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Abstract Diagnosing the root causes of cloud feedback in climate models1

and reasons for inter-model disagreement is a necessary first step in under-2

standing their wide variation in climate sensitivities. Here we bring together3

two analysis techniques that illuminate complementary aspects of cloud feed-4

back. The first quantifies feedbacks from changes in cloud amount, altitude,5

and optical depth, while the second separates feedbacks due to cloud property6

changes within specific cloud regimes from those due to regime occurrence7

frequency changes. We find that in the global mean, shortwave cloud feed-8

back averaged across ten models comes solely from a positive within-regime9

cloud amount feedback countered slightly by a negative within-regime optical10

depth feedback. These within-regime feedbacks are highly uniform: In nearly11

all regimes, locations, and models, cloud amount decreases and cloud albedo in-12

creases with warming. In contrast, global-mean across-regime components vary13

widely across models but are very small on average. This component, however,14
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is dominant in setting the geographic structure of the shortwave cloud feed-15

back: Thicker, more extensive cloud types increase at the expense of thinner,16

less extensive cloud types in the extratropics, and vice versa at low latitudes.17

The prominent negative extratropical optical depth feedback has contributions18

from both within- and across-regime components, suggesting that thermody-19

namic processes affecting cloud properties as well as dynamical processes that20

favor thicker cloud regimes are important. The feedback breakdown presented21

herein may provide additional targets for observational constraints by isolat-22

ing cloud property feedbacks within specific regimes without the obfuscating23

effects of changing dynamics that may differ across timescales.24

Keywords climate sensitivity · cloud feedback · cloud regimes25

1 Introduction26

The responses of clouds to planetary warming – cloud feedbacks – are the27

primary cause of uncertainties in future warming for a given increase in green-28

house gas concentration. This stems from the large role of clouds in modifying29

the flow of heat into and out of the Earth system and the challenge of ob-30

serving, understanding, and modeling cloud processes at scales ranging from31

microscopic to global for the wide variety of cloud types and responses to32

warming that together make up the cloud feedback.33

Recent work using cloud radiative kernels (Zelinka et al, 2012a,b, 2013,34

2016) has advanced our ability to diagnose cloud feedbacks, providing new in-35

sights into robust features simulated by all models, their linkage to the physical36

processes driving them, and their sources of inter-model spread. For example,37

it is now clear that models systematically simulate positive feedbacks from38

decreases in low-cloud amount, positive feedbacks from rising high-cloud top39

altitude, and negative feedbacks from increases in low-cloud optical depth.40

However, as noted in Zelinka et al (2012a), there remains ambiguity re-41

garding the actual causes of the cloud changes that drive some of these com-42

ponents. For example, climate models robustly simulate a negative feedback43

from increased optical depth of (primarily) low-level extratropical clouds. This44

feedback could have contributions from both changes in the relative frequency45

of occurrence of optically thin versus thick cloud types as well as from changes46

in the optical properties of clouds of a given morphology. In the former case,47

it is possible that transitions from relatively thin boundary layer clouds to48

thicker frontal clouds, perhaps associated with a storm-track shift, are lead-49

ing to the overall increase in cloud albedo. This would imply that a better50

understanding of changes in meteorology and large-scale dynamics would be51

necessary to constrain this feedback. In the latter case, optical properties of52

the cloud types that are already present are changing (e.g., thin boundary53

layer clouds becoming thicker), suggesting a greater role for thermodynamic54

processes that increase cloud liquid water content or decrease particle size.55

While it is likely that some combination of both processes contributes to this56

and other feedbacks, distinguishing the two would be helpful for interpreting57
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which processes cause the feedback on average, which drive its inter-model58

spread, and which need attention when determining how to correct biases in59

models.60

Independent of the work done using cloud radiative kernels, novel tech-61

niques have allowed for a clear breakdown of cloud feedbacks into components62

due to changes in the relative frequency of occurrence of various cloud regimes63

and due to changes in within-regime cloud radiative properties (Williams and64

Tselioudis, 2007; Williams and Webb, 2009; Tsushima et al, 2016). These are65

related to and build on previous work separating tropical cloud regimes into66

vertical motion regimes, allowing for a clean separation of thermodynamic67

(within-regime) and dynamic (across-regime) components of cloud feedback68

(Bony et al, 2004; Bony and Dufresne, 2005; Bony et al, 1997). These analyses69

typically rely on cloud radiative effect (CRE; the difference between clear- and70

all-sky top of atmosphere radiative fluxes) — a useful but highly integrated71

measure of how clouds impact radiation. As such, results derived therein do72

not distinguish changes in, for example, cloud altitude from cloud amount in73

driving longwave CRE changes in a given regime, or between cloud amount74

and cloud optical depth in driving shortwave CRE changes in a given regime.75

It is also unclear how across-regime changes manifest in cloud property feed-76

backs (e.g., how population shifts between cloud regimes with distinct radiative77

