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List of Symbols 

Term Description 

A() operator to denote the inverse Abel transform from F to Ae 

A(F) Ae converted from F using A(), ft2 

A◦F, F◦A composition of two integral transforms: A◦F(Ae) = A(F(Ae)), F◦A(F) = F(A(F)) 

Ae equivalent area for a body of revolution, ft2 

𝐴e
′ first derivative of Ae with respect to xe 

𝐴e
′′ second derivative of Ae with respect to xe 

𝐴𝑖
′′ approximate value of 𝐴e

′′(xi)

AN() operator to denote the numerical transform from F to Ae as an approximation of A() 

AN(F) numerical approximation of A(F), ft2 

F, F(xe) Whitham’s F-function 

𝐹′ first derivative of F with respect to xe 

F() operator to denote the Whitham integral transform from Ae to F 

F(Ae) F converted from Ae using F() 

Fi, Fk notations for F(xi), F(xk) 

fN, fN(xe) notations to represent FN(Ae) as a function of xe 

FN() operator to denote the numerical transform from Ae to F as an approximation of F() 

FN(Ae) numerical approximation of F(Ae) 

𝑔, G notations for functions 

𝑔′, 𝑔′′ first and second derivatives of 𝑔 

i, j, k, n, N integers 

le 
effective length of supersonic configuration, which is the largest effective distance where Mach 

angle cut plane intersects the configuration, ft 

t,u, temporary variables 

x, y, z coordinates of point in space, ft 

xc,j, yc,j (x,y) coordinates of a control point of a Bezier curve, ft 

xe effective distance for Ae and F, ft 

xi end point of a linear segment of a piecewise linear approximation function, ft 

𝐴𝑖
′′ 𝐴𝑖

′′ − 𝐴𝑖−1
′′

Fi Fi  − Fi-1 

xi xi  − xi-1 

 positive number 

 positive constant as an upper bound for |𝐴e
′′|
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Abstract 

    This paper proves mathematically that the integral transforms between 

Whitham’s F-function and equivalent area are the inverse transforms of each 

other if and only if the slope of the equivalent area at the origin is zero. This 

mathematical fact contradicts the accepted unconditional inverse relation 

between Whitham’s F-function and equivalent area in the sonic boom research 

literature. Piecewise linear approximations of an F-function and of the second 

derivative of an equivalent area are used to derive numerical formulas for 

conversions between Whitham’s F-function and equivalent area. Numerical 

results are included to show convergence of the numerical conversions as the 

maximum length of the segments for piecewise linear approximations goes to 

zero. These numerical conversions are approximately the inverse transforms of 

each other when the second derivative of an equivalent area is continuous and 

the slope of the equivalent area at the origin is zero. 

 

1 Introduction 

The Whitham theory [1,2] on the equivalent body of revolution for a supersonic configuration is the 

basis for the sonic boom minimization theory by Seebass and George [3]. Darden [4] extended the George-

Seebass sonic boom minimization theory from an isothermal atmosphere to the real atmosphere. The 

George-Seebass-Darden (GSD) sonic boom minimization theory was widely used in the sonic boom 

minimization studies before the Shaped Sonic Boom Demonstration (SSBD) program and led to a measured 

flat-top ground signature of the SSBD demonstrator [5]. For historical accounts of sonic boom research 

using the theory of equivalent body of revolution, see Refs. [6-13]. In contrast, the state-of-the-art sonic 

boom analysis [14,15] computes the off-body pressure at three body lengths away from the aircraft using 

computational fluid dynamics (CFD) and propagates the off-body pressure to the ground using an 

augmented Burgers equation. This is the analysis method for an early version of the NASA X-59 low-boom 

flight demonstrator [14,16], which aims to enable a commercially successful supersonic transport to fly 

overland with a quiet sonic thump, rather than a loud sonic boom, on the ground. Typically, a supersonic 

configuration and its equivalent body of revolution can have significantly different aft signature shapes. 

However, the Whitham theory is still useful when the equivalent body of revolution for a supersonic 

configuration is corrected using the CFD off-body pressure. The supersonic configuration and its corrected 

equivalent body of revolution have approximately the same undertrack sonic boom ground signature. The 

corrected equivalent body of revolution is defined by the reversed equivalent area of a supersonic 

configuration [17]. Designing a low-boom supersonic configuration is equivalent to designing a low-boom 

reversed equivalent area shape. See Ref. [18] for a theoretical justification of this statement. The reversed 

equivalent area enables a multiobjective multidisciplinary optimization (MDO) method, called the Block 

Coordinate Optimization method, for conceptual design of low-boom supersonic transports that can satisfy 

both the low-boom and mission performance requirements [19,20]. The integral transform from an 

equivalent area to Whitham’s F-function is an important analysis step for finding optimal equivalent area 

targets for inverse design optimization of the reversed equivalent area of a supersonic aircraft [19,20]. The 

accuracy of numerical methods for conversions between Whitham’s F-function and equivalent area needs 

to be carefully studied in the new application setting. 

 This paper restudies Whitham’s F-function, denoted by F(xe), and the corresponding equivalent area, 

denoted by Ae(xe), from mathematical and computational perspectives. Here xe represents the effective 

distance to define the Mach angle cut plane used for calculation of Ae(xe). The inverse relations between the 

Whitham integral transform [1,2] from Ae(xe) to F(xe) and its Abel inversion from F(xe) to Ae(xe) [3] will be 

rigorously reexamined. Carlson [21] developed a numerical integration procedure for converting Ae(xe) to 
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F(xe). Carlson’s numerical approximation of F(xe) is obtained by replacing 𝐴e
′′(xe) with a piecewise constant 

approximation of 𝐴e
′′(xe), which is equivalent to a piecewise quadratic polynomial approximation of Ae(xe). 

Igoe [22] studied a specific case of Carlson’s method and derived an approximation error estimate using 

the third and fourth derivatives of Ae(xe). Using a general piecewise polynomial approximation of Ae(xe), 

Ritzel and Gottlieb [23] derived a more general numerical approximation formula for converting Ae(xe) to 

F(xe) and stated that the proposed numerical approximation formula is as accurate as Igoe’s formula. In this 

paper, a piecewise linear approximation of 𝐴e
′′(xe) is used to convert Ae(xe) to F(xe). Moreover, a numerical 

formula for converting F(xe) to Ae(xe) is also provided using a piecewise linear approximation of F(xe). The 

accuracies of these numerical formulas and the inverse relations between the numerical conversions will be 

verified computationally. 

 To provide a succinct description of the main results in this paper, operator notations for the integral 

transforms between Ae(xe) and F(xe) are introduced. The Whitham integral transform from Ae(xe) to F(xe) is 

denoted by an operator F(), i.e., F = F(Ae). The inverse Abel transform from F(xe) to Ae(xe) is denoted by 

A(), i.e., Ae = A(F). Mathematical proofs will be provided to establish the necessary and sufficient 

boundary condition of Ae(xe) for the inverse relations A◦F(Ae) = Ae and F◦A(F) = F. In particular, if 𝐴e
′ (0)  

0 (e.g., the equivalent area of a blunt-tipped projectile), then A◦F(Ae)  Ae, i.e., A(F) is not mathematically 

an inverse transform of F = F(Ae). This contradicts the accepted conclusion in the sonic boom research 

literature that A◦F(Ae) = Ae is always true. 

