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 12 
Abstract 13 
Vegetation cover creates competing effects on land surface temperature: it typically cools 14 
through enhancing energy dissipation and warms via decreasing surface albedo. Global 15 
vegetation has been previously found to overall net cool land surfaces with cooling contributions 16 
from temperate and tropical vegetation and warming contributions from boreal vegetation. 17 
Recent studies suggest dryland vegetation across the tropics strongly contributes to this global 18 
net cooling feedback. However, observation-based vegetation-temperature interaction studies 19 
have been limited in the tropics, especially in their widespread drylands. Theoretical 20 
considerations also call into question the ability of dryland vegetation to strongly cool the surface 21 
under low water availability. Here, we use satellite observations to investigate how tropical 22 
vegetation cover influences the surface energy balance. We find that while increased vegetation 23 
cover would impart net cooling feedbacks across the tropics, net vegetal cooling effects are 24 
subdued in drylands. Using observations, we determine that dryland plants have less ability to 25 
cool the surface due to their cooling pathways being reduced by aridity, overall less efficient 26 
dissipation of turbulent energy, and their tendency to strongly increase solar radiation absorption. 27 
As a result, while proportional greening across the tropics would create an overall biophysical 28 
cooling feedback, dryland tropical vegetation reduces the overall tropical surface cooling 29 
magnitude by at least 14%, instead of enhancing cooling as suggested by previous global studies.  30 
 31 
1. Introduction 32 

Vegetation’s effect on the surface energy balance remains an open question due to its 33 
competing influences on land surface temperature (Shen et al., 2015). It is essential to determine 34 
vegetation’s net effect on the energy balance given ongoing global land cover changes, including 35 
deforestation, agricultural expansion, climate change-induced greening, and replanting efforts 36 
(Alkama et al., 2022; Rigden and Li, 2017; Bonan, 2008; Bright et al., 2017; Jackson et al., 37 
2008). Plants have a strong influence on the energy balance and evapotranspiration estimation, as 38 
shown at interannual timescales (Li et al., 2013). Climate model projections are also highly 39 
sensitive to vegetation biophysical parameterization (Devaraju et al., 2015; Feddema et al., 40 
2005). Without accurate characterization of these biophysical processes, climate model 41 
prediction uncertainty of the land surface state increases, which could cause targeted land cover 42 
mitigation efforts like reforestation to have unintended consequences of enhancing global 43 
warming (Arora and Montenegro, 2011; Bala et al., 2007; Betts, 2000). 44 



Net vegetation effects on the surface energy balance differ across the globe (Alkama et 45 
al., 2022; Duveiller et al., 2018). The current consensus is that vegetation globally creates net 46 
cooling feedbacks (Zeng et al., 2017). This cooling signal is dominated by a greater fraction of 47 
vegetation cover (FVC) in temperate and tropical environments net cooling through enhanced 48 
turbulent energy dissipation from greater surface roughness and transpiration (Bounoua et al., 49 
2000; Juang et al., 2007; Luyssaert et al., 2014; Tang et al., 2018). This mid-to-lower-latitude 50 
vegetation net cooling feedback is exemplified by findings of tropical deforestation enhancing 51 
surface warming (Alkama and Cescatti, 2016; Mahmood et al., 2014; Silvério et al., 2015; 52 
Vargas Zeppetello et al., 2020). These biophysical cooling effects are partially negated by net 53 
warming effects of boreal vegetation due to a dominant surface albedo effect of proportionally 54 
greater vegetal absorption of solar radiation (Lee et al., 2011; Li et al., 2015; Peng et al., 2014).  55 

Conceptual understanding of vegetation’s influence on the energy balance can be 56 
developed, for example, using the force restore model where the modeled rate of land surface 57 
temperature (LST) change, or d(LST)/dt, increases with higher net radiation and decreases with 58 
turbulent fluxes (Deardorff, 1978). From this model, several pathways of vegetation influence on 59 
d(LST)/dt are apparent. (1) A warming effect exists where more vegetation cover decreases 60 
surface albedo and increases net surface radiation. (2) A cooling effect exists where more 61 
vegetation cover increases surface roughness and conductance, which enhances turbulent energy 62 
flux dissipation (Chen et al., 2020; Margulis, 2017). (3) A cooling effect exists where more 63 
vegetation cover enhances transpiration of water from deeper soil layers than accessible from 64 
bare soil evaporation (Katul et al., 2012). Rather than present an exhaustive list of mechanisms, 65 
we emphasize that these mechanisms compete and are sensitive to model parameterization 66 
choices.  67 

A model-based study necessarily leads to uncertainty because of the need for model 68 
parameterizations linking vegetal effects to surface temperature. Specific parameters must be 69 
estimated to, for example, represent stomatal regulation and transpiration response to soil and 70 
atmosphere conditions, surface albedo sensitivity to vegetation characteristics, and vegetation 71 
interactions with the boundary layer (e.g., Rotenberg and Yakir, 2010). Both parameter 72 
uncertainty and model structural uncertainty will consequently create uncertain and inconsistent 73 
biophysical parameterizations between models (Pitman et al., 2009). Observational studies are 74 
thus needed to constrain and benchmark the results of these complex representations of vegetal 75 
effects on surface temperature. 76 

Recent global studies suggest that tropical drylands enhance net cooling feedbacks under 77 
global greening (Alkama et al., 2022; Forzieri et al., 2018). However, theoretical considerations 78 
and sparse field studies call into question findings of strong vegetal surface cooling in semi-arid 79 
locations: limited water-availability will reduce evaporation, the surface’s main mechanism of 80 
removing energy in these warm, dry environments (Javadian et al., 2022; Li et al., 2014; 81 
Rotenberg and Yakir, 2010). Specifically, given that latent heat flux becomes an important 82 
control on the surface energy balance in warmer conditions (Bateni and Entekhabi, 2012), soil 83 
moisture losses will likely subdue vegetal cooling via reduced evaporation in tropical water-84 
limited environments (Seneviratne et al., 2010). Model-free, observation-based studies mainly 85 
investigate these processes in the boreal and midlatitudes, but are limited in the tropics. There are 86 
also limited efforts to identify mechanistic drivers that would explain spatial patterns of 87 
biophysical feedbacks.  88 

In this study, we use satellite observations to isolate and attribute the effect of vegetation 89 
cover on LST, via the diurnal rate of land surface warming. We ask: (a) does more vegetation 90 



cover net cool the surface across the tropics, especially in drylands? (b) Which surface energy 91 
balance mechanisms are responsible for the observed spatial pattern of vegetal effects on surface 92 
temperature in the tropics? (c) To what degree does tropical dryland vegetation net warm or cool 93 
the land surface compared to the remainder of the vegetated tropics? 94 

