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The Hayabusa2 spacecraft collected samples from the surface of the carbonaceous near-
Earth asteroid (162173) Ryugu, and brought them to Earth. The samples were expected to 25 
contain organic molecules, which record processes that occurred in the early Solar System. 
We analyzed organic molecules extracted from the Ryugu surface samples. We identify a 
variety of molecules containing the atoms CHNOS, formed by methylation, hydration, 
hydroxylation, and sulfurization reactions. Amino acids, aliphatic amines, carboxylic acids, 
polycyclic aromatic hydrocarbons, and nitrogen-heterocyclic compounds were detected, 30 
with properties consistent with an abiotic origin. These compounds likely arose from 
aqueous reaction on Ryugu’s parent body and are similar to organics in Ivuna-type 
meteorites. These molecules can survive on the surfaces of asteroids and be transported 
throughout the Solar System. 

35 

A variety of organic molecules have been identified in carbonaceous chondrite meteorites, 
especially the meteorite types that experienced aqueous alteration (reactions with liquid water). 
Prebiotic molecules, such as amino acids, have been found in meteorite soluble organic matter 
(SOM) (1), suggesting that they could have been delivered to the early Earth (2, 3). It is unclear 
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which Solar System objects are the parent bodies of carbonaceous chondrites (4). Carbonaceous 
(C-type) asteroids, common in the asteroid belt, have been hypothesized as possible parent 
bodies of carbonaceous chondrites, based on spectroscopic similarities (5).  

The Hayabusa2 spacecraft investigated the near-Earth C-type asteroid (162173) Ryugu. 
Ryugu has a low-albedo surface, consisting of hydrous minerals and carbonaceous materials (6). 
Hayabusa2 collected ~5 grams of samples from Ryugu’s surface and delivered them to Earth on 
2020 December 6 (7). Unlike meteorites, these samples were collected from a specific spot on 
the surface of a well-characterized asteroid and retrieved without contamination from the 
biosphere. We analyzed Ryugu samples to characterize their SOM contents, with the goal of 
determining the evolutionary history of these organic compounds. Organics could have 
formed and/or been modified by chemical processes in the molecular cloud from which the 
Solar System formed, in the proto-solar nebula during the process of planet formation, or on the 
planetesimal that became the parent body of Ryugu. Because the surface of Ryugu is exposed 
to the vacuum of space, irradiation by energetic particles (cosmic rays), heating by sunlight and 
micrometeoroid impacts, could all have altered the SOM. 

Ryugu samples investigated for SOM 
All Ryugu samples are dominated by hydrous silicate minerals and contain organic matter 

similar to Ivuna-type carbonaceous (CI) chondrites (8). We investigated two samples, 
both collected during the first Hayabusa2 touchdown operation on 2019 February 21 (7, 9). 

Our main analysis was performed on an aggregate sample designated A0106 (fig. S1), 
consisting of grains less than 1 mm diameter with a total weight of 38.4 mg, which has elsewhere 
been investigated spectroscopically (10), and had its elemental and isotopic compositions 
analyzed (11). The A0106 sample has typical mineralogy for Ryugu, consisting mainly of 
hydrous silicate minerals, including serpentine and saponite, with other associated minerals 
such as dolomite, pyrrhotite and magnetite, indicating extensive aqueous alteration (10). We 
used solvent extracts to investigate the organic molecule content of A0106, following the 
analysis scheme in fig. S2. We also analyzed a single ~1 mm-sized grain (A0080) to determine 
the spatial distribution of organic compounds on its surface, using in-situ analysis methods (fig. 
S2). 

Elemental and isotopic composition 
Elemental and isotopic analyses were performed using mass spectrometry (11). The A0106 

sample contains 3.76 ± 0.14 wt.% of total carbon (C), 1.14 ± 0.09 wt.% of total hydrogen (H), 0.16 
± 0.01 wt.% of total nitrogen (N), and 3.3 ± 0.7 wt.% of total sulfur (S). The concentration of 
pyrolyzed oxygen (O), liberated at 1400ºC under a helium gas flow, was 12.9 ± 0.42 wt.%. The 
total CHNOS content (~21.3 wt.%) is likely to comprise hydrous minerals, carbonates, sulfides 
and organics, including macromolecular insoluble organic matter and SOM, because these are 
detected in other Ryugu samples (10, 12). The stable isotopic compositions were determined and 
are expressed in δ notations as offsets from international standards (11): δ13C = —0.58 ± 2.0 ‰ 
relative to Vienna Peedee Belemnite (VPDB), δD = +252 ± 13 ‰ relative to Vienna Standard 
Mean Ocean Water (VSMOW), δ15N = +43.0 ± 9.0 ‰ relative to Earth atmospheric nitrogen, δ34S 
= —3.0 ± 2.3 ‰ relative to Vienna Canyon Diablo Troilite (VCDT), and δ18O = +12.6 ± 2.0 ‰ 
relative to VSMOW [all analyses in triplicate (11)]. Because we analyzed small aggregate grains 
from the first touchdown site, we consider these values representative of the average bulk 
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composition of Ryugu. The corresponding elemental ratios (by weight) are: C/N ratio = 23.5 ± 0.4, 
O/H ratio = 11.4 ± 0.6, C/S ratio = 1.15 for A0106 (table S1).   

The C, N and H abundances are at the top of the ranges previously measured for 
carbonaceous chondrites (Fig. 1A-D, table S2). Our measured abundances of C, H and S are 
consistent with an independent bulk chemical analysis using ~25 mg of the Ryugu samples, 
which concluded that Ryugu has a composition more similar to CI chondrites than to other types 
of meteorite (12). The heavy isotope enrichments of H (δD ~ +250 ‰) and N (δ15N ~ +40 ‰) 
we find in Ryugu are similar to previous analyses of the Ivuna and Orgueil CI chondrites (13) 
(Fig. 1E, F). However, elemental and isotopic heterogeneities on small scales have been found in 
other Ryugu samples (14, 15).  

Diversity of organic molecules 
We performed mass spectrometry on a methanol extract of the A0106 sample using 

electrospray ionization (ESI) and atmospheric pressure photoionization (APPI), coupled with 
Fourier transform-ion cyclotron resonance mass spectrometry (FT-ICR/MS) (11). These produced 
hundreds of thousands of ion signals with a mass to charge ratio (m/z) between 150 and 700 (Fig. 
2A, B, F). The m/z signals obtained by negative charge ESI [ESI(-)], positive charge ESI [ESI(+)] 
and positive charge APPI [APPI(+)] were assigned to almost 20,000 elementary compositions, 
consisting of C, H, N, O and/or S (Fig. 2C-F, fig. S3). This diversity of compounds is consistent 
with previous results for carbonaceous chondrites (16). The chemical diversity of ionizable species 
(small molecules detectable with mass spectrometry) is much higher than terrestrial 
biological samples.  

We identify a continuum of small molecules to macromolecules, with a range of carbon 
oxidation states from nonpolar or minimally polar (CH-containing, polycyclic aromatic 
hydrocarbons and branched aliphatic molecules) to polar small molecules (CHO-containing) 
with various functional groups (CHN, CHS, CHNO, CHOS, or CHNOS), having different 
solubility. The most intense signals in the mass spectra were assigned to polythionates (Fig. 2A), 
indicating formation through a complex sulfur polymer chemistry, governed by redox processes 
involving water-mineral interactions with metal sulfides. A homologous series of known 
molecular targets (CHN+, CHNO+) has previously been observed in a solvent extract of the 
Murchison meteorite, a different type of carbonaceous chondrite (17). The Ryugu data contain 
abundant series of signals with repetitive mass differences, which we interpret as evidence for a 
systematic reaction network including methylation, hydration, hydroxylation and sulfurization. 
We did not detect magnesium-containing organic compounds (such as CHOMg or CHOSMg), 
which have been observed in other chondritic meteorites including Murchison (18). The 
compound distribution indicates low temperature (≲ 150 ºC) hydrothermal processing on 
Ryugu’s parent body (19). The high diversity of N- and S-bearing molecules in Ryugu indicates 
chemical processes occurred involving nitrogen and sulfur chemistry (20, 21). 

Amino acids 
We searched for amino acids in an acid-hydrolyzed, hot water extract of the A0106 sample 

using a combination of 3-dimensional high performance liquid chromatography with a high-
sensitivity fluorescence detector (3D-HPLC/FD) at Kyushu University, and ultrahigh 
performance liquid chromatography with fluorescence detection and high-resolution mass 
spectrometry (LC-FD/HRMS) at Goddard Space Flight Center (Fig. 3 and table S3). A total of 
15 amino acids were 45 
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both detected and quantified, while an additional 5 amino acids were tentatively identified but not 
quantified. These included proteinogenic (used by biology to form proteins) amino acids such as 
glycine (C2H5NO2), D,L-alanine (C3H7NO2) and D,L-valine (C5H11NO2), as well as the non-
proteinogenic amino acids including β-alanine (C3H7NO2), D,L-α-amino-n-butyric acid 
(C4H9NO2), D,L-β-amino-n-butyric acid (C4H9NO2), and several isomers of valine: D,L-norvaline, 
D,L-isovaline, and δ-amino-n-valeric acid (Fig. 3). The concentrations of each amino acid ranged 
from ~0.01 to 5.6 nmol g-1 (table S3).  

Many of the non-proteinogenic amino acids identified in the Ryugu extract are rare or non-
existent in terrestrial biology. The chiral amino acids detected in Ryugu are in approximately 
racemic mixtures [the abundance of the D- and L-enantiomers are approximately equal (D/L ~ 1)], 
indicating non-biological origins. The detection of approximately equal amounts of D- and L-
alanine, a common proteinogenic amino acid, indicates that this Ryugu sample is pristine, with 
negligible biological L-amino acid contamination. However, there were excesses of L-serine and L-
valine. There was a trace (pico-mole levels) of L-valine content in procedural solvent blanks, so 
contamination is likely the cause of the non-racemic valine in the A0106 extract.

There are differences in the amino acid concentrations measured using LC-FD/HRMS and 3D-
HPLC/FD, which we attribute to different acid hydrolysis conditions and analytical techniques. 
Different sample preparation and analysis approaches are known to yield distinct results when 
investigating meteorite amino acids (22). The much lower glycine abundances measured by LC-
FD/HRMS (~0.6 nmol g-1) than by 3D-HPLC/FD (5.6 nmol g-1) could have been the result of 
multiple evaporation steps implemented during sample preparation prior to LC-FD/HRMS 
analysis. These evaporation steps could have resulted in the additional loss of volatile species, such 
as hydrogen cyanide (HCN) and formaldehyde. HCN, formaldehyde, and ammonia can synthesize 
glycine under alkaline conditions (Strecker synthesis) such as during sample preparation (11). 

The overall amino acid distribution in the Ryugu extract is distinct from that in the CI meteorite 
Orgueil, with Ryugu also having lower amino acid abundances than Orgueil (23) (table S3). This 
could reflect different chemical formation environments, or subsequent alteration conditions on 
their parent bodies. It is possible that Strecker synthesis could have been active during parent body 
aqueous alteration, producing glycine and other α-amino acids (those with an amino group one 
bond away from a carbonyl carbon) identified in the Ryugu extract. However, other amino acid 
formation and fractionation mechanisms must also have occurred on the Ryugu parent body, 
because β-, ɣ-, and δ-amino acids were also found (table S3). The straight-chain n-ω-amino acids, 
β-alanine, ɣ-amino-n-butyric acid, and δ-amino-n-valeric acid have higher abundances than other 
amino acids measured by LC-FD/HRMS in the Ryugu extract (table S3). This trend was similarly 
observed in previous measurements of thermally altered CO (Omans-type) and CV (Vigarano-
type) carbonaceous chondrites (24). These non-⍺-amino acids have been shown to be more 
resistant to thermal decomposition, surviving at temperatures up to ~300ºC (25, 26), which could 
explain their higher abundances (relative to ⍺-amino acids) in the Ryugu sample. 