 For a finite set of xe locations, 0 = x0 < x1 < … < xN, the proposed numerical conversion from Ae(xe) to 

F(xe) is denoted by an operator FN(), and FN(Ae) is the numerical approximation of F(xe) using a piecewise 

linear approximation of 𝐴e
′′(xe). Similarly, the proposed numerical conversion from F(xe) to Ae(xe) is denoted 

by AN(), and AN(F) is the numerical approximation of Ae(xe) using a piecewise linear approximation of 

F(xe). Here a piecewise linear approximation means that the approximation function is a linear function on 

each subinterval [xi-1, xi] and the subscript N indicates that the numerical conversions depend on the number 

of partition points. However, at the boundaries of the effective distance range, xe = 0 and xe = le, the 

piecewise linear approximation of 𝐴e
′′(xe) must be replaced by piecewise constant approximations so that 

FN(Ae) will be accurate even if 𝐴e
′ (0)  0 or 𝐴e

′ (le)  0. In theory, FN(Ae) is very different from Carlson’s 

numerical approximation of F(Ae) [21]. In application, FN(Ae) is nearly identical to Carlson’s numerical 

approximation of F(Ae) with an appropriate constant approximation of 𝐴e
′′(xe) on each subinterval [xi-1, xi]. 

 Instead of providing mathematical proofs for FN(Ae) → F(Ae) and AN(F) → A(F) as N goes to infinity, 

three numerical examples are provided to illustrate how the numerical approximation errors |F(Ae)−FN(Ae)|, 

|Ae−AN◦FN(Ae)|, |A(F)−AN(F)|, and |F−FN◦AN(F)| behave under different assumptions about the boundedness 

of |𝐴e
′′(xe)| and the value of 𝐴e

′ (0). Overall, the numerical approximations F(Ae)  FN(Ae), F   FN◦AN(F), A(F) 

 AN(F), and Ae  AN◦FN(Ae) are very accurate for N  100 if 𝐴e
′′(xe) is continuous on [0, le] and 𝐴e

′ (0) = 0. 

However, if 𝐴e
′ (0)  0, then F(Ae)  FN(Ae) and A(F)  AN(F) with F = F(Ae) are still accurate, but AN◦FN(Ae) 

converges to A◦F(Ae), which differs from Ae.  

 The paper is organized as follows. Mathematical proofs of A◦F(Ae) = Ae and F◦A(F) = F under the 

required boundary condition 𝐴e
′ (0) = 0 are presented in Sec. 2. Numerical formulas for conversions between 

Ae and F are given in Secs. 3 and 4. Section 5 includes the numerical results to verify the accuracies of the 

numerical conversions and their inverse relations. The last section has the conclusions. 

2 Verification of Inverse Relations 

Whitham [1] introduced the F-function in Eq. (1) that can be scaled to predict the pressure distribution 

around a supersonic projectile with weak shocks. Later, Whitham [2] extended the F-function theory for a 

thin symmetric wing and Walkden [24] extended Whitham’s result to a combination of an axisymmetric 

body and a wing at a small incident angle with respect to the flow direction.  
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𝐹(𝑥e) = 𝑭(𝐴e) =
1

2
∫

𝐴e
′′(𝑡)

√𝑥e − 𝑡
𝑑𝑡                                                                           (1)

𝑥e

0

 

In Eq. (1), the integral transform from Ae(xe) to F(xe) is denoted by the operator F(). When Ae(xe) represents 

an equivalent body of revolution for a supersonic configuration, Ae(xe) is defined by the Mach angle cut 

method {see Ref. [6]} for xe  le, where le is the effective length of the supersonic configuration. The values 

of F(xe) for xe > le characterize the turbulent wake and the wake is usually modeled as a part of the body 

using Ae(xe) = Ae(le) for xe > le {see the footnote on page 302 in Ref. [1]}. 

Equation (1) is Abel’s transform of the first kind for 𝐴e
′′(xe). See Ref. [25] for a summary and a 

comprehensive reference list about Abel’s transform of the first kind and its applications. The inverse Abel 

transform was used to derive the following inverse transform of Eq. (1). 

𝐴e(𝑥e) = 𝑨(𝐹) =  4∫  𝐹(𝑡) · √𝑥e − 𝑡 𝑑𝑡                                                                          (2)
𝑥e

0

 

The derivation of Eq. (2) from the inverse Abel transform of Eq. (1) was outlined in Chapter 7 of Ref. [13] 

and credited to Jones [26]. One implicit assumption in the derivation is that 𝐴e
′ (0) = 0. This was not 

mentioned in Ref. [13] but is required for the validity of eq. (2) in Chapter 7 of Ref. [13]. George and 

Seebass [3] developed the sonic boom minimization theory using Eq. (2) as the inverse transform of Eq. 

(1) for xe  le. The validity of the inverse relations between Eqs. (1) and (2) is based on Abel’s work in 1826 

{see the first reference in Ref. [25]}. In general, Abel’s transform of the first kind and its inverse transform 

require pairs of functions belonging to a variety of functional spaces {see Ref. [25]}. In this section, the 

inverse relations between Eqs. (1) and (2) are rigorously proved using some mathematical properties of 

Ae(xe) and F(xe) that are relevant to applications of the Whitham theory for sonic boom minimization. 

Theorem 1 (Inversion from Whitham’s F-function to Equivalent Area). Assume that (i) Ae(0) = 0, (ii) 

𝐴e
′ (xe) is a continuous function on the interval [0, le], (iii) 𝐴e

′′(xe) exists everywhere except at a finite number 

of locations, (iv) ∫ |𝐴e
′′(𝑡)|/√𝑥e − 𝑡 𝑑𝑡

𝑥e

0
 is bounded for 0 < xe  le, and (v) for any  > 0, |𝐴e

′′(xe)| is bounded 

by a constant for    xe  le. Then  

(1.1)  F(Ae) is continuous and bounded for 0 < xe  le. 

(1.2)  A◦F(Ae) = Ae(xe) − 𝐴e
′ (0)xe for xe  le. 

(1.3)  A◦F(Ae) = Ae(xe) for xe  le if and only if 𝐴e
′ (0) = 0. 

Proof. First, the boundedness of F(Ae) for xe  le follows from Assumption (iv) of Theorem 1. For 

convenience, we also use F(x) and Ae(x) to represent Whitham’s F-function and equivalent area if the 

physical implication of the variable is not important. Assumption (iv) also implies that 𝐴e
′′(x) is Lebesgue 

integrable [27] {see also page 24 in Ref. [28]} on [0, le] because 

∫ |𝐴e
′′(𝑡)|𝑑𝑡

𝑙e

0
  √𝑙e∫ |𝐴e

′′(𝑡)|/√𝑙e − 𝑡 𝑑𝑡
𝑙e

0
 <    

The continuity of F(Ae) at xe > 0 can be proved by splitting ∫ 𝐴e
′′(𝑡)/√𝑥 − 𝑡 𝑑𝑡

𝑥

0
 into the sum of 

∫ 𝐴e
′′(𝑡)/√𝑥 − 𝑡 𝑑𝑡



0
 and ∫ 𝐴e

′′(𝑡)/√𝑥 − 𝑡 𝑑𝑡
𝑥


 with 0 <  < xe. The continuity of ∫ 𝐴e

′′(𝑡)/√𝑥 − 𝑡 𝑑𝑡


0
 at x 

= xe follows from ∫ |𝐴e
′′(𝑡)|𝑑𝑡



0
 <  and the uniform continuity of 1/√𝑥 − 𝑡 for 0  t   and (+xe)/2  x 

 +xe. The continuity of ∫ 𝐴e
′′(𝑡)/√𝑥 − 𝑡 𝑑𝑡

𝑥


 at x = xe follows from the following error estimate. For 

convenience, assume x > xe and |𝐴e
′′(xe)| is bounded by  for xe   [see Assumption (v)]. Then, as 𝑥→𝑥e, 

we have 
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             |∫
𝐴e

′′(𝑡)