Previous studies address components of our research questions with LST (Chen et al., 95 
2020; Forzieri et al., 2018). A novel feature of our analysis is that we first establish connections 96 
between the diurnal rate of temperature change (d(LST)/dt) and FVC using geostationary 97 
satellite observations in Africa, rather than temperature magnitude itself. This is because LST is 98 
a state variable and thus depends on and is confounded by coupling with other land surface 99 
states. The LST time derivative largely removes state dependencies. d(LST)/dt also more closely 100 
relates to surface energy flux components, where increased d(LST)/dt indicates reduced latent 101 
heat flux (Bateni and Entekhabi, 2012; Deardorff, 1978). As such, detecting a variable’s impact 102 
(i.e., vegetation cover) on d(LST)/dt more confidently establishes its direct influence on land 103 
surface temperature than does the same variable’s statistical connection to LST. Using 104 
independently observed variables also should, in principle, provide a better estimate of the true 105 
linkage between the variables because they do not contain confounding imposed 106 
parameterizations as found in models. For example, recent work found biases in model 107 
reanalysis diurnal temperature behavior and its interactions with vegetation compared to in-situ 108 
measurements (Panwar and Kleidon, 2022). For these reasons, diurnal temperature observations 109 
have been previously used to establish surface energy balance interactions with vegetation and 110 
the atmosphere, though for different research questions (Dai et al., 1999; Feldman et al., 2022, 111 
2019; Panwar et al., 2020; Panwar and Kleidon, 2022).  112 

 113 
2. Materials and Methods 114 
2.1 Workflow Summary 115 

We addressed our research questions with three main assessments. Assessment I 116 
determined the observed African vegetation-temperature relationships. Specifically, a 117 
geostationary satellite located over Africa provides sub-hourly sampling of various land surface 118 
variables, which was used to holistically investigate linkages between vegetation and 119 
temperature. Assessment II uses these same datasets to determine mechanistic drivers that 120 
describe spatial patterns of results in Assessment I. Assessment III uses global satellite retrievals 121 
to evaluate whether the patterns of LST response to vegetation variability found in the Africa-122 
only analysis hold across the tropics. 123 

Ultimately, our approach presents confidence in patterns of vegetation influence on the 124 
surface energy balance for several reasons. (a) The use of observations here is an advantage 125 
given difficulty with modeling competing effects of vegetation cover on the surface energy 126 
balance and allows independent assessment of global model outputs. (b) Assessment I includes 127 
several regressions to gain confidence in patterns of results. (c) Assessment II explains the 128 
patterns with identification of observed drivers. (d) Assessment III uses satellite observations 129 
independent from the other assessments, providing confidence in findings described in 130 
Assessments I and II.  131 

The datasets used in both analyses are shown in Table 1 with details provided in Section 132 
2.2. The study domain is shown in Fig. 1. To evaluate our research questions, we contrasted 133 
drylands against more humid regions using a standard definition of land surfaces receiving less 134 
than 500 mm of rainfall (Noy-Meir, 1973). Africa was chosen for Assessment I not only because 135 



of extensive sub-hourly satellite sampling of land surface conditions, but also for its large area of 136 
vegetated drylands. 137 
 138 
2.2 Datasets 139 

For Assessment I (the Africa-only analysis), we used several retrievals from the Spinning 140 
Enhanced Visible and Infrared Imager (SEVIRI), which is on-board European and EUMETSAT 141 
space agency’s Meteosat Second Generation geostationary satellite series and is at a 3 km 142 
resolution (Trigo et al., 2011). SEVIRI is geostationary with its highest quality measurements in 143 
Africa. Its 15-minute temporal resolution allows more frequent samples of land surface 144 
conditions under cloud cover than global, low-Earth orbit satellites. LST is sampled at 15-minute 145 
time steps and is sensitive to soil-vegetation temperature, which describes the surface energy 146 
balance more than air temperature (Panwar et al., 2019). We also used SEVIRI-retrieved FVC, 147 
and downwelling surface shortwave radiation (RS) to partition the effects of vegetation on the 148 
d(LST)/dt signal (Carrer et al., 2019). Soil moisture (SM) from NASA’s Soil Moisture Active 149 
Passive (SMAP) satellite was used at a 9 km grid with 1-3 day sampling using a retrieval 150 
algorithm that is independent from vegetation cover (Feldman et al., 2021). These datasets were 151 
all regridded to a 9 km Equal Area Scalable Earth-2 (EASE2) grid. Only data from 2018 were 152 
used in the main assessment of relationships, though SEVIRI data from 2004 to 2019 were used 153 
in a robustness test (see SI). For this auxiliary robustness test, Climate Hazards Infrared 154 
Precipitation with Stations (CHIRPS) precipitation was used in place of soil moisture to control 155 
for annual moisture availability changes over 2004 to 2019 (Funk et al., 2015), given that SMAP 156 
is only available after 2015. International Geosphere-Biosphere Programme (IGBP) 157 
classifications are used to evaluate differences in behavior with vegetation type (Kim, 2013). 158 

To identify mechanistic drivers of spatial patterns in Assessment I, Assessment II used all 159 
the same variables as Assessment I (Table I). It additionally included daily SEVIRI retrievals of 160 
surface albedo () and NASA’s Atmospheric Infrared Sounder (AIRS) retrievals of vapor 161 
pressure deficit (VPD) in the boundary layer (at 850mb) (Teixeira, 2013). Analysis of the effects 162 
of seasonal changes in aridity used SEVIRI LST, FVC, and RS in addition to SMAP  and AIRS 163 
VPD. Determination of energy dissipation efficiency uses 15-minute increments of SEVIRI LST. 164 
Finally, the surface albedo-FVC interaction analysis used SEVIRI FVC and  while using 165 
SMAP  and SEVIRI RS to control for water and light availability.  166 

To evaluate whether the effects of vegetation cover on the surface energy balance 167 
determined in Africa occur across all tropical regions (Assessment III), we used annual mean 168 
NDVI (MOD13C1) and LST (MYD11C2) from MODIS Terra and Aqua instruments 169 
respectively (Didan, 2021; Wan et al., 2015). NOAA Climate Prediction Center (CPC) total 170 
annual precipitation and MERRA2 surface incoming shortwave flux were used to control for 171 
annual mean energy and water availability, respectively (Chen et al., 2008; Gelaro et al., 2017). 172 
CPC was used here instead of CHIRPS to maintain independence from Assessment I and II. 173 
MODIS Aqua LST retrievals are at approximately 1:30 pm local time. Additional analyses were 174 
performed using leaf area index (LAI) from MODIS to assess how their use may alter results 175 
(Myneni et al., 2021). All datasets were acquired over their co-occurring span of 19 years 176 
between 2003 to 2021 and were regridded to 0.5 degrees. 177 



 178 
Figure 1. Map of the study domain. Assessments I and II occur in Africa. Assessment III occurs 179 
on vegetated landscapes between 35S and 35N. All vegetated land surfaces are evaluated 180 
within the domains. For reference, gray shading denotes vegetated drylands based on CPC total 181 
annual rainfall of less than 500 mm. 182 
 183 
Table 1. Datasets and their use within each assessment. Assessments I and II were carried out 184 
over Africa at a 9 km grid scale. The temporal resolution varies per analysis (see Sections 2.3 185 
and 2.4). Assessment III was carried out across the tropics (between 35S and 35N), at a half 186 
degree grid scale, and at an interannual timescale.  187 