Aliphatic amines and carboxylic acids 
Hot water extracts of A0106 were measured using liquid chromatography with fluorescence 

detection and time-of-flight mass spectrometry (LC-FD/ToFMS) (11). Aliphatic amines were 
detected (Fig. 4); methylamine (CH3NH2) was the most abundant followed by ethylamine 
(C2H5NH2) and isopropylamine ((CH3)2CHNH2), then n-propylamine (C3H7NH2). These amines 
are likely present as salts in the grains, because the free amines are highly volatile and reactive 

45 
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(boiling point; —6.3ºC for free CH3NH2 at 1013 hPa, compared to ~230ºC for 
CH3NH2 hydrochloride at ~0.11 Pa). We applied the same technique to hexane and 
dichloromethane (DCM) extracts of A0106, but did not find other volatile compounds that have 
previously been detected in carbonaceous chondrites, such as methanol (CH3OH), ethanol 
(C2H5OH), methyl formate (HCOOCH3), acetone (CH3COCH3), diethyl ether (C2H5OC2H5), or 
acetonitrile (CH3CN), which were all below the detection limits (fig. S4). This is consistent 
with our interpretation that the amines were retained as salts, not trapped volatiles in 
inclusions, insoluble organic material or minerals. Ammonium salts (and amine salts) are 
known to be the major reservoir of nitrogen on the dwarf planet Ceres and in comets (27, 28). 
A previous hyperspectral microscope study of Ryugu grains found evidence of amine or 
ammonium bonds (NH; ~3.1 µm) (29). 

Isopropyl amine, which has a branched chain, was more abundant than straight-chain 
propylamine. This is consistent with previous results for several carbonaceous chondrites (30, 31). 
The predominance of branched chains could indicate synthesis of these molecules occurred by a 
radical reaction. Alternatively, it might indicate a period of heating during aqueous alteration, 
because branched-chain carbon compounds are more thermodynamically stable than their straight-
chain counterparts. The presence of methyl-, ethyl-, and propylamines in Ryugu is distinct from 
Orgueil, which contains butylamines (C4H9NH2) at about half the abundance of n-propylamine 
(32); if this same ratio occurred in the Ryugu sample, butylamines would have been above the 
detection limits. The amines in Ryugu are also unlike the dust grains collected from the comet 
Wild 2 by the Stardust mission, for which only methyl- and ethylamine were detected (33). 

Monocarboxylic acids (MCAs) were searched for using gas chromatography quadrupole mass 
spectrometry (GC-QMS) of the hot water extract of A0106. Formic acid (5.7 µmol g-1) and acetic 
acid (9.5 µmol g-1) were detected, the only MCAs above the detection limits (fig. S5, table S4). 
MCAs are typically among the most abundant organic compounds in organic rich carbonaceous 
chondrites, such as the CM (Mighei-type) meteorites Murchison and Murray, and the CR 
(Renazzo-type) chondrites (34-36). We detected MCAs in A0106 with high concentrations and 
low molecular diversity, both consistent with low-temperature hydrothermal processing, as 
thought to have occurred on Ryugu’s parent body (10). The concentration of MCAs is known to 
decrease with increasing aqueous and/or thermal alteration experienced by meteorite samples (36-
37). Although MCAs in A0106 have low molecular diversity, the concentrations of formic and 
acetic acids are high, similar to those observed in highly aqueously altered carbonaceous 
chondrites including ALH 83100 (a CM), Orgueil and Ivuna (both CIs) (38, 39). Aliphatic MCAs 
are substantially more abundant in the Ryugu sample than other structurally related organics, such 
as aliphatic amino acids and amines. This is consistent with carbonaceous chondrites, for which 
the concentrations of MCAs (and most other meteoritic organic compounds) are known to decrease 
with increasing molecular weight (1, 36). We find the same relationship between formic acid and 
acetic acid in A0106 (table S4).  

Polycyclic aromatic hydrocarbons 
We applied two-dimensional gas chromatography with time-of-flight mass spectrometry 

(GC×GC-TOFMS) to the organic solvent extracts of the A0106 sample. We detected aromatic 
hydrocarbons at below parts per million (sub-ppm) abundances, including from alkylbenzenes and 
polycyclic aromatic hydrocarbons (PAHs) (Fig. 5). Homologous series of large alkylated PAHs 
were identified using APPI FT-ICR/MS, and assigned to methylation and hydration (Fig. 2C). The 
presence of alkylated PAHs (including alkylbenzenes) in the organic solvent extracts was 
confirmed using Fourier-transformed infrared (FTIR) spectroscopy (11), which showed bands due 
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to CH2 or CH3 bonds at 2850 to 2950 cm-1 (3.51 to 3.39 μm) (fig. S6A). The highest abundance 
PAHs were fluoranthene and pyrene (which contain four benzene rings) followed by chrysene/
triphenylene (also four rings) and methylated fluoranthene and pyrene. Smaller PAHs containing 
two rings (naphthalene) and three rings (phenanthrene and anthracene) were detected at lower 
abundances.  

Fluoranthene and pyrene are structural isomers (both have the formula C16H10) that are present 
in roughly equal amounts in CM chondrites (40-42). In the Ryugu sample, however, fluoranthene 
is substantially less abundant than pyrene (Fig. 5C). In the CI meteorite Ivuna, both fluoranthene 
and pyrene are below the detection limits, though phenanthrene and anthracene are abundant 
(43). Because selective synthesis is not expected to favor three- or four-ring PAHs, their variable 
relative abundances in meteorites could be due to aqueous fluid flow in their parent body. It 
has been proposed that three-ring and four-ring PAHs could be spatially separated during aqueous 
alteration of the Ivuna parent body, due to their different aqueous solubilities (an effect known as 
asteroidal chromatography) (44). On Earth, hydrothermal petroleum often contains alkylbenzene 
and lower abundances of fluoranthene than of pyrene (45). Therefore, the difference in 
proportions of PAHs between Ryugu and carbonaceous chondrites could be due to different 
aqueous alteration effects on different parent bodies. However, we cannot rule out the 
possibility that the different proportions could be inherited from pre-solar syntheses in the 
interstellar medium, where PAHs are ubiquitous (46). PAHs with higher stability and lower 
volatility might have preferentially survived accretionary and hydrothermal processes on the 
parent body. For example, the higher thermal stability and lower volatility of pyrene over 
fluoranthene could have contributed to the unequal abundances of the two species in the Ryugu 
sample. Vaporization fractionation could be responsible for the lower abundance (compared to 
pyrene) of smaller PAHs, such as naphthalene. 

The FTIR spectrum of the fine suspended material in the water extract of the A0106 grain (fig. 
S6C) has its strongest absorption band at ~1000 cm–1 (~10 μm) due to silicates (Si-O bonds). Other 
bands are present at 750 to 1650 cm–1 (13.3 to 6.1 μm). Peaks at these wavelengths have often 
been observed in the interstellar medium (47) and have been assigned to large PAHs (47-50). The 
broad peaks at ~1400 cm–1 (7.14 μm) could also have a contribution from carbonates (51). The 
lack of the aromatic C-H stretching bands at ~3030 cm–1 (3.30 μm) suggests that the PAHs present 
in the Ryugu water extract are highly depleted in hydrogen, indicating large unsaturated structures. 
Because small to moderate-size PAHs can be extracted with organic solvents such as DCM and 
methanol (MeOH), which we applied before extraction with water (fig. S2), we expect the PAHs 
suspended in the water extract to be dominated by very large and less soluble molecules that were 
not removed by the earlier analysis steps. The FTIR spectrum of the Ryugu sample is unlike those 
of other extraterrestrial materials, including carbonaceous chondrites. It is most similar to 
astronomical observations of interstellar PAHs (50), so it is possible that pre-solar PAHs (formed 
in the interstellar medium) were incorporated into Ryugu’s parent body during its accretion, then 
survived the subsequent aqueous alteration. 

N-containing heterocyclic compounds40 

The methanol extract of A0106 was examined using nano-liquid chromatography/high-
resolution mass spectrometry (nanoLC/HRMS) (11). Several classes of alkylated N-containing 
heterocyclic molecules were identified, and their presence was confirmed using ESI FT-ICR/MS 
(Fig. 2E). These alkylated N-heterocycles included pyridine, piperidine, pyrimidine, imidazole or 
pyrrole rings with various amounts of alkylation (Fig. 6A). Alkylpyridines and alkylimidazoles 45 
(aromatic N-heterocycles) have previously been found in CM chondrites, while alkylpiperidines 
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(aliphatic N-heterocycles) are more abundant in CR chondrites (52); the difference in relative 
abundances might reflect differing redox conditions on the meteorite parent bodies.  

The alkylpyridine (CnH2n-4N+) homologues we identify in the Ryugu sample (Fig. 6B) have a 
different distribution pattern from those in CM chondrites (Fig. 6C). The number of carbon atoms 
in the Ryugu compounds is mostly between 11 and 22, with a maximum at 17, while the carbon 
number distribution for Murchison has a lower range, mostly from 8 to 16 with its maximum at 
11. This difference could be caused by differences in the histories of hydrothermal activity (such 
as the water/rock ratio), solar radiation and/or cosmic ray irradiation (53, 54). Gas phase reactions 
at high temperature can produce polymeric series of N-containing heterocyclic compounds, like 
those found in meteorites (55). If the bell-shaped distributions for Ryugu and Murchison are due 
to gas-phase synthesis, the two bodies could have inherited their SOM from different regions of 
the solar nebula.

Alternatively, N-heterocyclic compounds can be synthesized through a reaction pathway using 
ammonia and simple aldehydes, such as formaldehyde (56), which would require high abundances 
of aldehyde and ammonia in the Ryugu body in the past. Because formaldehyde and ammonia 
were abundant in the interstellar medium and the proto-solar nebula (57, 58), the Ryugu organic 
material might have inherited these characteristics from a molecular cloud environment. In 
interstellar-ice analog experiments at very low temperature, hexamethylenetetramine (HMT: 
C6H12N4) is produced as a major compound from single carbon compounds and ammonia (59). 
However, we did not detect HMT in any extracted fraction of our sample, using FT-ICR/MS and 
nanoLC/HRMS. HMT has previously been detected in aqueous extracts of carbonaceous 
meteorites including Murchison (60). Under hydrothermal conditions, HMT is degraded to 
formaldehyde and ammonia at ~150ºC, especially at alkaline pH, producing N-containing 
compounds such as amino acids and N-heterocycles (61, 62). Because the aqueous fluid on 
Ryugu’s parent body was probably alkaline (pH > 9) (10), we attribute the lack of HMT to the 
aqueous alteration history.  