√𝑥 − 𝑡
𝑑𝑡

𝑥



− ∫
𝐴e

′′(𝑡)

√𝑥e − 𝑡
𝑑𝑡

𝑥e



| = |∫
𝐴e

′′(𝑡)

√𝑥 − 𝑡
𝑑𝑡

𝑥

𝑥e

+ ∫ 𝐴e
′′(𝑡)(

1

√𝑥 − 𝑡
−

1

√𝑥e − 𝑡
) 𝑑𝑡

𝑥e



| 

                                                                              ∫
|𝐴e

′′(𝑡)|

√𝑥 − 𝑡
𝑑𝑡

𝑥

𝑥e

+ ∫ |𝐴e
′′(𝑡)|(

1

√𝑥e − 𝑡
−

1

√𝑥 − 𝑡
) 𝑑𝑡

𝑥e



  

                                                                                ∫
1

√𝑥 − 𝑡
𝑑𝑡

𝑥

𝑥e

+ ∫ (
1

√𝑥e − 𝑡
−

1

√𝑥 − 𝑡
) 𝑑𝑡

𝑥e



 

                                                                              = 2√𝑥 − 𝑥e +  2(√𝑥e −  − √𝑥 −  + √𝑥 − 𝑥e) → 0  

This proves that the right limit of ∫ 𝐴e
′′(𝑡)/√𝑥 − 𝑡 𝑑𝑡

𝑥


 at x = xe is ∫ 𝐴e

′′(𝑡)/√𝑥e − 𝑡 𝑑𝑡
𝑥e


. A similar error 

estimate can be used to prove that the left limit of ∫ 𝐴e
′′(𝑡)/√𝑥 − 𝑡 𝑑𝑡

𝑥


 at x = xe is also 

∫ 𝐴e
′′(𝑡)/√𝑥e − 𝑡 𝑑𝑡

𝑥e


. So, ∫ 𝐴e

′′(𝑡)/√𝑥 − 𝑡 𝑑𝑡
𝑥


 is continuous at x = xe. Because ∫ 𝐴e

′′(𝑡)/√𝑥 − 𝑡 𝑑𝑡
𝑥

0
 is the 

sum of two continuous functions at x = xe, ∫ 𝐴e
′′(𝑡)/√𝑥 − 𝑡 𝑑𝑡

𝑥

0
 is also continuous at x = xe. This completes 

the proof of the continuity of F(Ae) for 0 < xe  le. So, F(Ae) is continuous and bounded for 0 < xe  le, which 

is (1.1) of Theorem 1. 

Because 𝐴e
′ (x) is a continuous function on [0, le] [see Assumption (ii)], 𝐴e

′′(x) exists everywhere except 

at a finite number of locations [see Assumption (iii)], and 𝐴e
′′(x) is Lebesgue integrable (proved above), by 

the Fundamental Theorem of Calculus [29] {see also page 148 in Ref. [28]},  

  ∫ 𝐴e
′′(𝑢) 𝑑𝑢

𝑥e

0

= 𝐴e
′ (𝑥e) − 𝐴e

′ (0)       for any  0  𝑥e    𝑙e                                          (3) 

Now, we can rewrite A◦F(Ae) in terms of 𝐴e
′′. Assume that F = F(Ae) is defined by Eq. (1). Then the following 

equalities hold for 0  xe  le. 

  4∫  𝐹(𝑡) · √𝑥e − 𝑡 𝑑𝑡
𝑥e

0

=  4∫  [ 
1

2
∫

𝐴e
′′(𝑢)

√𝑡 − 𝑢
𝑑𝑢

𝑡

0

· √𝑥e − 𝑡] 𝑑𝑡
𝑥e

0

     [use Eq. (1)] 

                                                

=  
2


∫  [ ∫

√𝑥e − 𝑡

√𝑡 − 𝑢
𝑑𝑡

𝑥e

𝑢

·  𝐴e
′′(𝑢)]  𝑑𝑢

𝑥e

0

     (change the order of integration) 

                                                

=  
2


∫  [ 



2
· (𝑥e − 𝑢) · 𝐴e

′′(𝑢)] 𝑑𝑢
𝑥e

0

     [use substitution 𝑡 = 𝑢 + sin2()(𝑥e − 𝑢)] 

                                                

= (𝑥e − 𝑢) · ∫ 𝐴e
′′(𝑡) 𝑑𝑡

𝑢

0

|
𝑢=0

𝑢=𝑥e

+ ∫ (∫ 𝐴e
′′(𝑡) 𝑑𝑡

𝑢

0

)  𝑑𝑢
𝑥e

0

 (use integration by parts) 

                              = ∫ (∫ 𝐴e
′′(𝑡) 𝑑𝑡

𝑢

0

)  𝑑𝑢
𝑥e

0

= ∫ (𝐴e
′ (𝑢) − 𝐴e

′ (0))𝑑𝑢
𝑥e

0

  [use Eq. (3)] 

                              = 𝐴e(𝑥e) − 𝐴e(0) − 𝐴e
′ (0)𝑥e = 𝐴e(𝑥e) − 𝐴e

′ (0)𝑥e  [use Assumption (i)] 
 

In the above derivation, the change of integration order is based on Fubini’s theorem [30] {see also page 

164 in Ref. [28]}, which ensures that the integration order can be exchanged if the integrand is Lebesgue 

integrable. In particular, the integration order can be exchanged if ∫ |𝐴e
′′(𝑡)|/√𝑥e − 𝑡 𝑑𝑡

𝑥e

0
 is bounded for 

0 < xe  le. The next equality is the evaluation of the inner integral using integration by substitution. The 

Lebesgue integrability of 𝐴e
′′(x) on [0, le] and Eq. (3) imply that ∫ 𝐴e

′′(𝑡)𝑑𝑡
𝑥

0
 is absolutely continuous for xe 

 le and its derivative is 𝐴e
′′(xe) except at finitely many locations. The conditions for validity of integration 
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by parts for less smooth functions in Ref. [31,32] are satisfied. So, the equality for integration by parts in 

the above derivation holds. The last two lines of equalities are based on Eq. (3) and Assumption (i). So, 

(1.2) of Theorem 1 holds. 

Finally, (1.3) of Theorem 1 follows easily from (1.2) of Theorem 1. If 𝐴e
′ (0) = 0, then A◦F(Ae) = Ae(xe) 

for xe  le follows from (1.2) of Theorem 1. On the other hand, if A◦F(Ae) = Ae(xe) for xe  le, by (1.2) of 

Theorem 1, Ae(xe) − 𝐴e
′ (0)xe = Ae(xe) for xe  le, which implies 𝐴e

′ (0) = 0. This completes the proof of (1.3) 

of Theorem 1. 