 188 
 189 
2.3 Assessment I: African Vegetation-Temperature Interactions 190 
2.3.1. Assessment I Statistical Analysis 191 

SEVIRI 15-minute LST from 7 to 11 am local solar time were used to calculate the 192 
median daily d(LST)/dt, which is directly related to the diurnal temperature range. Sub-daily 193 
d(LST)/dt was computed by differencing each time adjacent LST value between 7 am and 11 am 194 
and dividing by their time between increments. Two time adjacent LST increments are typically 195 
differenced and divided by 15 minutes, but sometimes over longer time spans given quality flags 196 
(i.e., cloud cover). For each day, the median was taken of all available sub-daily increments and 197 
units converted to K/hr to obtain a daily time series of d(LST)/dt. The median 7 to 11 am 198 

Variable
Instrument/

Dataset
Dataset Use Notes

Fraction of Vegetation Cover (FVC) SEVIRI 

Land Surface Temperature (LST) SEVIRI 

Downward Surface Solar Radiation (RS) SEVIRI Control for light availability

Soil Moisture (q) SMAP Control for soil water availability

Precipitation (P) CHIRPS Rainfall gradient analysis; robustness test

Land Cover Classification IGBP Vegetation type analysis

Fraction of Vegetation Cover (FVC) SEVIRI Seasonal analysis; Surface albedo response

Land Surface Temperature (LST) SEVIRI Seasonal analysis, Energy dissipation efficiency

Downward Surface Solar Radiation (RS) SEVIRI Seasonal analysis, Control for light availability

Soil Moisture (q) SMAP Seasonal analysis, Control for water availability

Vapor Pressure Deficit (VPD) AIRS Seasonal analysis

Surface Albedo (a) SEVIRI Surface albedo response

Land Surface Temperature (LST) MODIS

Normalized Difference Vegetation Index (NDVI) MODIS

Downward Surface Solar Radiation (RS) MERRA2 Control for light availability

Precipitation (P) CPC Control for water availability

Land Cover Classification IGBP Remove bare soil regions

Leaf Area Index (LAI) MODIS Alternative test

Assess interannual vegetation cover response to 

surface temperature
Assessment 

III: Tropical 

Vegetation-

Temperature 

Interactions

Assessment II: 

Africa 

Mechanism 

Identification

Assess annual mean vegetation cover response to 

surface temperature
Assessment I: 

African 

Vegetation-

Temperature 

Interactions



d(LST)/dt integrates the diurnal LST cycle while being less sensitive to peak LST timing and to 199 
cloud coverage than more common methods that subtract morning and afternoon temperature 200 
snapshots (Holmes et al., 2015). Namely, it considers the time range when LST is consistently 201 
rising nearly linearly before slowing its rise near the daily LST peak (Fig. S1). Nevertheless, the 202 
d(LST)/dt median is consistently related to the diurnal temperature range where spatial 203 
correlations across Africa between median d(LST)/dt and the 1:30pm and 6:00am LST 204 
difference tend to be above 0.8 on a given day. Use of diurnal temperature range for such an 205 
application is likely still acceptable in the absence 15-minute data. 206 

For our primary approach to partition FVC’s effect on d(LST)/dt, we used spatial 207 
conditioning to bin pixels of nearly identical long term mean soil moisture (±0.0025 m3m-3) and 208 
mean incoming solar radiation (±1.25 Wm-2). For the pixels within each bin, we applied:  209 

𝐸[𝑑(𝐿𝑆𝑇)/𝑑𝑡] = 𝛽0 + 𝛽𝐹𝑉𝐶𝐸[𝐹𝑉𝐶] + 𝜀  (1) 210 
d(LST)/dt and FVC annual means in 2018 were used in Eq. 1. 0 and  are the y-intercept and 211 
residual, respectively. FVC represents the linear effect of FVC on d(LST)/dt. Statistically 212 
significant (p<0.05) positive and negative values of FVC indicate a warming and cooling effect 213 
of vegetation, respectively. Statistically insignificant values of FVC are considered neutral 214 
effects here. This approach assumes a space-time equivalence where changes in annual means of 215 
FVC and d(LST)/dt between pixels with similar water and energy availability are assumed to 216 
also occur in time at a given location. Pixels with mean SEVIRI FVC of zero were removed from 217 
the analysis.  218 

We focus on this approach for several reasons. (a) Use of median d(LST)/dt can reveal 219 
more causal relationships between vegetation cover and LST than can direct statistical 220 
relationships between FVC and LST. (b) It uses 15-minute LST observations from the SEVIRI 221 
geostationary satellite which provide greater temporal coverage under cloud cover conditions 222 
given their more frequent sub-daily sampling than satellites with global coverage. (c) The 223 
approach attempts to determine long-term, climatic relations between variables that are 224 
indicative of how they would co-vary at annual and decadal timescales relevant to land cover 225 
changes. Indeed, differences in climatic, edaphic, and topographic conditions across space may 226 
confound 𝛽𝐹𝑉𝐶  interpretations from Eq. 1 of how annual d(LST)/dt and FVC vary in time at a 227 
given location. However, we expect that this spatial approach will consider effects of beyond-228 
decadal scale feedbacks and ecosystem equilibrium states (Eagleson and Segarra, 1985) that may 229 
not appear in sub-annual and interannual timescale regression analyses. Additionally, the use of 230 
water and light availability to bin pixels is expected to provide similarity between ecosystems 231 
such that their spatial vegetation-temperature covariations are more likely to reflect those in time 232 
at a location than differences in climate.    233 
 234 
2.3.2. Assessment I Robustness Tests 235 

We conducted several tests to evaluate the robustness of the Eq. 1 approach as well as to 236 
interpret its results. These tests were also meant to motivate the analysis of vegetation-237 
temperature interactions across the tropics in Assessment III using interannual variability of 238 
global satellite datasets. More details about the tests can be found in the SI. 239 

Tests were performed to determine whether the spatial relationships resulting from Eq. 1 240 
also occur in time. We focused our tests on longer timescale, interannual variations because of 241 
our interest in biophysical feedbacks under climate change. 16 years of SEVIRI diurnal 242 
temperature range observations (2004-2019) in each pixel were used to determine whether the 243 
spatial relationships from Eq. 1 also hold in time at interannual timescales (see SI). Additionally, 244 



four years (2015-2019) were used for four randomly selected pixels in space within each bin to 245 
determine the combined effect of interannual and spatial variability (see SI). Rather than the full 246 
diurnal temperature cycle, this analysis used the difference in 1:30pm and 6:00am LST, assumed 247 
to be the maximum and minimum daily temperature (Feldman et al., 2019). The interannual 248 
timescale analysis ultimately has uncertainties due to small sample size of 16 data points per 249 
pixel as well assumptions of timing of maximum and minimum LST. Nevertheless, these tests 250 
were carried out for qualitative comparison with those from Eq. 1 in Section 2.3. 251 

It is also expected that there will be differences in determining temperature-vegetation 252 
relationships from daily variations, given strong confounding effects between land surface 253 
variables at seasonal timescales. We performed a panel regression that partitions the sub-annual 254 
and interannual scale interactions between FVC and d(LST)/dt (see SI). Seasonal and intra-255 
seasonal regressions are performed for comparison (see SI). 256 