Sample surface distribution of organic molecules 
We performed in situ analysis of the surface of the A0080 grain using electrically-charged 

MeOH spraying by desorption electrospray ionization (DESI) coupled with HRMS (11). We 
detected over 200 positive ion peaks, ranging from m/z = 80 to 400, which we assign to molecules 
containing the elements CHN, CHO or CHNO and their alkylated homologues (Fig. 7, fig. S7). 
These compounds were located on the uppermost layer of the intact grain surface; no treatment 
(such as cutting or polishing) was performed on A0080. Methanol spraying detached the molecules 
from the surface, implying weak interactions between the CHN compounds and the major minerals 
of the grain. The CHN compounds observed were mostly consistent with those detected in the 
methanol extract of the aggregate sample (A0106); however, the molecular distribution was not 
identical (Fig. 6A, fig. S7B,C). We attribute the different molecular distributions to heterogenous 
distribution of the SOM compounds between the Ryugu grains, and/or differences in sensitivity 
between the two analytical methods.  

Our molecular imaging shows spatial heterogeneity of the compounds across the surface of 
A0080 (Fig. 7). We expect the ion intensity to depend on the topography of the sample surface, 
which was not flattened. Although the region with highest SOM concentration is also the highest 
topographical area, the molecular imaging shows µm-scale differences in spatial distribution of 
the CHN compounds, depending on their molecular sizes and families (Fig. 7). Varying spatial 
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distribution among different molecular sizes and compound classes were also observed 
among CHO and CHNO compounds. Previous studies have identified different spatial 
distributions of CHN compounds on CM chondrites including Murray (63). The distinct 
distributions could be due to interactions between organic molecules and minerals during 
aqueous alteration (64). Other synthesis routes could also explain these results, for example via 
SOM reactions with minerals and fluids in the Ryugu parent body (65). 

Implications for asteroid organic chemistry 
The molecular diversity of SOM in the Ryugu sample A0106 is as high as previously found 

for carbonaceous chondrites, and includes poly-sulfur-bearing species. In contrast, the molecular 
diversity of low-molecular-weight compounds, including aliphatic amines and carboxylic acids, 
was lower in the Ryugu sample than previously measured in the Murchison meteorite. The total 
SOM concentration in the A0106 sample was less than that of Murchison, closer to those of the 
unheated CI chondrites Ivuna and Orgueil.  

The Ryugu organic matter seems to have been affected by aqueous alteration, which 
produced aromatic hydrocarbons similar to hydrothermal petroleum on Earth (45). However, 
the Ryugu samples have never experienced high temperatures (12). This is unlike the heated CI 
chondrites Yamato 980115 and Belgica 7904 (parent body temperatures ≲150°C (66, 67)), 
which contain very low (or undetectable) abundances of amino acids and PAHs (23, 68, 69). 
Remote-sensing observations of Ryugu, collected by the Hayabusa2 spacecraft, showed 
evidence for thermal metamorphism at 300-400ºC on Ryugu’s parent body (70). However, we 
estimate the effective heating temperature was ≲150ºC for the Ryugu SOM (11). We ascribe this 
difference to protection of the organics, by incorporation into hydrous minerals.  

The SOM detected in the A0106 and A0080 samples indicates that Ryugu’s surface materials 
host organic molecules, despite the harsh environment caused by solar heating, 
ultraviolet irradiation, cosmic-ray irradiation and high vacuum. The uppermost surface grains 
on Ryugu protect organic molecules - unlike meteorites, for which atmospheric ablation during 
Earth entry removes or modifies analogous near-surface material. Organic compounds on 
asteroids can be ejected from the surface by impacts or other causes (71, 72), dispersing them 
through the Solar System (or beyond) as meteoroids or interplanetary dust particles. 
Therefore, SOM on C-type asteroids could be a source of organics delivered to other bodies. 
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Fig. 1.  Carbon, nitrogen, and hydrogen contents, and stable isotopic compositions, for the 
Ryugu sample A0106 compared with carbonaceous chondrites. (A) H-C (wt%), (B) enlarged 5 
H-C (wt%), (C) H-N (wt%), (D) enlarged H-N (wt%), (E) δD-δ13C (‰), and (F) δD-δ15N (‰).
Symbols shown in the legend indicate different groups of carbonaceous chondrite: Vigarano-type
(CV), Renazzo-type (CR), Ornans-type (CO), Mighei-type (CM) and Ivuna-type (CI). Ryugu is
most similar to the CI chondrites. Data sources for the carbonaceous chondrites are listed in table
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S2. Error bars are 1 standard deviation for C, H and δD, and 2 standard deviations for N, δ13C 
and δ15N. 
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Fig. 2. Mass spectra of the Ryugu extract and derived elemental compositions. (A) Mass 
spectrum of negative ESI FTICR/MS with peaks assigned polythionates with 3 to 9 sulfur atoms. 
(B) Detail around m/z = 319 with annotated elementary compositions, with Ryugu (black) 5 
compared to the Murchison meteorite (red) (16); (C) O/C-H/C atomic ratios of the compositional 
data as obtained with ESI(-), (D) ESI(+), and (E) APPI(+). Colored annuli enclose the number of 
molecules assigned, with colors indicating the relative ratios of the chemical families (indicated 
in each legend). Data points use the same colors to indicate the family, and the size of each 
bubble indicates the intensity of the signal in the mass spectrum. (F) H/C atomic ratio as a 10 
function of m/z, measured using APPI(+), for non-oxygenated CH, CHN and CHS compositions; 
colors are the same as used in panel E. Figure S3 shows separate plots of each chemical family 
identified in panels C to E. 
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Fig. 3. Amino acids detected in the hydrolyzed hot water extract of the Ryugu sample. (A) 
Partial chromatograms obtained by 3D-HPLC/FD for glycine (Gly) (H), alanine (Ala) (J), α-5 
amino-n-butyric acid (αAB) (N), isovaline (Isoval) (P), valine (Val) (Q), and norvaline (Norval) 
(R). In each panel, the Ryugu extract (top traces) is compared with baked serpentine blanks 
(middle traces) and terrestrial standards (lower traces). (B) Ion-extracted chromatograms from 
LC-FD/HRMS analysis of Ryugu sample (S and T), a serpentine blank (U and V), and mixed 
amino acid standards (W and X). Amino acids composed of 4 and 5 carbon atoms were detected 10 
in the Ryugu sample. Peak identifications are: 1) ɣ-amino-n-butyric acid, 2) D-β-amino-
isobutyric acid, 3) L-β-amino-isobutyric acid, 4) D-β-amino-n-butyric acid, 5) L-β-amino-n-
butyric acid, 6) ⍺-amino-isobutyric acid, 7) D,L-⍺-amino-n-butyric acid, 8) 3-amino-2,2-
dimethylbutyric acid, 9) ɣ-amino-n-valeric acid, 10) 3-amino-2-methylbutyric acid, 11) 4-amino-
3-methylbutyric acid, 12) 3-amino-2-methylbutyric acid, 13) R-3-amino-2-ethylpropanoic acid,15 
14) δ-amino-n-valeric acid, 15) L-4-amino-2-methylbutyric acid, 16) D-4-amino-2-methylbutyric
acid, 17) ɣ-amino-n-valeric acid, 18) 3-amino-3-methylbutyric acid.
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5 

Fig. 4. Aliphatic amines in the hot water extract of Ryugu. Chromatograms measured using 
LC-FD/ToFMS for (A) methylamine, (B) ethylamine, and (C) n-propylamine and iso-
propylamine. In each panel, the Ryugu sample (upper trace) is compared with a baked serpentine 
blank (middle trace) and terrestrial standards (lower trace). Asterisks indicate peaks introduced 10 
by the reagent used for derivatization.  

15 



24 

Fig. 5. Aromatic hydrocarbons in the Ryugu extract. Data were measured using GC×GC-
TOFMS. (A) alkylbenzenes in the hexane extract (m/z = 105.0698), (B) naphthalene (m/z = 
128.0621) in the DCM extract, (C) fluoranthene (~7520 s) and pyrene (~7680 s) (m/z = 
202.0778) in the DCM extract, (D) methylfluoranthenes and methylpyrenes (m/z = 216.0918) in 5 
the DCM extract. In each panel, the Ryugu sample (lower) is compared with a baked serpentine 
blank (upper). Colors indicate concentration, as indicated on the color bar. 

10 
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Fig. 6. CHN compounds in the methanol extract determined using nanoLC/high resolution 
mass spectrometry. (A) Example region of the mass spectrum of the A0106 sample (74), with 5 
peaks assigned to CnH2n-16N+, CnH2n-14N+, CnH2n-12N+, CnH2n-10N+, CnH2n-8N+, CnH2n-6N+, CnH2n-

4N+, CnH2n-15N2
+, CnH2n-13N2

+, CnH2n-11N2
+, CnH2n-9N2

+ and CnH2n-7N2
+ (where Cn is the carbon 

number). (B-C) Histograms showing the relative abundances of CnH2n-4N+ (alkylpyridines) as a 
function of carbon number, for Ryugu (panel B) and Murchison (11) (panel C). Abundances are 
normalized to a peak value of 100. The Ryugu distribution peaks at higher carbon number than 10 
Murchison.  

15 
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Fig. 7. Spatial distribution of CHN compounds on the surface of Ryugu grain A0080. 
Optical images (A) before sample preparation and (B) after embedding in an alloy. A white 5 
arrow in panel A indicates the grain surface embedded in panel B. Maps of organic molecule 
distribution were measured by DESI coupled with HRMS, for (C) CnH2n-6N+ series (n =14, 15) 
and (D) CnH2n-8N+ series (n =16, 17) molecules. White outlines indicate the boundary between 
the A0080 grain and the surrounding metal. All scale bars are 500 µm. 

10 
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Materials and Methods 

Sample 
An aggregate sample of Ryugu grains (A0106) and a single grain (A0080) were allocated to the 
SOM (Soluble Organic Molecules) team for the initial analysis of Hayabusa2 samples. Each 
sample was transported from the JAXA Extraterrestrial Samples Curation Center in Sagamihara, 
Japan, via a facility-to-facility transfer container (73) to Kyushu University (KU) for extraction 
and distribution. The A0106 sample consisted mainly of particles smaller than 1 mm in diameter 
(Fig. S1). We used the A0106 sample to analyze SOM after solvent extractions (Fig. S2). The 
A0106 sample was investigated spectroscopically in the near infrared wavelength range prior to 
the solvent extractions (9). The spectra indicated that the sample has a mineralogy consistent 
with that observed for other aggregate samples of Ryugu (9). We determined elemental 
compositions of SOM in various solvent extracts by non-target analysis using Fourier transform 
ion cyclotron mass spectrometry (FT/ICR-MS), and performed chromatographic molecular 
analyses of amino acids, aliphatic amines, carboxylic acids, aromatic hydrocarbons, and N-
containing heterocyclic compounds (Fig. S2). A part of the A0106 sample was used for 
elemental and isotopic analyses of total carbon (C), hydrogen (H), nitrogen (N), sulfur (S), as 
well as pyrolyzable oxygen (O) (Fig. S2). The A0080 sample was a ~1 mm-sized grain (Fig. 
7A), which was investigated for spatial SOM distribution on the sample surface by in situ 
analysis (Fig. S2). Other supplementary data are provided at (74). 