Remarks. 1) The assumptions in Theorem 1 are given in such a way that they are satisfied by the equivalent 

areas converted from the F-functions that are continuous for 0 < xe  le with a potential jump discontinuity 

at xe = 0. If |𝐴e
′′(xe)| is bounded for xe  le, then F(Ae) is continuous on [0, le] and Assumptions (iv) and (v) 

are satisfied. In derivation of Eq. (2) from the inverse Abel transform of Eq. (1), Jones assumed the 

continuity of the first derivative of F(Ae) {see page 434 of Ref. [26]} for Ae due to lift and used the property 

𝐴e
′ (0) = 0 for Ae due to volume {see page 435 of Ref. [26]}. In comparison, the F-functions for sonic boom 

minimization in Ref. [3] have a jump discontinuity between 0 and le, in addition to a jump discontinuity at 

xe = 0 when the corresponding ground signatures have flat-top shapes. It is still an open problem what 

mathematical properties of Ae(xe) are necessary and sufficient to ensure A◦F(Ae) = Ae(xe) for xe  le. 

2) Theorem 1 reveals the required boundary condition 𝐴e
′ (0) = 0 for Eq. (2) to be the inverse transform of 

Eq. (1) for xe  le. In mathematics, the claim that Eq. (2) is the inverse transform of Eq. (1) is false if 𝐴e
′ (0) 

 0, which might be satisfied by a blunt-tipped projectile. If we further assume Ae(xe) = Ae(le) for xe > le in 

Eq. (1), then one can verify that A◦F(Ae) = Ae(xe) for all xe if and only if 𝐴e
′ (0) = 𝐴e

′ (le) = 0. Note that 𝐴e
′ (le) 

= 0 is the necessary and sufficient condition for the continuity of 𝐴e
′ (xe) as a function for all xe under the 

assumptions of Theorem 1. In general, if 𝐴e
′ (xe) has a jump discontinuity at a location between 0 and le, 

then Eq. (3) must account for the jump discontinuity in the right hand side and the inverse relation A◦F(Ae) 

= Ae(xe) becomes invalid after the location of discontinuity. 

3) In general, a jump discontinuity of F(x) at x = 0 is due to a positive limit of 𝐴e
′′(x)x1/2 as x approaches 

zero. For example, if Ae(x) is the sum of x3/2 and a function with a continuous second derivative near x = 

0, then 𝐴e
′′(x)  3x−1/2/4 is unbounded near x = 0 and F(x) = F(Ae) has a jump discontinuity at x = 0 with 

the height of the jump being (3)/8. Any F-function for a flat-top pressure signature has a jump 

discontinuity at x = 0 [3,4]. The unboundedness of 𝐴e
′′(x) near x = 0 leads to slow convergence of any 

numerical formula to compute F(Ae). 

4) The assumption for boundedness of ∫ |𝐴e
′′(𝑡)|/√𝑥e − 𝑡 𝑑𝑡

𝑥e

0
 for xe > 0 is important for applications. For 

example, if Ae(x) = x5/4 near x = 0, then 𝐴e
′′(x) = 5x−3/4/16. So, for x close to 0, we have 

𝐹(𝑥) =
1

 2
∫

𝐴e
′′(𝑡)

√𝑥 − 𝑡
𝑑𝑡 = 

𝑥

0

 ∫
5

32𝑡
3
4√𝑥 − 𝑡

𝑑𝑡   
1

 𝑥
1
4

∫
5

32𝑡
1
2√𝑥 − 𝑡

𝑑𝑡 =  
5

32


𝑥

0

𝑥−
1
4 

𝑥

0

 

Because F(x) is unbounded near x = 0, it cannot be used to predict the CFD pressure distribution around a 

supersonic configuration. The Whitham theory is invalid for such an equivalent area. 

Theorem 2 (Inversion from Equivalent Area to Whitham’s F-function). Assume that F(xe) is 

continuous and bounded for 0 < xe  le, F(0) = 0, and Ae = A(F) satisfies Assumptions (iii)-(v) in Theorem 

1. Then F◦A(F) = F for xe  le, i.e., Eq. (1) is also the inverse transform of Eq. (2) for xe  le. 

Proof. Because F(x) is continuous and bounded for 0 < xe  le, we can differentiate Eq. (2) with respect to 

xe using the Leibniz integral rule [33] {see also Ref. [34]}. 
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𝐴e
′ (𝑥e) = 4 · 𝐹(𝑡) · √𝑥e − 𝑡 |

𝑡=𝑥e
+ 2∫  

𝐹(𝑡)

√𝑥e − 𝑡
 𝑑𝑡

𝑥e

0

               = 2∫  
𝐹(𝑡)

√𝑥e − 𝑡
 𝑑𝑡

𝑥e

0

= 2∫  
𝐹(𝑥e − 𝑢)

√𝑢
 𝑑𝑢

𝑥e

0

   

                                                 (4) 

Because F(xe) is continuous and bounded for 0 < xe  le, Eq. (4) implies that 𝐴e
′ (xe) is continuous for xe  le 

with 𝐴e
′ (0) = 0. Equation (2) defines Ae(0) = 0. Because all the assumptions in Theorem 1 are satisfied and 

𝐴e
′ (0) = 0, we obtain A◦F(Ae) = Ae(xe) for xe  le [see (1.3) of Theorem 1]. Moreover, F(Ae) defined by Eq. 

(1) is bounded and continuous for 0 < xe  le [see (1.1) of Theorem 1]. Let G = F(Ae) − F. Then A(G) = 

A◦F(Ae) − A(F) = Ae − Ae = 0 for xe  le. Here the second equality follows from A◦F(Ae) = Ae and Ae = A(F) 

for xe  le. As a result, we have 

𝑨(𝐺) = 4∫ 𝐺(𝑡) · √𝑥e − 𝑡 𝑑𝑡 = 0    for 𝑥e  𝑙e                                                           (5)
𝑥e

0

 

Because G is the difference of two bounded continuous functions F(Ae) and F for 0 < xe  le, G is bounded 

and continuous for 0 < xe  le. By differentiating Eq. (5) with respect to xe using the Leibniz integral rule 

again, one derives  

4 · 𝐺(𝑡) · √𝑥e − 𝑡 |
𝑡=𝑥e

+ 2∫  
𝐺(𝑡)

√𝑥e − 𝑡
 𝑑𝑡 = 2∫  

𝐺(𝑡)

√𝑥e − 𝑡
 𝑑𝑡 = 0   for 0 < 𝑥e  𝑙e           (6)

𝑥e

0

𝑥e

0

 

Let 𝑔(x) = ∫ ∫  𝐺(𝑢) 𝑑𝑢
𝑡

0
𝑑𝑡

𝑥

0
. Because G is a bounded continuous function for xe > 0, 𝑔′(x) = ∫ 𝐺(𝑢)𝑑𝑡

𝑥

0
 is 

a continuous function. Moreover, 𝑔′′(x)  = G(x) is a bounded continuous function for x > 0. Then Eq. (6) 

implies 

𝑭(𝑔) =
1

2
∫  

𝑔′′(𝑡)

√𝑥e − 𝑡
 𝑑𝑡 =  

1

2
∫  

𝐺(𝑡)

√𝑥e − 𝑡
 𝑑𝑡 = 0

𝑥e

0

𝑥e

0

  for 0 < 𝑥e  𝑙e                      (7) 

By the definition of 𝑔(x), 𝑔(0) = 0. So, 𝑔(x) satisfies all the assumptions in Theorem 1. It follows from (1.2) 

of Theorem 1 that 

A◦F(𝑔) = 𝑔(xe) − 𝑔′(0)𝑥e       for  𝑥e  𝑙e                                                   (8) 

By Eq. (7), the left hand side of Eq. (8) is zero. So, Eq. (8) yields 𝑔(xe) = 𝑔′(0)xe for xe  le, which implies 

G(xe) = 𝑔′′(xe) = 0, i.e., F(Ae) = F(xe), for 0 < xe  le. This completes the proof of Theorem 2. 