The spatial analysis in Eq. 1 was repeated using the mean annual afternoon temperature 257 
in place of mean annual d(LST)/dt to evaluate the connection of the d(LST)/dt results to LST 258 
itself. The mean daily peak temperature is approximated as the mean temperature between 12:30 259 
pm and 2:30 pm (Fig. S1). 260 
 261 
2.4 Assessment II: Mechanisms Driving African Vegetation-Temperature Interactions 262 

Several analyses were conducted here to attribute spatial variations in 𝛽𝐹𝑉𝐶  to 263 
mechanistic drivers. Namely, we tested whether aridity, energy dissipation efficiency, and 264 
surface radiation absorption describe why vegetation shifts its control on surface temperature 265 
along climatic gradients, especially in drylands compared to more humid environments.  266 

We first evaluated the interaction of FVC and d(LST)/dt during different seasons to infer 267 
the interactive effects of radiation and moisture availability. Specifically, the spatial timescale 268 
analysis in Eq. 1 is repeated in the halves of the year with low and high vegetation cover, defined 269 
as times of year below and above the FVC median, respectively: 270 

𝐸[𝑑(𝐿𝑆𝑇)/𝑑𝑡] = 𝛽0 + 𝛽𝐹𝑉𝐶𝐸[𝐹𝑉𝐶] + 𝛽𝜃𝐸[𝜃] + 𝛽𝑅𝑆𝐸[𝑅𝑆] + 𝜀  (2) 271 

Eq. 2 was performed as in Eq. 1 with binning based on water and light availability, but the 272 
seasonal means of RS and  under seasons of high and low vegetation coverage are included as 273 
regressors in Eq. 1 to control for the direct effects of the environmental factors on LST that do 274 
not necessarily involve the influence of vegetation. As such, we expect that differences in 𝛽𝐹𝑉𝐶  275 
between seasons of low and high vegetation cover can be interpreted as effects of climatic 276 
factors (RS, , and VPD) on FVC-d(LST)/dt interactions. Comparability of FVC between seasons 277 
is possible because FVC is based on unit changes in FVC, not its overall magnitude. We do not 278 
aim to determine effects within specific seasons, but rather test whether FVC-d(LST)/dt 279 
interactions change with seasons and identify environmental factors that may be driving these 280 
changes. Seasons of high and low vegetation coverage are naively chosen to test how different 281 
environmental conditions seasonally limit photosynthesis rather than imposing only water-282 
limitation, for example, from wet and dry season definitions. We computed the seasonal 283 
differences in FVC and related them to the seasonal mean changes in soil moisture, solar 284 
radiation, and vapor pressures deficit.  285 

To evaluate strength of energy dissipation through latent and sensible heat and radiation 286 
fluxes for different locations, Bateni and Entekhabi (2012) show analytically that d(LST)/dt can 287 
be predicted by LST dependent terms that are all dissipative through surface energy fluxes. As 288 
such, the d(LST)/dt versus LST at hourly timescales is an intrinsic landscape property: 289 



𝑑𝐿𝑆𝑇

𝑑𝑡
= 𝛽0 +−𝛽𝐸𝑓𝑓𝐿𝑆𝑇 + 𝜀  (3) 290 

where Eff describes the efficiency of total land surface energy dissipation. Eq. 3 was computed 291 
per pixel using available 15-minute d(LST)/dt increments and concurrent LST magnitude. Eff is 292 
normalized to be unitless by a multiplication factor of 32.5 used in Bateni and Entekhabi (2012) 293 
(see their Eq. 12). 294 

To quantify whether vegetation fraction has differential effects on surface albedo across 295 
Africa, we computed:  296 

𝐸[𝛼] = 𝛽0 + 𝛽𝛼,𝐹𝑉𝐶𝐸[𝐹𝑉𝐶] + 𝜀  (4) 297 
Eq. 4 was repeated identically to Eq. 1 in each bin of mean moisture and solar radiation. A 298 
higher FVC  magnitude suggests that changes in vegetation cover have a stronger influence on 299 
the vegetated surface’s ability to absorb incoming radiation. Note that SEVIRI FVC and surface 300 
albedo retrieval processes are independent and use different electromagnetics models (García-301 
Haro and Camacho, 2014). 302 

To isolate the effects of tropical drylands across these mechanistic analyses, we binned 303 
regions with less than and greater than 500 mm of annual total CHIRPS precipitation. We found 304 
overall results did not change in varying this dryland threshold by ±200 mm/year. 305 
 306 
2.5 Assessment III: Tropical Vegetation-Temperature Interactions 307 

We repeated the analysis using MODIS NDVI and LST observations, but across the 308 
vegetated tropics. We only assess the tropics and subtropics (vegetated land surfaces within 35S 309 
to 35N degrees latitude) given the strong control of water and energy availability in the tropics 310 
relevant to the mechanisms discussed in Africa and due to different mechanistic processes (i.e., 311 
snow cover) that occur in the mid- and high latitudes.  312 

A per-pixel regression was performed on annual mean values to determine the partial 313 
control of NDVI on LST at interannual timescales: 314 

𝐸[𝐿𝑆𝑇] = 𝛽0 + 𝛽𝑁𝐷𝑉𝐼𝐸[𝑁𝐷𝑉𝐼] + 𝛽𝑃𝐸[𝑃] + 𝛽𝑅𝑆𝐸[𝑅𝑆] + 𝜀  (5) 315 

Variables used in Eq. 5 are shown in Table 1. We evaluated the direct statistical connection of 316 
vegetation cover to LST here, instead of d(LST)/dt, where we later argue that there is a causal 317 
interpretation of these relationships. NDVI is approximately linearly related to FVC especially in 318 
non-forested regions, which cover most of the tropics by area (Carlson and Ripley, 1997; Fan et 319 
al., 2009). As such, we expect some transferability between SEVIRI FVC-based and MODIS 320 
NDVI-based results. Statistically significant linear trends in annual means were removed from 321 
LST and NDVI to remove confounding effects of LST on NDVI, which mainly influenced 322 
tropical forest pixels. We multiplied NDVI by 1% of mean annual NDVI between 2003 to 2021 to 323 
determine by how much LST would change if mean NDVI were increased by 1% everywhere. 324 
To assess the role of drylands on the LST changes due to biophysical feedbacks of vegetation 325 
cover increases, spatial distributions of this LST with and without drylands included were 326 
compared using t-tests. 327 
 328 
3. Results  329 
3.1 Assessment I: Relationship between FVC and d(LST)/dt 330 

FVC tends to reduce the land surface warming rate (d(LST)/dt), or net cool, across most 331 
of Africa’s vegetated biomes (Fig. 2). Net cooling effects are detected in 81% of Africa’s 332 
vegetated surfaces. Over an 8-hour diurnal warming cycle in locations where these net cooling 333 



effects are detected, a 10% increase in vegetation cover would suppress the LST diurnal range by 334 
about 4K.  335 