CNHOS contents and their isotopic compositions 

Elemental and isotopic analysis of C, N, S, H, and pyrolyzable O was performed in triplicate 
using elemental analyzers connected to isotope ratio mass spectrometers (EA/IRMS). For the 
total C, N, and S contents with their isotopic compositions (d13C, d15N, and d34S, respectively), 
we used an EA/IRMS system (Flash EA1112 elemental analyzer/Conflo III interface/Delta Plus 
XP isotope-ratio mass spectrometer, Thermo Finnigan Co., Bremen) at Japan Agency for 
Marine-Earth Science and Technology (JAMSTEC) at Yokosuka. The analytical validations 
using the nano-EA/IRMS system were performed during rehearsal analyses and studies of the 
carbonaceous chondrites (75-77). For the total H and pyrolyzable O with their isotopic 
compositions (dD and d18O, respectively), we used another EA/IRMS system (Elemental 
Analyzer/Thermal Conversion (EA/TC) coupled with Delta Plus XL isotope-ratio mass 
spectrometer through a Conflo III interface, Thermo Finnigan Co., Bremen) at KU (52,78). The δ 
values of the Ryugu samples for C, N, H, S, and O isotopic compositions are denoted using the 
international isotope standards as follows:  

δ13C = [(13C/12C)Ryugu/(13C/12C)VPDB —1] × 1000 (‰) 
using the Vienna Peedee Belemnite (VPDB) standard 

δ15N = [(15N/14N)Ryugu/(15N/14N)Air —1] × 1000 (‰) 
using Earth atmospheric nitrogen (Air) standard 

δD = [(D/H)Ryugu/(D/H)VSMOW —1] × 1000 (‰) 
using the Vienna Standard Mean Ocean Water (VSMOW) standard 

δ34S = [(34S/32S)Ryugu/(34S/32S)VCDT —1] × 1000 (‰) 
using the Vienna Canyon Diablo Troilite (VCDT) standard 
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δ18O = [(18O/16O)Ryugu/(18O/16O)VSMOW —1] × 1000 (‰) 
using the VSMOW standard; respectively.  

The CNHOS contents (wt.%) and their isotopic compositions of the Ryugu sample 
A0106 are shown in Table S1. The d13C—d15N—dD values are plotted in Fig. 1E and 1F with 
those reported for various type of carbonaceous chondrites (Table S2, 13, 79-94). The isotopic 
compositions have been used for classification and origins of meteorites with respect to the solar 
system formation. The compiled data indicate that the Ryugu sample has isotopic characteristics 
more similar to those of CI-type chondrites than other carbonaceous chondrites. 

 
Solvent extractions 

The extraction and analytical measurements are summarized in Fig. S2. All extraction 
procedures were performed on an International Organization for Standardization (ISO) 5 
(Class 100) clean bench inside an ISO 6 (Class 1000) clean room at KU. All glassware used were 
baked in an oven at 500°C for 3 h prior to analysis to remove organic contaminants. The 
aggregate sample of A0106 (17.15 mg) was extracted sequentially with hexane (Hexane 5000, 
FUJIFILM Wako, 200 μL × 3), dichloromethane (DCM, Dichloromethane 5000, FUJIFILM 
Wako, 200 μL × 3), methanol (MeOH, QTOFMS grade, FUJIFILM Wako, 200 μL × 3) and H2O 
(200 μL × 3, TAMAPURE-AA, Tama Chemicals C., Ltd.) using a sonicator (15 min each, 
Bransonic Model 1210) in a 1.5 mL polytetrafluoroethylene (PTFE, Teflon) vial followed by 
centrifugation (12,000 rpm × 5 min for the hexane, DCM and MeOH extractions and 14,000 rpm 
× 8 min for the H2O extraction). Each combined solution (600 μL) was mixed by shaking, then 
divided and distributed as 200 μL (Helmholtz Center in Munich), 200μL (Goddard Space Flight 
Center, GSFC) and 200 μL (KU).  Baked serpentine powder (17.58 mg, 500°C for 3 h) was also 
analyzed as a procedural blank.  

A separate aggregate sample of A0106 (13.08 mg) was subjected to the hot water 
(200 μL) extraction at 105°C for 20 h in an N2 purged and sealed glass ampoule. After the 
extraction, the content was transferred from the ampoule to a glass vial. The glass vial was 
centrifuged for 8 min at 14,000 rpm, then the supernatant was transferred to another sample 
extract vial. The glass ampoule was rinsed with 200 μL H2O, then the H2O solution was 
transferred to the residue-containing vial, which was further mixed by shaking. The glass vial 
was centrifuged for 8 min at 14,000 rpm, then the supernatant was transferred to the sample 
extract vial. This step was repeated, then the combined 600 μL solution was mixed well by 
shaking. The hot water extract was split into 250 μL (KU) and 250 μL (GSFC) for amino acid 
analysis, and 100 μL (JAMSTEC) for other analysis. The amino acid analyses were performed at 
KU and GSFC. Baked serpentine powder (16.21 mg, 500°C for 3 h) was also analyzed as a 
procedural blank. 

 
Fourier transform ion cyclotron mass spectrometry (FT/ICR-MS) 

The mass analysis was conducted with a BRUKER Solarix 12 Tesla instrument installed at the 
Helmholtz Center in Munich following standard operation procedure (16). The 100 μL MeOH 
extract was diluted four times and directly injected with a Hamilton syringe using a syringe 
pump at flow rates of 120 µL h-1 and 500 µL h-1 in electrospray ionization (ESI) and atmospheric 
pressure photoionization (APPI), respectively. In ESI(-), 3000 scans were accumulated for 
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negatively-charged ions, and 1000 scans in ESI(+) and 300 scans in APPI(+) were accumulated 
for positively-charged ions. 

To maintain mass accuracy, performed internal calibrations on arginine clusters prior to 
any analysis. Relative m/z errors were lower 100 ppb across a range of 92 < m/z < 1,000. The 
average mass resolving power was about 400,000 at nominal mass 400. Data were internally 
calibrated to produce m/z lists and processed using the formula annotation pipeline after mass 
difference network analysis (95). The mass spectra of ESI(-) measurement are shown in Fig. 2A. 
The elemental compositions of molecules obtained by ESI(-), ESI(+), and APPI(+) 
measurements are shown in Fig. 2B and 2C. The data files are provided as Data S1 for ESI(-), 
Data S2 for ESI(+), and Data S3 for APPI(+) at (74). 

 
Amino acid analysis 

Amino acid analysis was performed by two different methods at KU and at GSFC. KU 
performed enantiomer separation of targeted amino acids using three dimensional-high 
performance liquid chromatography coupled with fluorescence detection (3D-HPLC/FD). GSFC 
performed non-target amino acid analysis using liquid chromatography/fluorescence detection 
equipped with high-resolution mass spectrometry (LC/FD-HRMS).  
 

3D-HPLC/FD amino acid analysis at KU 
The detailed procedure of amino acid analysis by 3D-HPLC/FD was reported elsewhere (96). 
The hot water extract (~200 μL) was mixed with ~6 M HCl (~200 μL, Tama Chemicals C., Ltd.) 
in a closed glass vial, followed by hydrolysis at 105°C for 20 h. The resulting reaction mixture 
was evaporated to dryness under reduced pressure. To the residue, 100 μL of water was added, 
and the solution was neutralized with sodium hydroxide, which was confirmed by a pH test 
paper. A 20 μL aliquot of the neutralized solution was mixed with 400mM sodium borate buffer 
(pH 8.0, 20 μL) and 100 mM 4-fluoro-7-nitro-2,1,3-benzoxadiazole in 5 μL acetonitrile (MeCN) 
in a light shielded glass vial. The mixed solution was heated at 60°C for 6 min, and an aqueous 2 
% (volume by volume, v/v) trifluoroacetic acid (TFA) solution (55 μL) was added to stop the 
reaction. 

An aliquot of the reaction mixture (10 μL) was then analyzed using the 3D-HPLC/FD 
system. Three different columns were equipped as a dimension of the 3D-HPLC system. In the 
first dimension, a Singularity RP18 column (1.0 mm inner diameter (i.d.) × 250 mm length) was 
used for the reversed-phase separation, and the target amino acids were separated by using the 
gradient elution of 5-25 % MeCN and 0.025 % TFA in H2O. In the second dimension, an anion-
exchange column (Singularity AX, 1.0mm i.d. × 150mm length) was equipped, and the mobile 
phases were mixed solutions of MeOH-MeCN (50/50, v/v) containing formic acid (FA). The FA 
concentrations were 0.04 % for alanine (Ala), aAB, valine (Val), and norvaline (Norval); and 
0.07 % for glycine (Gly) and isovaline (Isoval). In the third dimension, tandemly connected 
Singularity CSP-001S columns (1.5 mm i.d. × 500 mm, total length) were used for enantiomeric 
separations. A mixed solution of MeOH-MeCN (90/10, v/v) containing 0.14 % FA (for Isoval) 
and mixed solutions of MeOH-MeCN (50/50, v/v) containing 0.20 % FA (for Ala, aAB, Val, 
and Norval) or 0.03 % FA (for Gly) were used as mobile phases. The N-(7-nitro-2,1,3-
benzoxadiazol-4-yl)-amino acids were detected by their fluorescence emission at 530 nm with 
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excitation at 470 nm. The concentration of amino acid was determined by single analysis due to 
the sample limitation. The analytical uncertainty was estimated to be 3-8 % of the quantitative 
value of amino acid based on a quadruple analysis of amino acids in carbonaceous chondrites 
(96). The result of this amino acid analysis is shown in Fig. 3A and Table S3. The data file 
(fluorescence intensity vs. time) is provided at Data S4 (74). 
 

LC-FD/HRMS amino acid analysis at GSFC 
Samples were unpacked and inspected in an ISO 5 flow bench in an ISO < 8 (Class <100,000) 
whiteroom and then stored in a -20°C freezer until analysis. All glass materials were cleaned by 
rinsing in ultrapure water (Millipore Integral 10, 18.2 MW cm, < 3 ppb total organic carbon) then 
baking at 500°C in air in a muffle furnace overnight to remove residual organics. Standards and 
reagents were purchased from Alfa Aesar, Sigma-Aldrich, Acros Organics, Mann Research 
Laboratories, and Thermo Scientific and used without further purification except as noted below. 
HPLC-grade DCM, semiconductor-grade NaOH, ultrapure 6 M HCl (Tama Chemicals Co., Ltd.) 
were used during sample preparation. Functionalized aminopropyl silica gel was from SiliCycle 
(SiliaBond, 40-63 µm particle size) and cleaned using MeOH and DCM followed by drying 
under vacuum. The AccQ•Tag reagent and solvents used during amine analysis were from 
Waters. 

Samples from hot water extract (80 µL each) as well as a serpentine and procedural blank 
were each mixed with 8 µL of 1.5 M doubly distilled (dd) HCl before being dried under vacuum 
and then acid hydrolyzed under 6 M ddHCl vapor at 150°C for 3 h (96). The 6 M ddHCl that was 
used for acid vapor hydrolysis was ultrapure 6 M HCl (Tama Chemicals C., Ltd.) that was 
doubly distilled prior to use with these samples. Following acid hydrolysis, retrieved test tubes 
were dried under vacuum to remove HCl. Test tubes were then rehydrated with 100 µL of 
ultrapure water and transferred into separate, capped derivatization vials. Each sample and blank 
test tube subsequently underwent two successive 100 µL rinses using ultrapure water, which 
were individually transferred to their respective derivatization vials. The resultant 300 µL 
solution in each sample and blank derivatization vial was then dried under vacuum to ensure full 
removal of residual HCl from the acid vapor hydrolysis process. The residues in the 
derivatization vials were then each reconstituted in 20 µL of a 0.1 M sodium borate solution and 
dried again under vacuum. Finally, each derivatization vial was resuspended with 20 µL of 
ultrapure water and derivatized with 5 µL of o-phthaldialdehyde/N-acetyl-L-cysteine 
(OPA/NAC) for 15 min at room temperature (~21°C). OPA/NAC derivatization added a 
fluorescent tag to the primary amino group and results in a diastereomer for separation of D- and 
L-amino acid enantiomers by liquid chromatography. The derivatization reaction was then 
quenched with 75 µL of 0.1 M dd hydrazine hydrate, at which point, the solutions were promptly 
injected into the LC-FD/HRMS system for amino acid analysis.  