Remarks. 1) In mathematics, A◦F being an identity operator does not necessarily imply that F◦A is also an 

identity operator. The proof of F◦A(F) = F requires the use of Theorem 1. Theorems 1 and 2 ensure that  

Eqs. (1) and (2) are inverse transforms of each other if 𝐴e
′ (0) = 0. For the equivalent areas and F-functions 

used in the GSD sonic boom minimization theory [3,4], one could analytically verify that the equivalent 

area without the x1/2 term and the corresponding F-function are inverse transforms of each other using Eqs. 

(1) and (2). So, the GSD sonic boom minimization theory does not depend on the general inverse relations 

between Eqs. (1) and (2). The boundary condition 𝐴e
′ (0) = 0 is also satisfied in the extensions of the GSD 

F-functions for sonic boom minimization [35-38] because Ae(xe) is defined using Eq. (2) [see the proof after 

Eq. (4)] with a continuous F-function on [0, le].  

2) Unlike the direct verification method for A◦F(Ae) = Ae in Theorem 1, the above proof of F◦A(F) = F is 

highly non-intuitive. The reason is that an explicit form of 𝐴e
′′(xe) requires 𝐹′(xe), which might not exist. If 

F(xe) has a continuous first derivative, which is an assumption made by Jones on page 434 of Ref. [26] and 
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means empirically that the longitudinal pressure distribution has no shock, then one could use the Leibniz 

integral rule to get an expression for 𝐴e
′′(xe) by differentiating Eq. (4) with respect to xe. 

𝐴e
′′(𝑥e) =

𝐹(0)

√𝑥e

+ 2∫  
𝐹′(𝑥e − 𝑢)

√𝑢
 𝑑𝑢                                    

𝑥e

0

  

     = 2∫  
𝐹′(𝑥e − 𝑢)

√𝑢
 𝑑𝑢

𝑥e

0

=  2∫  
𝐹′(𝑢)

√𝑥e − 𝑢
 𝑑𝑢

𝑥e

0

   for 𝑥e > 0            (9) 

Then one could substitute 𝐴e
′′ in Eq. (1) with the right-hand side of Eq. (9) to verify that the right hand side 

of Eq. (1) equals F(xe).  

                         
1

2
∫  

𝐴e
′′(𝑡)

√𝑥e − 𝑡
 𝑑𝑡

𝑥e

0

   

                  =  
1

2
∫  (2∫  

𝐹′(𝑢)

√𝑡 − 𝑢
 𝑑𝑢

𝑡

0

)
1

√𝑥e − 𝑡
 𝑑𝑡      [use Eq. (9)]     

𝑥e

0

 

                  =  
1


∫  [ ∫

1

√𝑥e − 𝑡 √𝑡 − 𝑢
𝑑𝑡

𝑥e

𝑢

] · 𝐹′(𝑢) 𝑑𝑢
𝑥e

0

     (change the order of integration) 

                   =  
1


∫   · 𝐹′(𝑢) 𝑑𝑢

𝑥e

0

     (evaluate the inner integral using integration by substitution) 

                   =  𝐹(𝑥e) − 𝐹(0) =  𝐹(𝑥e) 

3 Numerical Conversion from Equivalent Area to F-function 

 For numerical conversion from Ae(xe) to F(xe), let 0 = x0 < x1 < … < xn = le < … < xN be a partition of 

the interval [0, xN] with N  n. The desired property of the partition is that 𝐴e
′′(xe) can be accurately 

approximated by a linear function on xi-1 < xe < xi (1  i  n) and F(xe)  0 for xe > xN. Then, F(xk) for 0 < k 

 N can be computed using the following approximation formula. 

𝐹(𝑥𝑘) =
1

2
∫

𝐴e
′′(𝑡)

√𝑥𝑘 − 𝑡
𝑑𝑡

𝑥𝑘

0

=
1

2
∑ ∫

𝐴e
′′(𝑡)

√𝑥𝑘 − 𝑡
𝑑𝑡

𝑥𝑖

𝑥𝑖−1

𝑘

𝑖=1

 
1

2
∑ ∫

(𝑡 − 𝑥𝑖)
𝐴𝑖

′′

𝑥𝑖
+ 𝐴𝑖

′′

√𝑥𝑘 − 𝑡
𝑑𝑡

𝑥𝑖

𝑥𝑖−1

       (10)

𝑘

𝑖=1

 

Here 𝐴𝑖
′′  𝐴e

′′(xi), xi = xi − xi-1, 𝐴𝑖
′′ = 𝐴𝑖

′′ − 𝐴𝑖−1
′′  for i  n, and 𝐴𝑖

′′ = 0 for i > n. With these choices of 

parameters, the piecewise linear approximation is identical to zero on [xn, xN], because 𝐴e
′′(xe) = 0 on [xn, 

xN]. Note that the numerical error in the computed value of F(xk) is caused by the numerical errors in the 

piecewise linear approximation of 𝐴e
′′(xe). The integrals in the right-hand size of Eq. (10) can be computed 

exactly to get the following discrete numerical conversion from Ae(xe) to F(xe). 

𝐹(𝑥𝑘)  
1

3
∑

𝐴𝑖
′′

𝑥𝑖
 ((𝑥𝑘 − 𝑥𝑖)

3
2 − (𝑥𝑘 − 𝑥𝑖−1)

3
2)                                     

𝑘

𝑖=1

                 −
1


∑ ((𝑥𝑘 − 𝑥𝑖)

𝐴𝑖
′′

𝑥𝑖
+ 𝐴𝑖

′′)  ((𝑥𝑘 − 𝑥𝑖)
1
2 − (𝑥𝑘 − 𝑥𝑖−1)

1
2) 

𝑘

𝑖=1

                          (11) 

In application, the exact value of 𝐴e
′′(xi) might not be available. The following numerical approximation of 

𝐴e
′′(xi) is used to define 𝐴𝑖

′′. 
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𝐴𝑖
′′ =  2

(
𝐴e(𝑥𝑖+1) − 𝐴e(𝑥𝑖)

𝑥𝑖+1 − 𝑥𝑖
) − (

𝐴e(𝑥𝑖) − 𝐴e(𝑥𝑖−1)
𝑥𝑖 − 𝑥𝑖−1

)

𝑥𝑖+1 − 𝑥𝑖−1
  for 1  𝑖  𝑛 − 1     

  𝐴0
′′ =  2

𝐴e(𝑥1)

(𝑥1)2
  if 𝐴e

′ (0) = 0  or   𝐴0
′′ = 𝐴1

′′  if 𝐴e
′ (0)   0                             

𝐴𝑛
′′ =  2

𝐴e(𝑥𝑛−1)−𝐴e(𝑙e)

(𝑥𝑛−1 − 𝑙e)2
  if 𝐴e

′ (𝑙e) = 0  or   𝐴𝑛
′′ = 𝐴𝑛−1

′′   if 𝐴e
′ (𝑙e)   0

𝐴𝑖
′′ = 0  for 𝑖 > 𝑛                                                                                                  

       

                          (12) 

In Eq. (12), only the values of Ae(xe) on [0, le] are used to define 𝐴𝑖
′′ for the numerical conversion from 

Ae(xe) to F(xe). The special value of 𝐴0
′′ is derived from the Taylor expansion Ae(x1)  𝐴e

′′(0)(x1)2/2 using 

Ae(0) = 𝐴e
′ (0) = 0. The expression for 𝐴𝑛

′′ is obtained similarly using 𝐴e
′ (le) = 0. If 𝐴e

′ (0) = 0 or 𝐴e
′ (le) = 0 is 

violated, then a constant approximation of 𝐴e
′′(xe) is used on the relevant subinterval. The value of the 

numerical approximation of F(xe) between the partition points can also be computed exactly. 

