbard, Norway), Canada, and 809 

Finland (Source: Wohltmann et al., 2020); Used by permission from AGU. (C) A series of ozone 810 

profiles during the 2013 SEACIONS campaign (https://tropo.gsfc.nasa.gov/seacions/) at 811 

Ellington Field, Texas (29.6N, 95.2W). STE influences appear in profiles of 7. 9 August and 4 812 

September (green line) 2013. An example of low-ozone air lofted in convection appears in the 813 

profile of 4 September (maroon).  814 

Figure 9:  Composite data from a strategic global network, SHADOZ, displaying the zonal 815 

ozone structure (mixing ratios) that gives rise to the wave-one pattern in satellite TCO. The 816 

contours are based on annually averaged profile data over 1998-2020. 817 

Figure 10: (A) Generalized flowchart indicating how ozonesonde data is used for a first guess or 818 

a priori profile in the retrieval process and for validation of the final satellite product. (B) 819 

Comparison of ozone profiles retrieved from TROPOMI and those from ozonesondes for 820 

different zonal bands. The relative mean difference between the retrieval results and the high-821 

resolution sonde data (solid line), as well as the standard deviation of the differences 822 

(dashed line), is shown in black. The comparison with the sonde profiles convolved with the 823 

averaging kernels is shown in red. In grey, the relative difference between the a priori ozone 824 

profiles and high-resolution ozonesonde profiles is displayed, along with the corresponding 825 

standard deviations. (Source: Mettig et al., 2021a). 826 

Figure 11:  Scatterplot of monthly mean TrCO estimated by the tropospheric residual OMI/MLS 827 

product (Ziemke et al., 2019) vs the corresponding TrCO from 10 SHADOZ sites, the latter 828 

computed by integrating ozone from surface to tropopause determined from the coupled 829 

radiosonde. Comparisons are for SHADOZ stations with latitude within + 20 degrees.  830 

Figure 12: (A) Comparison of ozone from Wallops Island, VA, USA, ozonesondes (red) and 831 

Aura/MLS data (black) at the standard levels of the MLS measurement (mean over 2004-2020) 832 

with standard deviations indicated by horizontal bars; (B) TCO from Wallops sondes (red) 833 

compared to TCO from the Aura/OMI (black), 2004-2020, and Dobson spectrophotometer 834 

(blue), 1995-2020.  835 

Figure 13:  Comparisons between data from ECC sondes and Aura MLS stratospheric ozone 836 

profiles (top panels), and OMI, GOME 2A and GOME 2B (blue dots), and OMPS (red dots) 837 

TCO (bottom panels). (A) Wallops Island, VA, record; (B) Samoa SHADOZ record. Red (blue) 838 

colors in the top panels indicate where the ECC ozone is greater (less) than MLS. Horizontal 839 

dashed lines in the lower panels indicate the 0% line for TCO differences. Note a post-2014 drop 840 

in Samoa TCO relative to satellite measurements. 841 

 842 

Acronym List  843 

 844 

AASE II Airborne Arctic Stratospheric Experiment II 845 

ACE-FTS Atmospheric Chemistry Experiment – Fourier Transform Spectrometer on 846 

Canadian SCISAT satellite 847 

ASOPOS Assessment of Standard Operating Procedures for OzoneSondes 848 

BESOS Balloon Experiment on Standards for OzoneSondes 849 

https://tropo.gsfc.nasa.gov/seacions/
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BORTAS Quantifying the impaoct of BOReal forest fires on Tropospheric oxidants over the 850 