Vegetation cools the surface less when water is limiting (Fig. 2). Vegetation cover’s 336 
influence on d(LST)/dt gradually transitions from net cooling to net neutral and even net 337 
warming from energy-limited to water-limited locations. This gradient of reduced net cooling 338 
effects can be seen with decreasing annual total rainfall and shorter, less woody vegetation types 339 
(Fig. 2c, 2d). Locations where neutral or warming effects occur at beyond-annual timescales are 340 
typically water-limited, characterized by low total rainfall (average of 400 mm/year) and 341 
dominant grass and shrubland land cover (Fig. S2). Overall, 16% of the vegetated African land 342 
surface has no significant (neutral) net effect and 3% has a significant net warming effect 343 
(p<0.05). Similar results are obtained when repeating the analysis on the afternoon 13:30 local 344 
temperatures only and less so on morning 6:00 temperatures, suggesting that these vegetal effects 345 
impact the diurnal temperature range mainly through daily afternoon LST (Fig. S3).  346 

The interannual variability analyses give evidence that the spatial relationships in Fig. 1 347 
do occur in time, at least at interannual timescales (Fig. S4). Though less certain given low 348 
sample size of 16 data points per pixel, the interannual relationships qualitatively show a 349 
gradient of reduced net cooling effects of FVC on d(LST)/dt with more water-limitation, 350 
especially from sub-humid to arid conditions. These interannual relationships give credence to 351 
our space-for-time assumptions, or the expectation that spatial variations in annual means within 352 
the bins translate to changes in annual means in time at a given location. Furthermore, the panel 353 
regression tests and regressions at sub-annual timescales show that stronger cooling effects are 354 
found at sub-annual scales than at longer timescales (Figs. S5 and S6). Moreover, our tests using 355 
the panel regression approach indicate that the sign of interactions between FVC and the surface 356 
energy balance can switch between intra-annual and beyond annual timescales, especially in 357 
drier environments (Fig. S5). Nevertheless, the sub-annual timescale analysis still shows a 358 
reduction of net cooling effects in more water-limited locations (Fig. S6).  359 



 360 
Figure 2. While fraction of vegetation cover (FVC) and rates of diurnal temperature change 361 
(d(LST)/dt) are negatively related (vegetal cooling effects) under most conditions, this 362 
relationship becomes subdued or positive (vegetal warming effects) in drier locations. (a) FVC 363 
estimated using Eq. 1 with a spatial conditioning approach, evaluating interannual and longer 364 
timescales while controlling for moisture and energy availability. Values are normalized 365 
considering a 0.1 absolute increase in FVC in all locations. Negative (blue) values indicate that 366 
FVC reduces d(LST)/dt (cooling effect). Stippling indicates a statistically significant (p<0.05) 367 
negative FVC. Statistically significant positive FVC are not stippled. (b) Locations where 368 
significant net warming, neutral, and cooling effects of vegetation are found. (c) Values in (a) 369 
binned based on total annual rainfall. (d) Values in (a) binned based on IGBP land cover 370 
classifications. 371 
 372 
3.2 Assessment II: Drivers of Vegetation Effects on the Surface Energy Balance 373 
3.2.1 Vegetation Interaction with Aridity 374 

Our investigation of seasonal mean differences in FVC-d(LST)/dt behavior reveals that 375 
aridity modulates vegetation-surface energy balance interactions (Fig. 3). Namely, dryland 376 
vegetation greatly loses its ability to cool the surface in times of year with lower mean vegetation 377 
cover (Fig. 3a-3d). These dryland vegetal cooling reductions in low vegetated seasons are linked 378 
to increased aridity. Namely, in drylands, seasons with low vegetation cover have lower mean 379 



soil moisture (-16%), higher mean solar radiation (+12%), and higher mean VPD (+6%) than the 380 
annual average (Fig. 3e). In the season with more vegetation cover, these conditions switch to 381 
higher mean soil moisture, lower mean solar radiation, and lower mean VPD (Fig. 3e). 382 

Only 31% of African drylands have net vegetal cooling effects in seasons with less 383 
vegetation cover (Fig. 3). This is similar to the 36% of drylands that have net vegetal cooling 384 
effects overall across the year (Fig. 2), suggesting a dominant role of behavior during times of 385 
year with low vegetation cover on overall annual behavior. However, in the seasons with higher 386 
vegetation cover, cooling effects occur in 57% of drylands (Fig. 3b-3d). Humid tropical regions 387 
do also show some seasonal changes in behavior (Fig. 3d), but with relatively consistent net 388 
cooling effects throughout the year. These patterns during the different seasons largely hold 389 
when evaluating only interannual variability with 16 years of SEVIRI data (Fig. S4) as well as 390 
when evaluating behavior at seasonal timescales (Fig. S7).  391 

 392 
Figure 3. Reductions in cooling effects of African dryland vegetation observed in mean annual 393 
FVC and d(LST)/dt interactions mainly arise from seasonally drier, less vegetated conditions. (a, 394 
b) Same as Fig. 2a, but dividing into effects in the (a) less vegetated and (b) more vegetated 395 
seasons. (c) Values in (a) and (b) plotted on a rainfall gradient as divided into less and more 396 
vegetated seasons. (d) Difference between FVC in the given season and the overall FVC in Fig. 397 
1. Drylands are defined as receiving less than 500 mm of annual rainfall and humid regions are 398 
those with greater than 500 mm of annual rainfall. (e) Dryland percent difference in respective 399 
mean environmental conditions between a given season and the full year. 400 
 401 
3.2.2 Energy Dissipation Efficiency 402 

Using diurnal temperature changes in Eq. 3, we show that more water limited locations 403 
have less ability to cool the surface via their lower total dissipation of surface energy (Fig. 4a). 404 



The diurnal changes in LST reveal that turbulent energy flux dissipation is significantly less 405 
efficient in drylands than in more humid locations (Fig. 4a inset; p<0.05).  406 
 407 
3.2.3 Surface Albedo Effect 408 

Mean annual surface albedo is negatively related to FVC, not only across the study 409 
region (i.e., grasslands have higher surface albedo than forests), but also within each bin (Fig. 410 
4b). Therefore, at a given location, a unit increase in FVC will increase surface energy 411 
absorption. Furthermore, we find that drylands have over two times more surface albedo 412 
sensitivity to FVC than that of more humid regions (Fig. 4b inset; p<0.05). A 10% mean dryland 413 
FVC increase would decrease albedo by approximately 0.025 in these dry regions, resulting in an 414 
increase in mean shortwave radiation absorption of ~10 W/m2. 415 

 416 

 417 
Figure 4. Drylands have lower overall efficiency of surface cooling via dissipating turbulent 418 
energy and amplified warming via their larger decreases in surface albedo with vegetation cover 419 
increases. (a) Estimated overall land surface efficiency of dissipating available energy (Eff; 420 
unitless, Eq. 3). (b) FVC’s relationship with surface albedo (change in surface albedo per 0.1 421 
FVC increase, Eq. 4). Insets show the respective values in dryland regions (mean annual rainfall 422 
< 500 mm/yr) and humid regions (mean annual rainfall > 500 mm/yr). Error bars in insets are 423 
95% confidence intervals based on bootstrapping of values in the respective bins showing 424 
statistically significant (p<0.05) differences between humid and dryland environments in both 425 
cases. 426 
 427 
3.3 Assessment III: Vegetation Cover’s Feedbacks on Land Surface Temperature Across the 428 
Tropics 429 