𝐹(𝑥e)  
1


𝐴𝑘

′′(𝑥e − 𝑥𝑘−1)
1
2 −

1

3

𝐴𝑘

′′

𝑥𝑘
(𝑥e − 𝑥𝑘−1)

3
2 +

1

3
∑

𝐴𝑖
′′

𝑥𝑖
 ((𝑥e − 𝑥𝑖)

3
2 − (𝑥e − 𝑥𝑖−1)

3
2)

𝑘−1

𝑖=1

                −
1


∑ ((𝑥e − 𝑥𝑖)

𝐴𝑖
′′

𝑥𝑖
+ 𝐴𝑖

′′)  ((𝑥e − 𝑥𝑖)
1
2 − (𝑥e − 𝑥𝑖−1)

1
2)              for 𝑥𝑘−1 < 𝑥e  𝑥𝑘

𝑘−1

𝑖=1

     (13) 

 The numerical conversion from Ae to F defined by right-hand side of Eq. (13) is denoted by FN(Ae). In 

theory, Eq. (13) is very different from the numerical conversion in Refs. [21,22], where the numerical 

approximation of F(xe) is a linear combination of √𝑥e − 𝑥𝑖 with xi  xe {see eq. (14) in Ref. [22]}. If one 

replaces the piecewise linear approximation of 𝐴e
′′(xe) by a piecewise constant approximation of 𝐴e

′′(xe), 

then the corresponding numerical conversion from Ae(xe) to F(xe) is what was proposed by Carlson [21]. 

The choice of the constant for a segment [xi−1, xi] was not explicitly given in Ref. [21]. In Ref. [22], the 

central divided difference 𝐴𝑖−1
′′  is used to approximate 𝐴e

′′(xe) on [xi−1, xi]. Equation (13) with 𝐴𝑖
′′ = 0 for 

all i becomes Carlson’s formula for computing Whitham’s F-function if 𝐴𝑖
′′ is used to approximate 𝐴e

′′(xe) 

on [xi−1, xi]. The solution generated by Carlson’s formula using (𝐴𝑖−1
′′ +𝐴𝑖

′′)/2 as the constant approximation 

of 𝐴e
′′(xe) on the subinterval [xi-1, xi] will be called Carlson’s average approximation of F(Ae). In application, 

Eq. (13) and Carlson’s average approximation of F(Ae) generate nearly identical solutions. 
 Note that Jung, Starkey, and Argrow [39] preferred Lighthill’s F-function to Whitham’s F-function for 

predicting off-body pressure distributions of supersonic configurations. One reason is that a Riemann sum 

formula for numerical approximation of Whitham’s F-function is sensitive to the grid density {see the 

paragraph after eq. (23) in Ref. [39]}. In theory, the Riemann sum formula should not be used as a numerical 

approximation of an improper integral, which defines Whitham’s F-function. Equation (13) is not sensitive 

to the grid density as long as the maximum value of xi is small enough (see Sec. 5). One can prove that 

the maximum approximation error in Eq. (13) approaches zero as the maximum value of xi goes to zero 

if 𝐴e
′′(xe) is continuous on [0, le]. 

4 Numerical Conversion from F-function to Equivalent Area 

 Let 0 = x0 < x1 < … < xn = le < … < xN be a partition of the interval [0, xN] such that the values of F(xi) 

for 1  i  N are available. Ideally, F(xe) can be accurately approximated by a linear function for each 

subinterval xi-1 < xe < xi (1  i  N) and F(xe)  0 for xe > xN. Let Ae(xe) = A(F) be the equivalent area for 

F(xe). Then, for 0 < k  N, 
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𝐴e(𝑥𝑘) = 4∫ 𝐹(𝑡) · √𝑥𝑘 − 𝑡 𝑑𝑡
𝑥𝑘

0

=  4 ∑ ∫ 𝐹(𝑡) · √𝑥𝑘 − 𝑡 𝑑𝑡
𝑥𝑖

𝑥𝑖−1

𝑘

𝑖=1

 

                                              4 ∑ ∫ {(𝑡 − 𝑥𝑖)
𝐹𝑖

𝑥𝑖
+ 𝐹𝑖} · √𝑥𝑘 − 𝑡 𝑑𝑡                                                

 

𝑥𝑖

𝑥𝑖−1

𝑘

𝑖=1

 

Here Fi = F(xi), Fi = Fi − Fi-1, and xi = xi − xi-1. The integrals in the above approximation formula can be 

computed exactly to obtain the following discrete numerical conversion from F(xe) to Ae(xe). 

𝐴e(𝑥𝑘)  ∑
8

5

𝐹𝑖

𝑥𝑖
 ((𝑥𝑘 − 𝑥𝑖)

5
2 − (𝑥𝑘 − 𝑥𝑖−1)

5
2)                                            

𝑘

𝑖=1

           − ∑
8

3
((𝑥𝑘 − 𝑥𝑖)

𝐹𝑖

𝑥𝑖
+ 𝐹𝑖)  ((𝑥𝑘 − 𝑥𝑖)

3
2 − (𝑥𝑘 − 𝑥𝑖−1)

3
2)

𝑘

𝑖=1

for  1  𝑘  𝑁       (14) 

The value for the numerical approximation of Ae(xe) between the partition points can also be computed 

exactly. 

𝐴e(𝑥e)  
8

3
𝐹𝑘(𝑥e − 𝑥𝑘−1)

3
2 −

8

5

𝐹𝑘

𝑥𝑘
(𝑥e − 𝑥𝑘−1)

5
2 + ∑

8

5

𝐹𝑖

𝑥𝑖
 ((𝑥e − 𝑥𝑖)

5
2 − (𝑥e − 𝑥𝑖−1)

5
2)

𝑘−1

𝑖=1

            − ∑
8

3
((𝑥e − 𝑥𝑖)

𝐹𝑖

𝑥𝑖
+ 𝐹𝑖)  ((𝑥e − 𝑥𝑖)

3
2 − (𝑥e − 𝑥𝑖−1)

3
2)           for 𝑥𝑘−1 < 𝑥e  𝑥𝑘

𝑘−1

𝑖=1

      (15) 

 The numerical conversion from F to Ae defined by the right-hand side of Eq. (15) is denoted by AN(F). 

One can prove mathematically that if F(xe) is continuous on [0, le], then the maximum value of |A(F)−AN(F)| 

approaches zero as the maximum value of xi goes to zero. The inverse relations A◦F(Ae) = Ae and F◦A(F) 

= F in Theorems 1 and 2 mean that, if 𝐴e
′′(xe) and F(xe) are continuous on [0, le] with 𝐴e

′ (0) = 0, then the 

maximum values of |Ae−AN◦FN(Ae)| and |F−FN◦AN(F)| for xe  le approach zero as the maximum value of xi 

goes to zero. 