Amino acids were analyzed by LC-FD/HRMS using a Vanquish Horizon LC (Thermo 
Fisher Scientific) coupled to a Vanquish fluorescence detector (Thermo Fischer Scientific), and a 
Q Exactive hybrid quadrupole-Orbitrap mass spectrometer (Thermo Fisher Scientific). 
Compound identifications were determined by chromatographic retention time, optical 
fluorescence, and accurate mass measurements based on comparison to a mixed amino acid 
standard. A mass precision of 3 ppm, defined as [(measured m/z)–(calculated m/z)](calculated 
m/z) -1]×106 (ppm), was implemented for mass identification of target analytes by HRMS.  
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Two mobile phases were used during LC analyses of 2- to 4-carbon (C2–C4) and 6-carbon 
(C6) amino acids: a) 45 mM ammonium formate with 7 % MeOH, pH adjusted to 9.0 and b) LC-
MS grade MeOH. Mobile phase a) was made by first mixing 2 mL of LC-MS grade formic acid 
with 1033 mL of LC-MS grade water, then titrating the solution to pH 9.0 with 1M aqueous 
ammonium hydroxide, and finally adding 85 mL of LC-MS grade MeOH. The 1M ammonium 
hydroxide solution that was used for titration was generated by diluting a 7.3 M stock solution of 
aqueous ammonium hydroxide (assay = 28.6 %, ammonia in water) with LC-MS grade water to 
a final concentration of 1 M. Two mobile phases were used during LC analyses of 5-carbon (C5) 
amino acids: c) 45 mM ammonium formate with 7 % MeOH, pH adjusted to 7.4 and d) LC-MS 
grade MeOH. Mobile phase c) was prepared identically to mobile phase a), except mobile phase 
c) was titrated to pH 7.4 with 1 M aqueous ammonium hydroxide.   

Chromatographic separation was achieved using a Waters ACQUITY UPLC BEH C18 
VanGuard Pre-column (2.1 mm i.d. × 50 mm length, 1.7 µm particle size) in front of two 
stationary phases used in series: i) Waters ACQUITY UPLC CSH C18 (2.1 mm i.d. × 150 mm 
length, 1.7 µm particle size) and ii) Waters ACQUITY UPLC BEH Phenyl (2.1 mm i.d. × 
150 mm, 1.7 µm particle size). The C2–C4 and C6 amino acids were eluted using the following 
gradient: 0–35 min, 0-55 % eluent b, 35–45 min, 55 – 100 % eluent b, 45–50 min, isocratic at 
100 % eluent b, 50–50.1 min, 100–0 % eluent b, 50.1–60 min, isocratic at 0 % eluent b. The 
eluent flow rate was 0.15 mL min-1 for the entirety of the run and columns were heated at 33°C. 
The autosampler was kept at a constant temperature of 5°C and the injection volume was 10 µL. 
The FD was operated with an excitation wavelength of 340 nm and an emission wavelength of 
450 nm, and was maintained a temperature of 33°C. The LC-FD settings used to perform 
chromatography of the C5 amino acids were identical to those of the C2–C4 and C6 amino acids, 
except the C5 amino acid chromatography required the use of a difference aqueous mobile phase 
and a different gradient: 0–25 min, 15–20 % eluent d, 25–25.06 min, 20–35 % eluent d, 25.06–
44.5 min, 35–40 % eluent d, 44.5–45 min, 40–100 % eluent d, 45–50 min, isocratic at 100 % 
eluent d, 50–50.1 min, 100–15 % eluent d, 50.1–60 min, isocratic at 15 % eluent d.  

For all amino acids targeted, the HRMS system utilized a heated ESI(+) source to ionize 
target analytes, which was operated according to the following conditions: sheath gas (N2) flow 
rate = 40 arbitrary unit (a.u.), auxiliary gas (N2) flow rate = 10 a.u., sweep gas (N2) flow rate = 
2 a.u., spray voltage = 3.50 kV, capillary temperature = 350°C, S-lens (or stacked ring ion guide) 
RF (radio frequency) level = 50.0 %, and auxiliary gas heater temperature = 300°C. For all 
amino acid analyses, the HRMS system was operated in Full MS – SIM (single ion monitoring) 
scan mode and implemented the following scan parameters: scan range = 150–2000 m/z, mass 
resolving power setting = 70,000 (at full-width-half-maximum for m/z 200), fragmentation = 
none, polarity = positive, microscans = 1, AGC (automatic gain control) target = 1 × 106 ions, 
and maximum injection time = 50 ms. The result of this amino acid analysis is shown in Fig. 3B 
and Table S3. The data file (m/z vs. time) is provided as Data S5 at (74). 

 
Aliphatic amine analysis 

Samples from hot water extract (10 µL each) as well as a serpentine blank derivatized with the 
AccQ•Tag protocol (97) protocol which adds a fluorescent tag to primary and secondary amines 
(Fig. S2). Analysis was on a Waters ACQUITY H Class UPLC with a Waters fluorescence 
detector and a Waters Xevo G2-XS time of flight mass spectrometer (LD-FD/TOFMS) with an 
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ESI(+) source (98). Aqueous amine standards were evaluated at five concentrations, and a linear 
least-square model was fit for each amine. Peak areas generated from the mass chromatogram of 
AccQ•Tag derivatives were used to determine the concentrations of amines. The average value 
of three separate measurements of the same extracted sample was determined as the abundance 
of each analyte. The result of this amine analysis is shown in Fig. 4 and Table S3. The data file 
(m/z vs. time) is provided as Data S6 at (74). 

 
Volatile compound analysis 

Samples of the hexane and DCM extracts (2 µL each) as well as procedural blanks were 
analyzed without derivatization via GC-QMS using a GC (Thermo Trace 13100) equipped with a 
5 m base-deactivated guard column (Restek, 0.25 mm i.d.) and a PoraBOND Q (0.25 mm i.d. × 
25 m length, 3 µm film thickness; Agilent) fused silica column, coupled to an electron-impact 
triple-quadrupole mass spectrometer (Thermo TSQ; ion source set at 250°C and 70 eV). The GC 
oven was programed at 130°C for 1 min, then to150°C at 50°C min-1, held for 4 min, then to 
300°C at 40°C min-1, and held for 30 min. Ultrahigh purity He (5.0 grade) was used as carrier 
gas at 1.5 mL min-1. Samples were injected in triplicate in split mode (split flow: 50 mL min-1, 
held for 5 min under constant flow) in aliquots of 1 µL. Mass spectra were used to identify 
compounds by comparison to reference standards, detection limits are estimated to be <1 pmol in 
solution. The result of this volatile compound analysis is shown in Fig. S4. The data file (m/z vs. 
time) is provided as Data S7 at (74). 

 
Monocarboxylic acid analysis 

Samples from the hot water extract (50 µL each) as well as a procedural blank were analyzed for 
carboxylic acids by GC-QMS. Briefly, the samples were acidified using 10 µL 2 M NaOH, dried 
under vacuum overnight, then the samples were suspended in 50 μL of 6 M HCl, 30 μL of 2-
pentanol, 200 μL of DCM, and heated at 100°C for 16 h in sealed PTFE-lined screw cap vials in 
a heating block. The derivatized samples at room temperature were passed through a short 
column of aminopropyl silica gel (5 mm i.d. × 45 mm length), followed by two DCM rinses 
(~3 mL each time), and N2-gas blow-drying. The derivatized carboxylic acids were re-dissolved 
in 80 μL of DCM and analyzed using a gas chromatographer (Thermo Trace 13100) equipped 
with a 5 m base-deactivated fused silica guard column (Restek, 0.25 mm i.d.), two Rxi-5ms (0.25 
mm i.d. × 30 m length × 0.5 µm film thickness; capillary columns connected in series using 
SilTite μ-unions by Restek), and coupled to an electron-impact triple-quadrupole mass 
spectrometer (Thermo TSQ, ion source set at 250°C and 70 eV). The GC oven was programed as 
follows:  initial temperature held at 40°C for 1 min, then to 110°C at 15°C min-1, then to 140°C 
at 10°C min-1, and finally to 300°C at 30°C min-1 with a final hold of 5 min. We used ultrahigh 
purity He (5.0 grade) as carrier gas at 4.7 mL min-1. Aliquots of 1 µL injections of the derivatives 
were made in triplicated in split mode (split flow: 5 mL min-1, held for 5 min under constant 
flow). The identification and quantification of the derivatized carboxylic acids were performed 
by comparison to reference standards and calibration curves following published methods (36, 
98). The result of this monocarboxylic acid analysis is shown in Fig. S5 and Table S4. The data 
file (m/z vs. time) is provided as Data S8 at (74). 
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Aromatic hydrocarbon analysis 
Samples of the hexane, DCM, MeOH, and DCM/MeOH extracts as well as procedural blanks 
were analyzed without derivatization using an Agilent 7890B gas chromatograph coupled to a 
LECO Pegasus HRT+4D time of flight mass spectrometer (ion source set at 250°C and 70 eV; 
GC×GC-TOFMS). The GC oven was equipped with a 5 m base-deactivated fused silica guard 
column (Restek, 0.25 mm i.d.) and two Rxi-5ms (0.25 mm i.d. × 30 m length, 0.5 µm film 
thickness; capillary columns connected in series using SilTite μ-union connectors, Restek). The 
temperature of the primary column was held at 40 °C for 10 min, then increased to 60°C at 
1°C min-1, held for 5 min at 60°C, then increased to 110°C at 2°C min-1, held for 5 min at 110°C, 
then increased to 260°C at 2°C min-1, held for 5 min at 260°C, finally increased to 280°C at 
20°Cmin-1 and held for 25 min at 280°C. The secondary oven offset temperature was kept at 5°C 
relative to the primary oven, the modulation temperature offset was kept at 15°C, and a 
modulation period of 5 s was applied. The carrier gas used was ultrahigh purity grade helium 
(5.0 grade) at 1.4 mL min-1. Duplicate injections of samples were made in splitless mode in 
aliquots of 2 µL. Data were processed using the LECO Corp. ChromaTOF software. Mass 
spectra were used to identify compounds by comparison to reference standards were possible, 
detection limits are estimated to be ~1 pmol in solution. The result of this aromatic hydrocarbon 
analysis is shown in Fig. 5. The data file (m/z vs. time) is provided as Data S9 at (74). 