Using satellite retrievals that extend across the tropics and are independent of datasets in 430 
Assessments I and II, we find that tropical drylands show widespread net neutral and reduced 431 
cooling effects of vegetation on LST similarly to the results in Fig. 2 (Fig. 5). There are similar 432 
proportions of neutral effects (52%) and net cooling effects (42%) between drylands and the 433 
remainder of tropical ecosystems (Fig. 5b). Regardless, considering the pixels where the 434 
significant cooling effects were found, the median cooling effect of dryland vegetation is half the 435 
magnitude on average of that of more humid regions (Fig. 5c). The cooling magnitude of dryland 436 
vegetation is also weaker in 91% of dryland pixels than the median cooling magnitude in the 437 
more humid tropics. As such, the overall cooling biophysical effect of vegetation cover on LST 438 
in drylands is weaker than that of the more humid regions across the tropics (Fig. 5c).  439 



As a result of the reduced cooling effects in drylands, drylands have an average LST 440 
change of -0.05K per percent increase in annual mean NDVI compared to -0.1K for more humid 441 
regions (Fig. 5c). Consequently, drylands reduce the net cooling effect of tropical vegetation by 442 
14% on average (25% by median) considering a uniform unit increase of annual NDVI across 443 
the tropics (Fig. 5c). Furthermore, these reductions in net cooling effects are proportional to the 444 
total land area of drylands on a given continent; given a high land cover of drylands in Australia 445 
and Asia, drylands reduce net vegetal cooling effects even more on these continents (Fig. 5d). 446 

 447 
Figure 5. Dryland plants across the tropics tend to have reduced surface cooling effects 448 
compared to that of wetter environments. (a) Interannual effect of vegetation (NDVI) on LST 449 
determined in units of estimated change in LST per 1% increase in annual mean NDVI. Stippling 450 
indicates statistical significance of LST’s partial sensitivity to NDVI (p<0.05). Bare soil regions 451 
are removed using IGBP land cover classifications. (b) Areal coverage of statistically significant 452 
warming and cooling effects (p<0.05) as well as neutral effects (no statistical significance; 453 
p>0.05) binned into mean annual precipitation. (c) Distribution of values in (a) considering 454 
drylands (MAP<500mm), humid regions (MAP>500), and all together. (d) Percent reduction in 455 
biophysical cooling due to drylands across different regions. Red dot symbols represent percent 456 
area of drylands. All regions show statistically significant reductions in overall net cooling effect 457 
reductions due to dryland vegetation (via t-tests on spatial distributions of LST with and 458 
without drylands included; p<0.05).  459 
 460 
4. Discussion 461 

Observations from several satellite platforms are used to characterize vegetation’s 462 
isolated effect on land surface temperature as well as attribute these effects to different surface 463 
energy balance drivers. While previous studies suggest strong net vegetative cooling effects 464 
across the tropics driven in part by semi-arid regions (Alkama et al., 2022; Forzieri et al., 2018), 465 
we instead find that tropical dryland vegetation has relatively weaker cooling effects than in 466 
wetter environments. Such reduced vegetal cooling effects in these locations originate from 467 



reduced ability for dryland vegetation to cool the surface under water-limitation and observed 468 
amplified warming effects due to dryland plants’ strong sensitivity of surface albedo to FVC.  469 

Our methodology has several merits providing credence to our results. (a) The results are 470 
based on observations and our methods do not require land surface modeling assumptions about 471 
competing effects of vegetation on the land surface energy balance. (b) Our methods include 472 
independent use of SEVIRI and MODIS data, as well as regressions using spatial and temporal 473 
variations that ultimately result in similar spatial patterns of results. (c) Observation-based 474 
identification of mechanisms support these spatial patterns. 475 
 476 
4.1 Question a: Does more vegetation cover net cool the surface across the tropics, especially in 477 
drylands?  478 

We find that vegetation mainly imparts net cooling effects across the tropics. These net 479 
tropical vegetation cooling effects are expected, especially where ample water is available: more 480 
vegetation cover increases the land surface’s ability to evaporate rootzone moisture beyond that 481 
of bare soil and further increases evaporation through enhanced friction velocity. However, in 482 
drylands, we find that these net vegetal cooling effects become reduced and can even switch to 483 
warming effects. These findings have support from all three assessments here. Using primarily 484 
SEVIRI-based diurnal temperature observations in Assessment I, African vegetation shows a 485 
gradient of reduced net cooling effects in more water-limited locations that is supported by 486 
regressions using both spatial and interannual timescale analyses (Fig. 2). Assessment II shows 487 
mechanisms that agree with a reduction in vegetal net cooling effects in water-limited locations 488 
as linked to seasonal aridity conditions and higher surface albedo sensitivity to vegetation cover 489 
(see Section 4.2). Finally, repeating the analysis across the tropics with independent observations 490 
in Assessment III, a similar reduction of net vegetal cooling effects is found in drylands (Fig. 5). 491 
These observed patterns and drivers ultimately inform global biophysical modeling. 492 
 While these regression approaches provide only correlative information on their own, our 493 
findings suggest that the vegetation effects on LST are causal influences for several reasons. (1) 494 
The establishment of FVC and d(LST)/dt statistical connections in Assessment I detect a more 495 
physical connection between vegetation and the energy balance, compared to LST alone (Bateni 496 
and Entekhabi, 2012; Panwar and Kleidon, 2022). (2) Our mechanistic assessment supports the 497 
spatial patterns that greater vegetal net cooling effects occur in the humid tropics (see Section 498 
4.2). (3) While temperature effects on vegetation may confound observed patterns of vegetation-499 
temperature relationships, they are not expected to be dominating these relationships. Namely, 500 
cooler temperatures are not expected to proportionally increase vegetation productivity more in 501 
cooler, tropical humid ecosystems than in warmer, tropical drylands. Moreover, tropical 502 
vegetation is known to be water and/or light limited (Madani et al., 2017; Nemani et al., 2003), 503 
and thus the influence of temperature on vegetation function is likely not dominating tropical 504 
vegetation-temperature patterns. (4) The results are similar when replacing mean d(LST)/dt with 505 
afternoon average LST, but are subdued when using morning average LST (Fig. S3). This shows 506 
an effect of vegetation mechanisms on temperature, where evaporation and incoming radiation 507 
mechanisms (see Assessment II) are active after the early morning and thus influence the 508 
afternoon temperatures more than early morning temperatures. Ultimately, these arguments 509 
provide evidence for causal interpretation of vegetation effects on temperature in Assessment I 510 
as well as in Assessment III that relies on annual mean variations of afternoon LST instead of 511 
mean d(LST)/dt.  512 