5 Accuracy of Numerical Conversions 

The purpose of this section is to study the numerical approximation errors F(Ae)−FN(Ae), A(F)−AN(F), 

Ae−AN◦FN(Ae), and F−FN◦AN(F) using three examples. The numerical evaluations of FN(Ae) and AN(F) are 

performed for the same set of discrete points 0 = x0 < x1 < … < xn = le < … < xN. When possible, the 

following five constraints are used to select xi: (i) xn+1 = le + (le − xn-1), (ii) xN = 1.5le, (iii) N is the closest 

integer to 4n/3, (iv) x0 < …< xn are as equally spaced as possible, and (v) xn+1 < …< xN are equally spaced. 

The choices of xn+1 = le + (le − xn-1), xN = 1.5le, and N  4n/3 are empirical. The equal spacing constraints 

strive for approximately equal accuracies of piecewise linear approximations of 𝐴e
′′(xe) and F(xe) over the 

interval [x0, xN]. The first example in Sec. 5.1 is an equivalent area for a body of revolution. This example 

represents a difficult case for approximating 𝐴e
′′ by a piecewise linear function because 𝐴e

′′(xe) is unbounded 

near xe = 0. But FN(Ae) converges to F(Ae) pointwise as N goes to infinity. The second example in Sec. 5.2 

is an equivalent area target for low-boom inverse design optimization. Because 𝐴e
′′ is a continuous function 

on [0, le] and 𝐴e
′ (0) = 0, for F = F(Ae), the numerical approximations F  FN(Ae), Ae  AN(F), Ae  AN◦FN(Ae), 

and F  FN◦AN(F) become very accurate with n = 50. To illustrate the importance of the boundary condition 

𝐴e
′ (0) = 0, Ae is modified slightly to satisfy 𝐴e

′ (0)  0. Then the numerical approximation F(Ae)  FN(Ae) is 
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still accurate, but the maximum value of |Ae−AN◦FN(Ae)| is about 5.7 even if n = 4000. The last example in 

Sec. 5.3 is a reversed equivalent area of a low-boom supersonic transport. It is used to show that the inverse 

relations between FN and AN [i.e., Ae  AN◦FN(Ae) and F  FN◦AN(F)] are very accurate for discrete forms of 

F and Ae from an application in inverse design of low-boom supersonic aircraft. 

5.1 Body of Revolution with Unbounded 𝑨𝐞
′′ 

 Let Ae(x) = x3/2(x−100)2/60000 for x  100 ft and Ae(x) = Ae(le) = 0 for x > le = 100 ft (see Fig. 1a). Then 

Ae(0) = 𝐴e
′ (0) = 𝐴e

′ (le) = 0 and Ae(x) can be considered as the equivalent area of a body of revolution with a 

length of 100 ft. Because 𝐴e
′′(x) is unbounded near x = 0, the piecewise linear approximation of 𝐴e

′′(x) has 

significant errors near x = 0. In this case, for F = F(Ae), one can verify analytically that the right limit of 

F(x) is 1/16 as x goes to zero because Ae(x)  x3/2/6 near x = 0 and F(x3/2/6) = 1/16 = 0.0625 for x > 0. So, 

F(x) has a jump discontinuity at x = 0. 

 The equally spaced points xi = 100i/n for 0  i  n are used to define AN and FN. Recall that N  4n/3 is 

determined by n. The value of n indicates the partition resolution for the interval [0, le] where the 

approximate values of 𝐴e
′′(xi) are used for a piecewise linear approximation of 𝐴e

′′(x). So, the numerical 

results are labeled by the value of n instead of N  4n/3. 

 
 

Fig. 1 Accuracy of numerical conversions between Ae and F for a body of revolution. 

 

 

 Figure 1a shows that the maximum error of |Ae−AN◦FN(Ae)| is significant when n = 100 (dotted black 

curve), but it is nearly zero when n = 4000 (red curve). Because the analytical formula of F(Ae) is not 

available, fN = FN(Ae) with n = 4000 (green curve in Fig. 1b) is used to verify the accuracy of FN◦AN as the 

identity transform. Figure 1b shows that the inversion error |fN−FN◦AN(fN)| for n = 4000 (dotted black curve) 

appears to be zero visually, but the maximum inversion error is 0.0113 due to a minor misalignment of the 

approximately vertical segments near xe = 0. The values of FN(Ae) are almost identical for xe > 1 when n  

100. However, near xe = 0, the values of FN(Ae) change as n increases (see the zoomed view in Fig. 1b). The 

initial peak of FN(Ae) moves toward the right limit of F(xe) at xe = 0 as n increases. This example shows that 

Eq. (13) might be inaccurate near xe = 0 if 𝐴e
′′(xe) is unbounded near xe = 0. Mathematically, it means that 

FN(Ae) converges to F(Ae) for each fixed xe as N goes to infinity, but the convergence is not uniform. Because 

FN(Ae) is used to predict the off-body pressure for sonic boom analysis, FN(Ae) for n = 500 (dotted red curve 

in Fig. 1b) is considered to be accurate enough if the grid spacing for CFD analysis in the longitudinal 

direction is more than 0.2% of le. 
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5.2 Equivalent Area Target for Low-Boom Inverse Design 

 The second Ae(x) is a typical equivalent area target for low-boom inverse design of the reversed 

equivalent area of a supersonic transport [16,17]. For 0 ≤ t ≤ 1, the corresponding point (x, Ae(x)) on a 

Bezier curve is defined as follows. 

𝑥(𝑡) = ∑ 𝑥𝑐,𝑗

7

𝑗=0


7!

𝑗! (7 − 𝑗)!
 𝑡𝑗 (1 − 𝑡)7−𝑗  

  𝐴e(𝑥(𝑡)) = ∑ 𝑦𝑐,𝑗

7

𝑗=0


7!

𝑗! (7 − 𝑗)!
 𝑡𝑗 (1 − 𝑡)7−𝑗 

Here xc,0 = yc,0 = 0, xc,1 = 59.26, yc,1 = 0, xc,2 = 139.7, yc,2 = 8.503, xc,3 = 152.8, yc,3 = 247.1, xc,4 = 171.2, yc,4 

= 175.9, xc,5 = 187.8, yc,5 = 221.1, xc,6 = 197.3, yc,6 = 225, xc,7 = 250, and yc,7 = 225.  