 
N-containing heterocyclic compound analysis 

Sample solution (1 µL) of the MeOH extract was analyzed using a nano liquid chromatograph 
(UltiMate 3000 RSLCnano, Thermo Fisher Scientific) coupled with a high-resolution mass 
spectrometer (HRMS, Q-Exactive Plus, Thermo Fisher Scientific) equipped with a nano ESI(+) 
ion source (100), using a nano amide column (Accucore Amide, 75 µm i.d. × 150 mm length, 
Thermo Fisher Scientific). The eluent mixture of a (2 mM HCOONH4, which was prepared from 
LCMS grade 1 M HCOONH4 diluted with QTOFMS grade H2O, FUJIFILM Wako) and 
b (MeCN, QTOFMS grade, FUJIFILM Wako) was used at a flow rate of 250 nL min-1, where 
the ratio a/b stayed at 1/99 in the first 12 min, then programmed by a linear gradient from 1/99 to 
35/65 in 10 min, followed by at 35/65 for 8 min. The ESI(+) voltage and capillary temperature 
were set to 1.8 kV and 250°C, respectively. The positive ions were measured by a full scan mode 
over a range of m/z 62 to 500 with a mass resolving power setting of 140,000 (at full-width-half-
maximum for m/z 200). The maximum injection time and the AGC target were set to 50 ms and 
1 × 106 ions, respectively. Most ions were observed as a protonated form of the molecular mass 
(M) as [M + H]+. A lock mass mode was used to calibrate the mass using protonated dioctyl 
phthalate ([C24H38O4 + H]+ = 391.28429 Da), which was derived from the tubing or solvents. The 
lock-mass measurement gave a mass precision of less than 3 ppm. The acquired mass spectral 
signal was analyzed by the Xcalibur software (Thermo Fisher Scientific). The MeOH extract of 
the Murchison grains (5.44 mg) was also analyzed for a comparison. A mass spectrum (m/z 265-
295) of the A0106 MeOH extract is shown in Fig. 6A. The data of full mass spectrum (m/z vs. 
time) is provided as Data 10 at (74). The chromatographic data of CnH2n-4N molecules from the 
MeOH extracts A0106 and Murchison samples are shown in Table S5.  
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Organic molecular imaging by in-situ analysis 
An about 1 mm-sized Ryugu grain (A0080) was embedded in a soft eutectic alloy (U-alloy 
eutectic point of 46.7°C; U-47, Osaka Asahi Co., Ltd) because of the expected fragility of Ryugu 
samples. No blazing or polishing was performed on the sample surface. Imaging of organic 
molecules was performed by in-situ analysis using a two-dimensional desorption electrospray 
ionization (DESI) ion source (Omni Spray Source 2D, Prosolia Inc.) equipped with an HRMS 
(Q-Exactive Plus, Thermo Scientific) in an ISO 5 clean room at KU. The electrically-charged 
MeOH (QTOFMS grade, FUJIFILM Wako) was used as a spray solvent at a rate of 3 µL min-1, 
and the electrospray voltage was set to 3 kV. The DESI emitter was mounted about 100 µm 
above from the sample surface and arranged at an angle of 55º with respect to the surface. The 
pressure of nebulizer N2 gas was set to 0.7 MPa. The desorbed ions were collected at the moving 
sample surface beneath the spray. The imaging was performed using a motorized x–y stage by 
continuously scanning the sample surface in the x-direction with a rate of 55 µm s-1. The y-
direction was stepped in 50 µm increments. The positive ions were measured over m/z 50−500 
range using a full scan mode with a mass resolving power of 140,000 (at full-width-half-
maximum for m/z 200). The maximum injection time and the AGC target were set to 200 ms and 
5 × 106 ions, respectively. The obtained mass spectral data file was converted into Analyze 7.5 
format (3D image file: x, y, and m/z) using FireFly software (Prosolia Inc.) and then imported to 
BioMap (101) for visualization. The apparent mass resolution of the constructed DESI images 
was 0.001 Da. A baked antigorite grain (~2 × 0.5 mm) embedded in a U-47 alloy was also 
analyzed under the same condition as a blank, showing no mass peaks detected in Fig. 7 (Fig. 
S8). The obtained DESI images are shown in Fig. 7C-D for the Ryugu sample and in Fig. S8 for 
a serpentine blank. The data file of mass spectrum (m/z vs. ion intensity) on the sample surface is 
provided as Data S11 at (74).  

 
FTIR measurement of the solvent extract    

FTIR measurement of the solvent extracts was performed using a Nicolet iN10 infrared 
microscope (Thermo Fisher Scientific) in an ISO 6 clean room at KU. Solvent extract (1-2 µL) 
was dropped onto a BaF2 plate (1 mm thick) and dried in air on an ISO 5 clean bench. 
Transmission spectra acquired using a mercury–cadmium–telluride detector at liquid N2 
temperature with an aperture size of 300 × 300 µm. The microscope and detector were 
continuously purged with dry N2 gas during analysis. Acquisitions of 256 scans were collected 
with a resolution of 4 cm-1 (2.5–94 nm) between 4000–675 cm-1 (2.5–15.4 µm). Background 
spectra were acquired with the blank BaF2 plate. The FTIR spectra of DCM, MeOH and H2O 
extracts of the Ryugu sample and blank are shown in Fig. S6A-C. The FTIR spectral data 
(wavenumber (cm-1) −wavelength (µm) −transmittance (%)) is provided as Data S12 at (74). 
 

Supplementary Text 
Hexamethylenetetramine (HMT) has been detected in the aqueous extract of several 
carbonaceous meteorites (59). Since the formation of HMT on the meteorite parent bodies is not 
favored due to difficulties in the presence of volatile precursors such as formaldehyde and 
ammonia, both of which are necessary for HMT formation (58), the meteoritic HMT might be 
the remnant of photochemical reactions in the interstellar medium (59). Laboratory experiments 
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demonstrated that HMT is easily decomposed under hydrothermal conditions. When HMT is 
heated at 150ºC in the aqueous solution (pH = 10), it is completely decomposed within a couple 
of weeks (61). While it is heated at 100ºC for one month under the similar conditions, no 
decomposition was observed, even in the presence of amorphous silicates; just its hydrogen was 
exchanged with that of ambient water (60). Hence, its non-detection in any Ryugu extracts 
suggests that, if HMT was present at the formation of Ryugu, it may have been heated with water 
at temperatures above its decomposition temperature. Since N-heterocyclic molecules such as 
alkyl homologues of pyridines and imidazoles are formed by hydrothermal decomposition of 
HMT (61), their presence in the MeOH extract supports the above hypothesis. Note that the 
degree of thermal stability of HMT may vary with ambient conditions such as pH and water 
contents. 
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Fig. S1. An aggregate A0106 Ryugu sample. The scale bar corresponds to 1 mm. Image taken 
by H. Naraoka at KU. 
 
 
 
 
 
 
 

 

Fig. S2. Analytical scheme for Ryugu samples. 
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Fig. S3. O/C-H/C plots of the Ryugu extract determined by FTICR/MS. Oxygen-containing 
molecules were identified using ESI(-) (A-D), ESI(+) (E-H), and APPI(+) (I-L). The size of the 
bubble indicates the intensity of the original signals in the mass spectra. (A) CHO by ESI(-), (B) 
CHOS by ESI(-), (C) CHON by ESI(-), (D) CHONS by ESI(-), (E) CHO by ESI(+), (F) CHOS 
by ESI(+), (G) CHON by ESI(+), (H) CHONS by ESI(+), (I) CHO by APPI(+), (J) CHOS by 
APPI(+), (K) CHON by APPI(+), and (H) CHONS by APPI(+). The S-containing molecules by 
ESI(-) were highly oxygenated ((B) and (D)), indicating a diverse suite of sulfur-oxygenated 
organic molecules. 
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Fig. S4. GC-QMS total ion chromatograms of the hexane fraction (A) and DCM fraction 
(B) of sample A0106 in comparison with the serpentine blank and standards.  No peaks in 
A0106 were seen that were not in the blank.  The compound identities are: 1) nitrogen, 2) water, 
3) methanol, 4) ethanol, 5) acetone, 6) DCM, 7) methyl acetate, 8) isopentane, 9) diethyl ether, 
10) n-pentane, 11) cyclopentane, 12) methyl ethyl ketone, 13) tetrahydrofuran, 14) ethyl acetate, 
15) 2,2-dimethylbutane, 16) methyl formate, and 17) acetonitrile. 
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Fig. S5. Positive electron-impact GC-QMS chromatogram (5.8 – 6.8 min region, m/z = 70+87 
±0.5) of hot-water extracted derivatized carboxylic acids from Ryugu (A0106), procedural-
serpentine blank, and commercially available standards. Identifications: 1) formic acid, 2) 
acetic acid, U) unknown compound. Asterisks indicate peaks introduced by the reagent used for 
derivatization. 
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Fig. S6. FTIR spectra of the (A) DCM, (B) MeOH, and (C) H2O extracts of the Ryugu 
sample (A0106) and serpentine blank. The DCM extract of A0106 exhibited an absorption at 
2850-2950 cm-1 (3.51-3.39 µm) (CH2/CH3 bonds). The H2O extract of A0106 contained very 
fine suspended material showing various absorption bands at 750-1650 cm-1 (13.3-6.1 μm) (C-H 
and C-C bonds) likely derived from a large PAH structure except for the strongest absorption 
peak at ~1000 cm-1 (~10 µm) (Si-O). The various absorption peaks at 750-1650 cm–1 (13.3-
6.1 μm) regions have often been observed by the IR observations toward interstellar medium. 
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Fig. S7. DESI images and mass spectra from the A0080 surface. (A) Total ion image (TII) 
and (B) mass spectrum of total ion from region of interest (ROI) shown by white outline in (A). 
The criteria for molecule identification was [ion intensity from ROI] > [ion intensity from the 
surrounding metal ×10]. Many ions in the mass spectrum were derived from spray solvent, 
tubing, and/or surrounding air. (C) Magnified mass spectrum between m/z 265 to 295 in (B) for 
comparison to Fig. 6A. (D-G) Magnified mass spectra in (B) and DESI images corresponding for 
each peak including CHN compounds in Fig. 7. (D) m/z 203.00 to 204.25, (E) m/z 217.40 to 
217.65, (F) m/z 229.55 to 230.80, and (G) m/z 243.35 to 244.60.  The molecules in boxes are 
detected from the sample surface. 
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Fig. S8. Spatial distributions of organic molecules on the surface of an antigorite grain 
measured by DESI-HRMS. The measurement of the antigorite surface was performed as a 
blank for the A0080 sample shown in Fig. 7. (A) An optical image of an antigorite grain 
embedded in a soft alloy. (B) Maps of CnH2n-6N+ series (n = 14, 15) and (C) CnH2n-8N+ series 
(n = 16, 17) molecules. White outlines show the boundary between an antigorite grain and 
surrounding metal. The scale bar in the images is 500 µm. 
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Table S1.  Carbon, nitrogen, hydrogen, oxygen, and sulfur contents (wt%) with their stable 
isotopic compositions of the Ryugu grains in the A0106 sample. 

        

Ryugu A0106  Carbon 
(wt%) 

d13C 
(‰ vs. VPDB) 

Nitrogen  
(wt%) 

d15N 
(‰ vs. Air) 

weight C/N 
ratio 

         

#1  3.69 -2.7 0.16 +39.1 23.8 

#2  3.93 +1.4 0.17 +53.2 23.1 

#3  3.68 -0.4 0.16 +36.7 23.7 

Average  
(3 analyses)   3.76±0.14 -0.58±2.0 0.16±0.01 +43.0±9.0 23.5±0.4 

         

   Hydrogen 
(wt%) 

dD 
(‰ vs. 

VSMOW) 

Oxygen  
(wt%)* 

d18O 
(‰ vs. 