 Results from complementary Assessments I and III agree, which gives credence to the 513 
results that water-limitation inhibits vegetal cooling in the tropics. Assessment I’s spatial 514 
analysis is expected to account for climatic feedbacks over longer timescales (Charney et al., 515 
1975; Eagleson and Segarra, 1985; Green et al., 2017; Taylor et al., 2012), but has uncertainties 516 
in other spatial confounding factors that may not translate to variability in time at a location (i.e., 517 
edaphic, topographic factors, etc.). While the interannual analysis in Assessment III is based on 518 
fewer samples and does not include feedbacks, it includes effects in time at a single location and 519 
does not require space-time assumptions as in the spatial relationships in Assessment I. Together, 520 
these findings agree that aridity reduces the net surface cooling effects of vegetation in the 521 
tropics at the longer climatic timescales of biophysical feedbacks.  522 
 523 
4.1.1 Confounding effects of choice of timescale and vegetation index 524 

We argue here that the reduced net cooling effects in tropical drylands have not been 525 
found in previous biophysical feedback investigations likely due to use of sub-annual timescales 526 
and leaf area index.  527 
 Our results show shorter sub-annual timescale sensitivities may confound studies of 528 
temperature-vegetation interactions for several reasons. First, our tests using a panel regression 529 
approach to partition timescales of effects indicate that the sign of interactions between FVC and 530 
land surface temperature may switch between sub-annual and beyond-annual timescales, 531 
especially in drier environments (Fig. S5). The results at seasonal timescales do agree that net 532 
vegetal cooling effects decrease in water-limited locations (Fig. S6), but stronger cooling effects 533 
are found at sub-annual timescales (Figs. S5 and S6). Evaluating seasonal timescales of these 534 
effects thus may be overestimating net vegetal cooling feedbacks given that FVC and d(LST)/dt 535 
seasonal cycles carry spurious relationships between variables that may inflate the strength of 536 
their relationship (Feldman et al., 2022; Tuttle and Salvucci, 2017). There is less confidence in 537 
interactions at intra-seasonal timescales because the FVC intra-seasonal variability has a reduced 538 
signal, occupying less than 5% of the power spectrum, which likely approaches the variability of 539 
instrument noise (Fig. S6). Ultimately, we argue that these vegetation-temperature interactions 540 
should be evaluated at beyond-annual timescales given these aforementioned limitations at sub-541 
annual timescales as well as the fact that these interactions are typically interpreted in the context 542 
of long-term change (climatic changes, land use change, etc.). 543 

Our results suggest that use of LAI instead of NDVI and FVC may confound 544 
interpretations of vegetation’s effect on the surface energy balance. Repeating Assessment III 545 
with MODIS LAI results in greater vegetal cooling effects in drylands compared to more humid 546 
locations, suggesting that tropical dryland plants are most efficient at cooling the surface (Fig. 547 
S8). This change in spatial gradient of vegetation effects on LST originates primarily from the 548 
non-linear transformation of reflectance information into LAI (Fig. S9). For several reasons, we 549 
caution against using LAI for our research questions and argue that vegetation cover parameters 550 
like FVC are instead more optimal. First, interpretation of LAI variations shifts from mainly 551 
horizontal vegetation cover variations in drier, less vegetated environments to vertical structure 552 
variations in more humid, densely vegetated regions (Carlson and Ripley, 1997). Therefore, LAI 553 
variability and the resulting surface energy balance response have different meanings in each 554 
pixel, which prevents comparison of the strength of vegetation’s impact on LST across space. By 555 
contrast, NDVI and FVC instead have more consistent, normalized interpretations of vegetation 556 
variability and how it influences temperature across space. Second, the amplified LAI standard 557 
deviation in humid regions (based on LAI modeling from reflectances) will inherently reduce the 558 



magnitude of vegetation’s statistically modeled effect on land surface temperature. Third, our 559 
mechanistic analysis (Figs. 3 and 4) and previous findings of strong warming with wet tropics 560 
deforestation (Vargas Zeppetello et al., 2020) do not support the LAI-based finding that dryland 561 
vegetation has an increased ability to cool the surface. LAI is still suited to evaluate biophysical 562 
feedbacks within a pixel, but interpretations of LST response to LAI across space are limited for 563 
answering our questions here for these reasons. Ultimately, the FVC results are likely more 564 
indicative of horizontal vegetation structure effects (i.e, canopy coverage) and thus future work 565 
needs to also investigate the normalized impact of vertical structure effects (i.e., vegetation 566 
height and vertical leaf area variations) across space. See SI for more discussion of these 567 
arguments. 568 
 We add caution to interpreting results in wet tropical forests here, especially with the 569 
NDVI analysis in Assessment III, that show reduced statistical significance of effects (Fig. 5). 570 
First, tropical forests have high cloud cover and optically opaque atmospheres that reduce 571 
optical/infrared parameter retrieval quality (Freitas et al., 2010; Göttsche et al., 2016; Trigo et al., 572 
2021). Increased noise of the regressed variables inherently forces the regression slope to zero, 573 
switching the sign of FVC in many cases. Second, NDVI saturates at high values of vegetation 574 
cover, where changes in FVC translate to proportionally smaller NDVI changes (Myneni and 575 
Williams, 1994), which leads to large erroneous FVC magnitudes. Specifically, since regression 576 
slopes (i.e., FVC) are inversely related to the variance of their regressor (i.e., NDVI variance), an 577 
underestimated vegetation cover variance with NDVI will inflate FVC. Both effects are 578 
confounding FVC values in wet tropical forests because the wet tropical forest FVC values are 579 
generally not statistically significant, typically have large magnitude ranges, and tend to switch 580 
sign spatially within the same regions. Finally, previous studies found consistently strong cooling 581 
effects of wet tropical forests (Alkama and Cescatti, 2016; Mahmood et al., 2014; Silvério et al., 582 
2015). Nevertheless, our spatial analysis in Assessment I using FVC does detect net vegetal 583 
cooling effects in Africa’s wet tropical forests (Fig. 2). 584 
 585 
4.2 Question b: Which surface energy balance mechanisms are responsible for the observed 586 
spatial pattern of vegetal effects on surface temperature in the tropics? 587 

Using an observation-only identification of drivers in Assessment II, we find that drier 588 
environments have reduced net vegetal cooling effects because of their plants’ reduced ability to 589 
cool the surface under higher aridity (Fig. 3), their similarly reduced cooling with lower land 590 
surface energy dissipation efficiency (Fig. 4a), and their vegetation cover’s proportionally larger 591 
solar radiation absorption per unit increase in vegetation cover (via albedo effects) (Fig. 4b). 592 
Evidence of these drivers gives additional credence to causal influences of FVC on LST as well 593 
as the spatial gradient of these interactions from wet to dry tropical environments in Fig. 2.  594 