Atlantic using Aircraft and Satellites 851 

DU Dobson Unit, the unit to express vertical ozone column abundances,1 DU= 852 

2.69x1016 molecules per cm2 at STP 1x10-3 atm.cm at STP) 853 

EASOE European Arctic Stratospheric Ozone Experiment 854 

ECC Electrochemical Concentration Cell 855 

EN-SCI Environmental Science Corporation; ECC ozonesonde manufacturer 856 

ESRL Earth System Research Laboratories 857 

GAW Global Atmospheric Watch 858 

GCOS Global Climate Observing System 859 

GEMS  Geostationary Environment Monitoring Spectrometer 860 

GML Global Monitoring Laboratory (division of NOAA’s ESRL; formerly GMD) 861 

GOES Geostationary Operational Environmental Satellites 862 

GOME Global Ozone Monitoring Experiment (onboard MetOp satellites) 863 

GNSS Global Navigational Satellite System 864 

GRUAN GCOS Reference Upper Air Network 865 

IAP Institute of Atmospheric Physics, Beijing, China 866 

IGACO Integrated Global Atmospheric Chemistry Observations 867 

IOC International Ozone Commission 868 

IONS Intensive Ozonesonde Network Study 869 

IPCC Intergovernmental Panel on Climate Change 870 

ISS International Space Station 871 

JOSIE Jülich OzoneSonde Intercomparison Experiment 872 

KI Potassium Iodide 873 

LEO Low Earth Orbit 874 

MLS Microwave Limb Sounder (on Aura satellite) 875 

NASA National Aeronautics and Space Administration 876 

NDACC Network for the Detection of Atmospheric Composition Change 877 

NOAA National Oceanic and Atmospheric Administration 878 

OMI Ozone Monitoring Instrument (on Aura satellite) 879 

OMPS-LP Ozone Mapping and Profiler Suite – Limb Profiler (onboard Suomi-NPP and 880 

JPSS satellites) 881 

OPM Ozone PhotoMeter Instrument (used as UV-reference) 882 

OSIRIS Optical Spectrograph and InfraRed Imaging System, on Odin satellite 883 

O3S-DQA Ozone Sonde Data Quality Assessment 884 

QA Quality Assurance 885 

RECONCILE Reconciliation of essential process parameters for an enhanced predictability of 886 

Arctic stratospheric ozone loss and its climate interactions 887 

SAGE III Stratospheric Aerosol and Gas Experiment (fourth generation on ISS) 888 

SBUV Solar Backscatter Ultraviolet (referring to instrument type on satellites measuring 889 

ozone) 890 

SCIAMACHY SCanning Imaging Absorption SpectroMeter for Atmospheric CHartographY 891 

SCIATRAN    Radiative transfer and retrieval code used by Univ. Bremen SCIAMACHY and 892 

TROPOMI algorithm group 893 

SCOUT-O3 Stratospheric-Climate links with emphasis On the Upper Troposphere and lower 894 

stratosphere 895 

SEACIONS Southeast America Consortium for Intensive Ozonesonde Network Study 896 
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SESAME Second European Stratospheric Arctic and Mid-latitude Experiment 897 

SHADOZ Southern Hemisphere ADditional OZonesondes 898 

SI2N Ozone trend assessment study supported by SPARC, IOC, IGACO, and NDACC 899 

SMILES Submillimeter-Wave Limb Emission Sounder onboard ISS  900 

SOLVE SAGE III Ozone Loss and Validation Experiment 901 

SOP Standard Operating Procedure 902 

SPARC Stratosphere-troposphere Processes And their Role in Climate 903 

SPC Science Pump Corporation; ECC ozonesonde manufacturer 904 

SST Sensing Solution Type  905 

STP Standard Temperature (=273.15 K) and Pressure (=1013.25 hPa) conditions  906 

StratoClim Stratospheric and upper tropospheric processes for better climate predictions 907 

TCO Total Column Ozone 908 

TEMPO Tropospheric Emissions: Monitoring of Pollution 909 

THESEO Third European Stratospheric Experiment on Ozone 910 

TOMS Total Ozone Mapping Spectrometer 911 

TOPAS Tikhonov regularized Ozone Profile retrievAl with SCIATRAN 912 

TROPOMI TROPOspheric Monitoring Instrument 913 

TrCO Tropospheric Column Ozone 914 

UNEP United Nations Environment Programme 915 

UV Ultraviolet 916 

VINTERSOL Validation of INTERnational satellites and Study of Ozone Loss 917 

WCCOS World Calibration Center for OzoneSonde 918 

WDCRG World Data Centre for Reactive Gases 919 

WMO World Meteorological Organization 920 

WOUDC World Ozonesonde and Ultraviolet Data Centre 921 
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