VSMOW) 

weight O/H 
ratio 

         

#4  1.05 +240 12.5 +10.5 11.9 

#5  1.15 +265 13.3 +12.8 11.5 

#6  1.22 +250 13.0 +14.4 10.7 

Average 
(3 analyses)   1.14±0.09 +252±13 12. ±0.4 +12.6±2.0 11.4±0.6 

         

   Sulfur 
(wt%) 

d34S 
(‰ vs. VCDT) 

  weight C/S 
ratio 

         

#7  2.6 -1.1   - 

#8  3.9 -2.4   - 

#9  3.3 -5.6   - 

Average 
(3 analyses)   3.3±0.7 -3.0±2.3   1.15 

         

*Pyrolyzed oxygen released at 1400ºC under a helium gas flow. 
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Table S2.  C, N and H contents (wt%) with their stable isotopic compositions of 
carbonaceous chondrites (CV, CR, CO, CM, and CI). All elemental abundances are wt%, the 
errors when known are indicated as 1 standard deviations for C and H wt% and δD and 2 
standard deviations for N wt%, δ13C and δ15N.  δ13C is vs. VPDB, δ15N is vs. air, and δD is vs. 
VSMOW. Ryugu data is from Table S1. av.: Averaged value. n.d.: Not determined. 
 
Sample C (wt%) δ13C (‰) N (wt%) δ15N (‰) H (wt%) δD (‰) References 
Ryugu        
A0106 3.76±0.14 -0.58±2.0 0.16±0.01 43.0±9.0 1.14±0.09 252±13  
CI        

Orgueil av. 3.10±0.50 -9.8±0.2 0.098±0.029 39.7±4.14 1.04±0.48 129.6±86.9 79,81,83,84, 
85,88,90 

Ivuna av. 3.50±0.20 -10.9±0.2 0.095±0.029 48.5±5.02 1.11±0.49 165.8±100.6 13,79,81,85, 
88 

Alais av. 3.90±0.80 -13.7±0.2 0.102±0.031  1.09±0.57 66.1±59.7 13,85,90 
CM        
ALHA84034 1.74 2.2 0.061 16.1 1.40±0.00 -182.9±2.9 88 
ALH 84042 1.68 0.8 0.060 15.3 1.35±0.01 -185.3±0.5 88 
ALH 84044 1.71 2.3 0.061 15.3 1.33±0.01 -180.7±1.9 88 
ALH 85013 1.73±0.05 -0.7±0.2 0.087±0.003 32.6±0.3 1.21±0.00 -137.6±0.5 88 

Banten av. 1.87±0.13 -4.8 0.078 43.0 0.90±0.63 11.2±37.1 13,82,85,87, 
88 

Murchison av. 2.14±0.38 -4.9±3.88 0.103±0.027 45.8±6.85 0.97±0.14 -56.8±26.2 81,83,85,86, 
87,88,89,90 

ALHA81002 1.66 -9.4 0.069 13.6 1.30±0.01 -142.0±1.8 88 
ALH 83100 1.9 -2.7 0.070 11.9 1.46±0.01 -201.1±0.5 88 
ALH 84029 1.71 2.4 0.061 15.5 1.36±0.01 -184.1±2.5 88 
DNG 06004 2.04 1.8 0.112 49.9 0.99±0.01 -3.4±1.1 88 
DOM 08003 1.85 -0.5 0.095 41.1 1.46±0.01 -137.0±11.1 88 
DOM 08013 1.92 -2.4 0.116 56.3 0.96±0.01 47.2±2.4 88 
EET 96006 1.99 -1.8 0.124 39.2 1.28±0.00 -90.1±0.6 88 
EET 96016 2.09 -1.4 0.121 44.8 1.25±0.01 -89.5±0.1 88 
GRA 98074 2.04 0.7 0.116 49.4 1.11±0.03 -14.1±4.3 88 
GRO 95566 1.93 0.5 0.110 55.7 1.10±0.02 -18.8±1.1 88 
LAP 02239 1.91 3.7 0.101 45.6 1.03±0.02 -36.0±0.7 88 
LAP 02333 2.1 1.0 0.141 35.4 1.13±0.01 -2.2±4.6 88 
LAP 02336 2.02 -1.2 0.144 33.7 1.06±0.01 5.5±2.3 88 
LAP 03718 2.03 -0.6 0.154 31.1 1.07±0.01 1.7±3.6 88 
LAP 03785 1.81 -0.6 0.096 36.6 1.28±0.01 -123.6±0.8 88 
LEW 85311 2.03 -3.1 0.156 33.1 0.91±0.04 119.4±2.9 88 
LEW 85312 2.12 -0.8 0.171 37.5 0.95±0.02 126.3±4.1 88 
LEW 87016 1.95 -1.8 0.124 48.1 1.13±0.01 -26.0±2.0 88 
LEW 87022 1.88 1.6 0.093 29.9 1.20±0.01 -112.9±2.4 88 
LEW 87148 1.81 -1.9 0.099 43.0 1.27±0.03 -102.2±4.5 88 
LEW 88001 1.97 0.9 0.101 48.8 1.11±0.01 -50.2±0.0 88 
LON 94102 2.06±0.05 -1.8 0.123±0.003 38.0±0.1 0.93±0.01 21.7±0.7 88 
MAC 88101 1.73±0.01 1.2±0.1 0.097±0.004 51.6±1 1.20±0.00 35.0±5.1 88 
MAC 88176 1.67 -3.0 0.093 22.4 1.20±0.02 -107.4±2.7 88 
MCY 05230 2 1.5 0.110 47.3 0.98±0.01 -17.6±3.7 88 
MET 00432 2.72±0.02 3.0±0.5 0.118±0.004 29.8±1 1.07±0.02 45.3±0.2 88 
MET 01070 1.58 -9.0 0.087 -4.8 1.36±0.00 -220.3±0.0 88 

Mighei av. 2.67±0.23 -10.8±1.45 0.095±0.011  1.11±0.18 -99.2±7.3 79,81,85,88, 
90 
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Murray av. 2.24±0.60 -5.8±4.96  42.0±4.24 0.91±0.14 -22.7±43.4 79,81,83,85, 
88,90 

Nogoya av. 2.03±0.18 -9.6±2.97 0.064±0.008 14.7±1.47 1.28±0.26 -147.7±36.2 13,85,88 
QUE 97990 2 -4.2 0.109 40.9 1.04±0.01 -22.2±1.0 88 
QUE 99355 1.53±0.01 -8.4±0.1 0.077 15.3±0.3 1.13±0.00 -125.0±2.3 88 
SCO 06014 1.34 -5.5 0.063 -2.8 1.33±0.01 -162.0±2.0 88 
SCO 06043 1.45 -11.3 0.071 -3.6 1.39±0.00 -226.7±0.0 88 
SCO 06043 1.23 -8.0 0.063 -6.0 1.34±0.03 -218.6±4.0 88 
TIL 91722 2.04 0.7 0.121 56.3 0.90±0.01 53.7±0.7 88 
Y-791198 2.43 -2.4 0.133 47.4 1.21±0.00 -8.9±1.0 88 
Sayama 1.99 4.5 0.080  1.43 -172.0±3.0 92 
Paris av. 2.16±0.73 -7.5 0.172  0.74±0.23 107.0±18.8 90,91,92 
Boriskino 1.81 -7.7 0.052 16.0 0.89 -176.0 13 
Cochabamba 2.03 -10.6 0.067 35.0 0.79 -63.0 13 
Erakot 1.85 -9.3 0.070 43.0 0.80 -105.0 13 
Pollen 3.22 -14.7 0.115 39.0 0.78 -80.0 13 
Santa Cruz 1.98 -5.1 0.085 n.d. 0.50 3.0 13 
Haripura 1.6 -3.7   0.81 -74.0 79 
Nawapali 1.9 -10.0   1.00 -111.0 79 
Santa Cruz 2.2 -4.3   0.93 -49.0 79 
ALH 83100     1.60±0.03 -156.2±5.2 85 
Y-791824     1.39±0 -129.9±3.1 85 
EET 83334     1.51±0.01 -188.4±3.8 85 
Pollen     1.52±0.32 -75.6±2.8 85 
Y-791198     1.61±0.02 26.1±1.9 85 
LEW 90500     1.73±0.01 -47.4±1.3 85 
ALH 85004     0.36±0.09 23.1±19.4 85 
BUC 10943 1.52 -7.6 0.095 15.0 1.22±0.004 -109.1±2.6 89 
MIL l090073 0.72 -14.7 0.047 10.5 0.60±0.001 -136.0±0.5 89 
Aguas Zarcas 2.13±0.04 -9.8±0.2 0.098±0.029 n.d. 0.87±0.05 -107.1±2.0 90 
Jbilet 
Winselwan 1.54±0.03 -10.9±0.2 0.095±0.029 n.d. 0.47±0.03 -38.9±2.0 90 

LON 94101 1.91±0.04 -13.7±0.2 0.102±0.031 n.d. 0.83±0.05 -154.6±2.0 90 
Maribo 2.18±0.04 -5.5±0.2 0.114±0.034 n.d. 0.79±0.04 -37.9±2.0 90 
Mukundpura 2.08±0.04 -3.9±0.2 0.086±0.086 n.d. 1.01±0.05 -158.2±2.0 90 
CR        

Al Rais av. 2.59±0.19 -11.6±0.21 0.126±0.056 134.5± 
29.19 1.11±0.38 646.8±80.4 13,82,85,86, 

88 
EET 92042 1.18 -4.9 0.091 178.7 0.42±0.01 752.5±14.9 88 
EET 96268 1.03 -1.9 0.074 173.0 0.38±0.02 610.7±33.9 88 
GRA 95229 1.09 0.0 0.078 178.2 0.42±0.02 654.6 88 
GRO 95577 1.18 -9.2 0.061 182.8 1.29±0.03 266.4±4.5 88 
LAP 2342 1.13 -1.9 0.088 162.8 0.40±0.02 691.5±12.8 88 
LAP 4720 1.29 -1.2±0.2 0.100±0.004 166.1±1 0.38±0.02 763.1±9.1 88 
MET 426 1 -3.3 0.068 179.8 0.36±0.01 612.4 88 
PCA 91082 1.31 -2.2 0.101 177.1 0.58±0.02 576.9 88 
QUE 99177 1.26 -7.3 0.088 184.1 0.47±0.03 662.7 88 

Renazzo av. 1.64±0.53 -7.4±2.05 0.074±0.019 173.6±16.5 0.50±0.13 674.0±246.0 81,83,84,85, 
86,88 

EET 87770 1.42±0.07 -6.7±1.32 0.110±<0.01 184.0±2.6 0.48±0.08 367.0±32.0 86 
Y-790112 1.29±0.04 -4.8±0.15 0.050±<0.01 178.0±5.1 0.77±0.02 422.0±21.6 86 
Kaidun 3.34 -9.3 0.189 165.0 0.64 1045.0 13 
EET 96286     0.60±0.08 282.0±140.9 85 
EET 87770     0.47±0.08 366.6±16.5 85 
Y-790112  

   
0.77±0.03 421.8±21.6 85 
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CV        

Allende av. 0.41±0.16 -20.9±3.08 0.007±0.008 22.0 0.03±0.03 13.9±119.6 14,83,84,85, 
90 

Bali av. 0.69±0.15 -19.3±0.92 0.005 -10.0 0.05±0.01 -3.2±70.4 13,85,87,90 
Kaba av. 1.21±0.19 -17.4±0.36 0.059 -22.9 0.16±0.08 44.9±111.9 13,85,88,90 
Grosnaja av. 0.81±0.42 -22.7±1.48 0.022±0.017  0.29±0.21 -64.0±34.9 13,85,90 
Leoville 0.77 -12.8 0.010 -24.0 0.093 -49.0 13 
Mokoia av. 0.73±0.04 -17.8±0.42 0.007  0.08±0.02 239.6±54.5 13,79,81 
Vigarano av. 0.50±0.71 -18.7 0.004±0.005  0.18±0.13 -35.3±34.3 13,85,90 
ALH 84028     0.01±0.00 -45.9±22.6 85 
CO        
ALHA77003 
av. 0.28    0.15 15.8 82,85,87 