In water-limited locations, the loss of net vegetal cooling effects in seasons when 595 
vegetation cover is reduced is likely due to vegetation interactions with aridity (Fig. 3). A large 596 
reduction in soil moisture will reduce transpiration in these dry locations, with less water 597 
available to supply leaf gas exchange as well as lower stomatal conductance (Katul et al., 2012; 598 
Manzoni et al., 2013; Rigden et al., 2020; Sperry et al., 2016). Such a moisture driven reduction 599 
in transpiration is expected based on observed strong positive control of soil moisture on gross 600 
primary production and stomatal conductance (Haverd et al., 2017; Novick et al., 2016; Short 601 
Gianotti et al., 2019). Larger VPD and incoming radiation can act to further reduce leaf stomatal 602 
conductance (Jarvis, 1976; Medlyn et al., 2011). As such, dryland vegetation can tend to exhibit 603 
reduced net cooling effects under more arid conditions because additional vegetation cover will 604 



marginally increase transpiration, but will absorb more radiation with reduced surface albedo. 605 
Weaker net cooling in drylands than humid environments during the wetter, vegetated season is 606 
further evidence of this aridity control (Fig. 3b, 3c). Phenology may additionally contribute to 607 
these large seasonal changes with lower vegetal transpiration cooling during drier seasons (Adole 608 
et al., 2018). 609 

The finding of reduced energy dissipation efficiency in drylands shows additional, 610 
independent evidence that surface cooling from fluxes is reduced in water-limited environments 611 
(Fig. 4a). In dry, warm locations, this ultimately suggests lower latent heat fluxes, the most 612 
efficient energy flux dissipation method in these hot environments (Bateni and Entekhabi, 2012). 613 
While the dissipation efficiency metric (Eq. 3) does not isolate only vegetation effects from bare 614 
soil contributions, we argue that lower vegetation cover is largely reducing energy dissipation 615 
efficiency in dryland locations. Vegetation cover can increase wind friction velocity and thus 616 
increase surface conductance of turbulent energy fluxes. Such energy dissipation effects are 617 
reduced in arid regions with shorter, and sparser vegetation (Panwar et al., 2020). In addition, 618 
less vegetation cover results in less ability to evaporate and cool the surface using deeper 619 
rootzone moisture supply than that of bare soil. There may be additional effects of wind stilling 620 
that occur in drylands where more vegetation slows the near surface wind, creating more 621 
resistance to energy dissipation (Zeng et al., 2018).  622 

In general, we find a negative response of surface albedo to more vegetation cover, which 623 
is expected given vegetation’s ability to decrease shortwave reflectivity through its absorbing 624 
colors and canopy multiple scattering (Fig. 4b). However, increases in dryland vegetation cover 625 
tend to have amplified reductions in surface albedo, contributing to proportionally greater 626 
warming effects (Fig. 4b). Such a non-linear spatial relationship between vegetation indices and 627 
surface albedo has been observed previously, and is likely due to interactions of vegetation color 628 
contrast with bare soil as well as efficiency of canopy shortwave scattering in grasses and shrubs 629 
(Fuller and Ottke, 2002; Pang et al., 2022). Specifically, remote sensing emissivity observations 630 
reveal brighter soils in drier environments, which can increase the vegetation-soil reflectivity 631 
contrast (Peres and DaCamara, 2005) where additional vegetation cover can greatly change the 632 
surface albedo compared to humid environments. Previous work has also found that strong 633 
albedo effects can drive the interaction between vegetation and LST in drylands, such as those in 634 
Africa (Chen et al., 2020). 635 

Our investigation of mechanistic drivers is non-exhaustive, and we speculate that other 636 
mechanisms such as leaf-level photosynthetic strategies may be partly driving results. Namely, 637 
we found that grasses have reduced net cooling effects compared to woody vegetation (Fig. 2d). 638 
These warm tropical grasslands are typically dominated by C4 species compared to C3 woody 639 
species in humid ecosystems (Still et al., 2003). C4 species have a higher water use efficiency 640 
(Edwards et al., 2010; Osborne and Sack, 2012), which is a driver of observations that grasses 641 
have reduced cooling through transpiration and larger sensible heat fluxes (Panwar et al., 2020; 642 
Sellers et al., 1992). Therefore, while grassland reduction in cooling is partly driven by water 643 
availability and surface albedo considerations, the spatial gradient of net vegetal cooling in the 644 
tropics may be accentuated by existence of more C4 species (that have lower transpiration 645 
cooling) in grasslands and savannas dominating drier ecosystems. 646 
 647 
4.3 Question c: To what degree does tropical dryland vegetation net warm or cool the land 648 
surface compared to the remainder of the vegetated tropics? 649 



 We find that under a unit fractional increase of NDVI across the tropics, there is an 650 
overall net cooling effect of vegetation based on Assessment III (Fig. 5d). However, tropical 651 
drylands reduce the mean tropical biophysical net cooling effect by 14% (25% by median) (Fig. 652 
5c). This magnitude of reduction of the cooling feedback is partly controlled by dryland areal 653 
coverage (Fig. 5d). As such, if climate change causes aridification in the tropics (Berg and 654 
McColl, 2021; Huang et al., 2016; Lian et al., 2021), then more subdued vegetal cooling can be 655 
expected based on our results. The fractional dryland reduction in cooling effects is likely even 656 
larger considering uncertainties with wet tropical forests results noted in Section 4.1.1. When 657 
removing wet tropical forests from the analysis, tropical drylands reduce the mean tropical 658 
biophysical net cooling effect by 20% (26% by median). 659 

To evaluate the proportional contribution of net vegetal cooling effects of all tropical 660 
locations to the average, this simple experiment assumes that all tropical land surfaces show the 661 
same proportional greening. Studies agree there are widespread global greening trends as driven 662 
by CO2 fertilization, climate change, and land use change (Winkler et al., 2021; Zhu et al., 2016). 663 
Since greening would influence surface temperature, the absolute magnitude of this biophysical 664 
feedback ultimately depends on the spatial pattern of greening (Alkama et al., 2022). However, 665 
our question addresses the relative impacts of vegetation cover on land surface temperature (i.e., 666 
biophysical feedback sensitivity) to compare effects of different biomes across the tropics, rather 667 
than the actual, predicted change in temperature from greening-related feedbacks. Our findings 668 
thus do not depend on the rates of greening.  669 

While our results agree that tropical vegetation creates net cooling effects, our results 670 
ultimately disagree with previous studies that find strong dryland surface temperature sensitivity 671 
to vegetation in arid ecosystems, especially in the tropics (Alkama et al., 2022; Forzieri et al., 672 
2020, 2018). Instead, we find that greening in tropical arid environments, and broadly water-673 
limited ecosystems, provide relatively weaker cooling feedbacks. These previous studies are 674 
ultimately based on LAI and daily timescale variability. We identify in our assessments that 675 
these methodological choices can overestimate dryland vegetation’s ability to net cool the 676 
surface relative to other locations under multi-year greening.  677 

These results show that tree planting should cool surfaces where water is ample in the 678 
tropics. However, there may be less efficient cooling effects if planting new vegetation in water-679 
limited locations, unless a more optically reflective and/or deeper rooted plant species is chosen 680 
(Jackson et al., 2008). Careful attention to land management solutions in drylands is 681 
recommended (Rohatyn et al., 2022), especially for efforts like the Green Great Wall initiative 682 
which aims to plant vegetation to slow the spread of desertification in the Sahel (Duveiller et al., 683 
2018).  684 
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