 The locations xi = x(i/n) for 0  i  n are used to define AN and FN, where x(i/n) is computed using the 

parametric formula for x(t). One can verify that 𝐴e
′′(x) is continuous on [0, le] with le = 250 ft and Ae(0) = 

𝐴e
′ (0) = 𝐴e

′ (le) = 0. Define Ae(x) = Ae(le) for x > le. Then, 𝐴e
′ (x) is a continuous function for all x  0, 𝐴e

′′(x) 

exists everywhere except at x = le, and |𝐴e
′′(x)| is bounded. All the required conditions for Ae = A◦F(Ae) in 

Theorem 1 are satisfied. In this case, the maximum error of |Ae−AN◦FN(Ae)| decreases from 0.22 [about 0.1% 

of Ae(le)] to 0.0003 when n increases from 50 to 4000 (compare dotted green and dotted black curves with 

blue curve in Fig. 2a), which confirms the inverse relation Ae = A◦F(Ae) computationally. Also, the curves 

of FN(Ae) for n  50 are nearly identical (compare dotted green curve with blue curve in Fig. 2b). As a result, 

F = F(Ae) is represented by FN(Ae) with n = 4000 (blue curve in Fig. 2b) even though the exact values of F 

are not available. The inverse relation F = F◦A(F) is confirmed computationally by the maximum error of 

0.00003 (i.e., 0.05% of the magnitude of F) for |F−FN◦AN(F)| with n = 4000 (compare dotted black curve 

with blue curve in Fig. 2b). However, if we use Eq. (12) with 𝐴0
′′ = 𝐴1

′′ and 𝐴𝑛
′′ = 𝐴𝑛−1

′′ , then AN◦FN(Ae) for 

n = 50 (red curve in Fig. 2a) is visibly different from Ae (blue curve in Fig. 2a) with a maximum difference 

of 2.2. The four numerical solutions for n = 50 (red and dotted green curves in Fig. 2) imply that the linear 

approximations of 𝐴e
′′(x) on [0, x1] and [xn-1, le] yield more accurate FN(Ae) and AN◦FN(Ae) than the constant 

approximations of 𝐴e
′′(x) on [0, x1] and [xn-1, le] when 𝐴e

′ (0) = 𝐴e
′ (le) = 0.  

 

Fig. 2 Accuracy of numerical conversions between Ae and F for an equivalent area target. 
 

 If Ae(xe) in Fig. 2a is modified with yc,1 = 1.35 and yc,6 = 224.55, then 𝐴e
′ (0) = 0.02278 and 𝐴e

′ (le) = 0.009. 

In this case, (1.2) of Theorem 1 ensures A◦F(Ae) = Ae(xe) − 𝐴e
′ (0)xe for xe  le, which is accurately 

approximated by AN◦FN(Ae) for n = 400 (green curve in Fig. 3a). The maximum value of |Ae−AN◦FN(Ae)| for 
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n = 4000 equals 5.695, which is 𝐴e
′ (0)le and agrees with (1.2) of Theorem 1 (see dotted black curve in Fig. 

3a). Again, we can assume F = FN(Ae) for n = 4000. Then | fN−FN◦AN(fN)| and | fN−F| are nearly zero for fN = 

FN(Ae) and n = 400 (compare dotted green, dotted black, and blue curves in Fig. 3b). The accuracy of the 

inverse relation fN  FN◦AN(fN) is guaranteed by Theorem 2 and the convergence of FN(Ae) and AN(F) to F(Ae) 

and A(F), respectively. 

 If we mistakenly use Eq. (12) assuming 𝐴e
′ (0) = 𝐴e

′ (le) = 0, which seems to be reasonable for the blue 

Ae curve in Fig. 3a, then Ae  AN◦FN(Ae) is relatively accurate for n = 400 (see dotted red curve in Fig. 3a). 

If one believed that A◦F(Ae) = Ae is always true, then FN(Ae) with two spikes in Fig. 3b (red curve) would be 

considered as the most accurate approximation of F(Ae) among the solutions in Fig. 3b because AN◦FN(Ae) 

is significantly different from Ae for the other two F-function approximations. The two spikes in FN(Ae) 

could represent the front and rear shocks for sonic boom minimization, similar to the features of the optimal 

F-functions in the GSD sonic boom minimization theory [3,4]. But the truth is that the two spikes in FN(Ae) 

are due to the numerical conversion errors assuming 𝐴e
′ (0) = 𝐴e

′ (le) = 0. As the value of n increases, the 

width of each spike decreases and the height of each spike increases. The effects of such numerical errors 

in the conversion from Ae to F on the sonic boom analysis of Ae are beyond the scope of this paper. But 

such numerical errors could significantly affect the undertrack ground signature of Ae and need to be 

carefully studied. 
 

Fig. 3 Effects of 𝐴e
′ (0)  0 on the inverse relations between F-function and equivalent area. 

5.3 Reversed Equivalent Area of a Low-Boom Supersonic Transport 

 The third Ae(xe) is the reversed equivalent area of the low-boom supersonic transport in Ref. [20]. This equivalent 

area represents a body of revolution that behaves like the low-boom supersonic transport for undertrack 

sonic boom analysis {see Ref. [18]}. Here we just show how Ae(xe) can be converted to Whitham’s F-

function and vice versa. 

 In this case, F(xe) is converted from an undertrack pressure distribution at 50 ft below the aircraft, which 

is obtained by reversely propagating the CFD undertrack pressure at three body lengths below the aircraft 

using an augmented Burgers equation [17]. Because the pressure distribution is continuous, F(xe) is 

considered as a continuous function.  

 The partition points of 0 = x0 < x1 < … < xN = 375 ft with N = 524 are the locations where values of F(xi) 

for 0  i  N are computed. The missing values of F(xe) between xi-1 and xi are linearly interpolated using 

F(xi-1) and F(xi). Then Ae(xe) = AN(F) = A(F) satisfies 𝐴e
′ (0) = 0 by the proof of Theorem 2. So, Eq. (12) is 

applied using 𝐴e
′ (0) = 0. The effective length of the aircraft is 247.4 ft. But F(xe) does not represent the 

turbulent wake for a constant cross section when xe > 247.4 ft. So, Eqs. (13) and (15) are applied with le = 

xN = 375 ft and n = N = 524. Figure 4 shows that the approximations F  FN◦AN(F) and Ae  AN◦FN(Ae) are 
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very accurate, i.e., the inverse relations between A() and F() are well preserved by AN() and FN() in this 

case. 

 As mentioned before, FN(Ae) and Carlson’s average approximation of F(Ae) are nearly identical for the 

same set of xi points, which has been confirmed by all the numerical comparison studies conducted. Figure 

4a also includes Carlson’s average approximation (dotted green curve) of F◦AN(F) for comparison. The 

maximum absolute difference between F(xe) and Carlson’s average approximation of F◦AN(F) is 0.0037, 

which is slightly smaller than the maximum value of 0.0043 for |F−FN◦AN(F)|. 

 

Fig. 4 Accuracy of numerical conversions between Ae and F for a reversed equivalent area. 

6 Conclusions 

 For an equivalent area Ae(xe) and the corresponding Whitham’s F-function F(xe), the inverse relations 

between the integral transforms between Ae(xe) and F(xe) are rigorously studied from mathematical and 

computational perspectives. The Whitham integral transform from Ae(xe) to F(xe) is denoted by F(Ae) and 

the inverse Abel transform from F(xe) to Ae(xe) is denoted by A(F). The necessary and sufficient boundary 

condition of Ae is derived for the validity of the inverse relations between F(Ae) and A(F). Under some 

general smoothness assumptions on Ae, Ae = A◦F(Ae) holds for xe  le if and only if 𝐴e
′ (0) = 0. This rigorously 

proved mathematical fact contradicts the accepted unconditional inverse relation between F() and A() in 

the sonic boom research literature. Explicit formulas are derived for numerical approximations of F(Ae) and 

A(F). The numerical approximations of F(Ae) and A(F) are very accurate when 𝐴e
′′(xe) and F(xe) are 

continuous for xe  le. However, the numerical approximations of A◦F(Ae) converge to Ae(xe) − 𝐴e
′ (0)xe for 

xe  le if 𝐴e
′ (0)  0, which confirms the proved theoretical result. The required boundary condition 𝐴e

′ (0) = 

0 for the inverse relation Ae = A◦F(Ae) and the numerical examples provide insight on the potential sources 

for numerical errors in the conversion from an equivalent area to the corresponding Whitham’s F-function. 
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