DOM 03238 0.9 -11.9 0.035 -6.0 0.30±0.001 -73.1±0.4 89 
ALHA77307 0.84 -7.1 0.025 -2.7 0.55±0.01 -48.2±4.4 88 
Felix 0.64 -14.2 0.003 -22.0 0.02 -62.0 13,79 
Kainsaz av. 0.39 -18.5 0.003 -30.0 0.05±0.04 56.9±137.3 13,85 
Lancé av. 0.40±0.08 -16.4±0.92 0.004 13.0 0.14±0.13 -98.2±15.5 13,79,85 
Warrenton av. 0.25 -19.3 0.003  0.05±0.04 -115.2±45.0 13,85 
Y-791717     0.34±0.00 -49.8±2.3 85 
FRO 95002     0.14±0.00 -70.6±0.8 85 
ALH 82101     0.11±0.00 -78.3±5.3 85 
DOM 08006 1.19 -5.0 0.019 6.5 0.44±0.005 4.7±4.8 89 
DOM 08004 0.91 -11.3 0.031 -7.9 0.33±0.001 -89.8±3.8 89 
DOM 10104 0.88 -11.7 0.072 -5.9 0.40±0.002 -98.7±1.3 89 
MIL 03377 0.64 -7.3 0.032 -5.5 0.39±0.02 -92.9±0.3 89 
MIL 05013 0.65 -7.1 0.100 -7.2 0.29±0.03 -73.7±0.2 89 
MIL 05024 0.64 -7.6 0.032 -7.8 0.35±0.001 -89.7±3.2 89 
MIL 07182 0.66 -7.0 0.027 -8.5 0.33±0.004 -85.5±1.2 89 
MIL 07193 0.63 -7.6 0.030 -8.4 0.65±0.01 -85.8±3.8 89 
MIL 07709 0.62 -7.0 0.021 -8.1 0.31±0.002 -85.4±0.3 89 
MIL 090010 0.69 -6.5 0.016 -4.9 0.37±0.001 -94.0±0.1 89 
MIL 090038 0.64 -7.2 0.035 -3.3 0.34±0.01 -83.9±3.1 89 
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Table S3. Comparison of amino acid and amine abundances as detected by 3D-HPLC/FD 
and LC-FD/HRMS in hot water extracts of Ryugu sample A0106 and the CI carbonaceous 
chondrite Orgueil. n.t.: Not targeted by 3D-HPLC/FD. n.d.: Not determined. For Ryugu at KU, 
the concentration was determined by single analysis. For Ryugu at GSFC, reported uncertainties 
are based on the standard deviation (sx) of the average value of multiple individual measurement 
(N), where δx=sx(N)-1/2. The Orgueil data are from (23, 31). 
 

Amino Acid 
Ryugu (A0106) 

Hydrolyzed 
(KU) nmol g-1 

Ryugu (A0106) 
Hydrolyzed (GSFC) 

nmol g-1 

Orgueil (CI) 
Hydrolyzed (23) 

nmol g-1 
D-Aspartic acid n.t. <0.06 0.41±0.23 
L-Aspartic acid n.t. 0.018±0.010 0.41±0.21 
D-Glutamic acid n.t. <0.03 0.32±0.11 
L-Glutamic acid n.t. <0.03 0.56±0.15 
D-Serine n.t. 0.056±0.014 <0.01 
L-Serine n.t. 0.182±0.034 <0.01 
Glycine 5.6 0.456±0.053 11.5±6.0 
β-Alanine n.t. 3.29±0.14 30.6±7.6 
D-Alanine 0.72 0.0246±0.0062 0.90±0.19 
L-Alanine 0.80 <0.44 1.1±0.25 
ɣ-Amino-n-butyric acid n.t. 3.51±0.18 2.7±1.3 
D-β-Amino-isobutyric acid n.t. 0.201±0.014 n.d.*† 
L-β-Amino-isobutyric acid n.t. 0.170±0.018 
D-β-Amino-n-butyric acid n.t. 0.324±0.011‡ 2.1±1.1 
L-β-Amino-3-butyric acid n.t. 0.322±0.010‡ 1.8±0.6 
⍺-Amino-isobutyric acid n.t. 0.383±0.023 3.3±1.4 
D-⍺-Amino-n-butyric acid 0.11 <0.01 0.69±0.48† 
L-⍺-Amino-n-butyric acid 0.11 <0.01 
D-Valine 0.026 <0.07 0.19±0.05 
L-Valine 0.056 <0.06 0.48±0.02 
D-Norvaline 0.017 <0.04‡ 0.23±0.02† 
L-Norvaline 0.017 <0.04‡ 

D-Isovaline 0.053 <0.05 0.31±0.03 
L-Isovaline 0.047 <0.05 0.42±0.02 
R,S-β-Amino-n-pentanoic acid n.t. <0.14 1.6±0.1 
δ-Amino-n-valeric acid n.t. 1.160±0.089‡ 1.2±0.2 
D,L-3-Amino-2-methylbutyric acid n.t. 0.18 0.55±0.03 
3-Amino-3-methylbutyric acid n.t. 0.29 <0.26 
3-Amino-2,2-dimethylbutyric acid n.t. 0.0555±0.0021‡ 0.59±0.03 
R,S-3-Amino-2-ethylpropanoic acid n.t. 1.4§ 1.5±0.1 
D,L-ɣ-Amino-n-valeric acid n.t. 0.86§ 2.4±0.2 
D,L-4-Amino-2-methylbutyric acid n.t. <0.17 1.5±0.1 
D,L-4-Amino-3-methylbutyric acid n.t. 0.18§ 2.8±0.1 
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Amine 

 Ryugu (A0106) 
Unhydrolyzed 

(GSFC) 
nmol g-1 

Orgueil (CI) 
 Unhydrolyzed (31) 

nmol g-1 

Methylamine  23.79±0.52 331.5±0.2 
Ethylamine  11.37±0.27 27.3±2.4 
n-Propylamine  0.0521±0.0058 4.8±0.04 
Isopropylamine  0.59±0.026 5.1±0.1 
Butylamines  <0.1 7.6±0.5 
*Analyte was reported as detected but not quantified in (23), in part, because a lack of optically 
pure standards prevented proper quantification of the analyte’s two enantiomers.  
†Sum of both enantiomers, which could not be separated under chromatographic conditions. 
‡Quantification of analytes was performed using Orbitrap MS due to interfering, optically 
fluorescent species.  
§Analyte was tentatively detected, but not quantified. Therefore, an upper limit estimate is 
provided for the analyte instead. 
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Table S4. Blank subtracted abundances of carboxylic acids in the hot-water extract of 
Ryugu (A0106) and the highly aqueously altered CM-type carbonaceous chondrite ALH 
83100 (36). n.a.: Not analyzed. Values are the average of three measurements with errors shown 
as standard deviations (σx) of the average value of multiple individual measurement (N), where 
where δx=sx(N)-1/2. 
 

Monocarboxylic Acids Ryugu (A0106)*  
(nmol g-1) 

ALH 83100 (CM) (36) 

(nmol g-1) 
Formic acid 9466±103 n.a.† 
Acetic acid 5708±1536 4455±383 
Propanoic acid < 0.1 281±24 
Isobutyric acid < 0.1 < 0.7 
2,2-Dimethylpropanoic acid < 0.1 < 0.01 
Butyric acid < 0.1 11±2 
2-Methylbutyric acid < 0.1 < 0.7 
Isopentanoic acid < 0.1 < 0.7 
2,2-Dimethylbutyric acid < 0.1 < 0.01 
3,3-Dimethylbutyric acid < 0.1 < 0.01 
Pentanoic acid < 0.1 < 0.7 
2-Ethylbutyric acid/2-Methylpentanoic acid < 0.1 < 0.01 
3-Methylpentanoic acid < 0.1 < 0.7 
4-Methylpentanoic acid < 0.1 < 0.7 
Hexanoic acid < 0.1 < 0.01 
Benzoic acid  < 0.1 < 0.01 
Total carboxylic acids  15174±1639 4747±410† 

*Compounds identified by comparison of elution time and mass spectra to that of standards.  
†Formic acid was detected but could not be isolated. 
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Table S5. Relative abundance of CnH2n-5N molecules in the MeOH extracts of Ryugu A0106 
sample and Murchison meteorite for comparison. Peak areas are in arbitrary unit derived 
from ion intensity × time. n.d.: Not detected. Chromatographic data is provided as Data S13 at 
(74). 
 

Formula Theoretical 
mass (Da) 

[M+H]+ 

(Da) 
A0106 Peak 
area (×106) 

A0106  
Peak Ratio 
vs. C17=100 

Murchison 
Peak area 

(×106) 

Murchison 
Peak Ratio 
vs. C11=100 

C5H5N 79.0422  80.0495  58.8 22.1  32.0 0.64  
C6H7N 93.0578  94.0651  29.9 11.2  21.2 0.43  
C7H9N 107.0735  108.0808  58.7 22.0  424 8.52  
C8H11N 121.0891  122.0964  72.0 27.0  1668 33.5  
C9H13N 135.1048  136.1121  68.5 25.7  3033 60.9  
C10H15N 149.1204  150.1277  86.1 32.3  4058 81.5  
C11H17N 163.1361  164.1434  109.9 41.3  4977 100  
C12H19N 177.1517  178.1590  132.1 46.7  4392 88.3  
C13H21N 191.1674  192.1747  132.2 49.6  4064 81.7  
C14H23N 205.1830  206.1903  179.5 67.4  2988 60.0  
C15H25N 219.1987  220.2060  210.3 79.0  1971 39.6  
C16H27N 233.2143  234.2216  254.8 95.7  1146 23.0  
C17H29N 247.2300  248.2373  266.3 100  613 12.3  
C18H31N 261.2456  262.2529  264.0 99.1  331 6.65  
C19H33N 275.2613  276.2686  228.3 85.7  188 3.78  
C20H35N 289.2769  290.2842  173.7 65.2  95.3 1.91  
C21H37N 303.2926  304.2999  136.8 51.4  58.0 1.17  
C22H39N 317.3082  318.3155  101.8 38.2  30.5 0.61  
C23H41N 331.3239  332.3312  71.2 26.7  19.9 0.40  
C24H43N 345.3395  346.3468  53.3 20.0  11.9 0.24  
C25H45N 359.3552  360.3625  36.3 13.6  3.94 0.079  
C26H47N 373.3708  374.3781  24.6 9.24  1.91 0.038  
C27H49N 387.3865  388.3938  16.0 6.01  0.226 0.0045  
C28H51N 401.4021  402.4094  10.6 4.20  0.0500 0.0010  
C29H53N 415.4178  416.4251  6.92 3.98  n.d. 0.00  
C30H55N 429.4334  430.4407  2.91 1.09  n.d. 0.00  
C31H57N 443.4491  444.4564  1.62 0.61  n.d. 0.00  
C32H59N 457.4647  458.4720  0.497 0.19  n.d. 0.00  
C33H61N 471.4804  472.4877  0.161 0.060  n.d. 0.00  
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