properties translate into amount, altitude, and optical depth feedbacks).78

Hence it is natural to bring together these two techniques to leverage their79

strengths in detailing complementary aspects of cloud feedback. Cloud regime80

analysis would illuminate the currently ambiguous processes driving some of81

the robust yet uncertain cloud feedbacks revealed by kernels, and kernel anal-82

ysis would illuminate the currently ambiguous changes in specific cloud prop-83

erties contributing to both dynamic- and thermodynamic-induced feedbacks84

revealed by regime analysis. This paper thus has two primary goals: The first85

is to demonstrate that these two techniques can be jointly applied to climate86

model data. We present the mathematical basis for our approach of combining87

these two analysis techniques in Section 2. The second is to present some novel88

insights about cloud feedback that come out of doing this diagnostic analy-89

sis, which we do in Section 3. With these two goals achieved, we present our90

conclusions and discuss avenues of future work in Section 4.91

2 Methodology of Combining Cloud Kernel and Cloud Regime92

Analyses93

At the conceptual level, our analysis is fairly straightforward: We modify94

the existing cloud regime analysis techniques to operate on joint histograms95

of cloud-induced radiative anomalies rather than on 2-dimensional cloud ra-96

diative effect anomalies. This allows us to derive within- and across-regime97

changes in cloud-induced radiation anomalies partitioned among the various98

property changes of interest. A primary technical challenge is that the cloud99

radiative kernels are defined at monthly resolution, whereas cloud regimes are100
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determined at the daily timescale, so we must assign locations to cloud regimes101

at the daily scale, average them to monthly, and pair them with cloud radia-102

tive kernels corresponding to each month and regime. After that, standard103

cloud feedback analysis using monthly-resolved data can proceed, now with104

the additional dependence on cloud regime. In the remainder of the section,105

we detail these steps.106

To begin, note that the value of some cloud-related quantity (X) for any107

given region can be expressed as a sum over all R regimes of the average X108

within a regime (Xr), scaled by the relative frequency of occurrence of that109

regime (fr):110

X =

R∑
r=1

frXr. (1)

Regimes are commonly determined via two approaches: One is to aggre-111

gate data into meteorological regimes characterized by certain features of the112

large-scale circulation, like 500 hPa vertical motion (Bony et al, 1997, 2004),113

horizontal temperature advection (Norris and Iacobellis, 2005), or proximity114

to cyclones (Tselioudis and Rossow, 2006; Bodas-Salcedo et al, 2012, 2014;115

McCoy et al, 2019, 2020). Another is to determine cloud regimes (sometimes116

called weather states) by applying semi-objective clustering algorithms to the117

cloud characteristics themselves, typically joint histograms of cloud fraction118

segregated by cloud top pressure and optical depth (Jakob and Tselioudis,119

2003; Gordon et al, 2005; Gordon and Norris, 2010; Williams and Tselioudis,120

2007; Williams and Webb, 2009; Oreopoulos and Rossow, 2011; Jin et al,121

2017a,b; Tsushima et al, 2013, 2016). In this study we use regimes that are122

defined using the latter approach, described in more detail below.123

Anomalies in X with respect to some base state can be expressed as124

∆X =

R∑
r=1

(fr∆Xr +∆frXr +∆fr∆Xr), (2)

where the terms on the right-hand side (RHS) are the components due to125

changes in the within-regime cloud property, changes in the relative frequency126

of occurrence of each regime, and a covariance term. If X is cloud radiative127

effect and these anomalies are normalized by the global mean temperature128

change (e.g., between a perturbed and control climate model experiment),129

these terms represent three components of the cloud feedback, albeit a biased130

measure in the presence of clear-sky flux changes (Soden et al, 2004, 2008).131

These terms have been diagnosed and investigated in climate models in several132

studies (Williams and Tselioudis, 2007; Williams and Webb, 2009; Tsushima133

et al, 2016). Here we use Atmospheric Model Intercomparison Project simula-134

tions in which observed sea surface temperatures (SSTs) and sea ice concen-135

trations are prescribed to match observations, known as amip experiments. For136

the climate change response, we use similar atmosphere-only experiments, but137

the prescribed SSTs are uniformly increased by 4 K over the ice-free oceans.138

These perturbed experiments are known as amip4K in CMIP5 (Taylor et al,139
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Table 1 Model variants used in this study, along with their model description references
and digital object identifiers for their data published to the Earth System Grid Federation.
The first five models listed are from CMIP5 and the latter are from CMIP6.

Model Variant Reference amip amip+4K
CNRM-CM5 r1i1p1 Voldoire et al (2019) 10.1594/WDCC/CMIP5.CEC5am 10.1594/WDCC/CMIP5.CEC5a4
HadGEM2-A r1i1p1 Collins et al (2011) 10.1594/WDCC/CMIP5.MOGAam 10.1594/WDCC/CMIP5.MOGAa4
MIROC5 r1i1p1 Watanabe et al (2010) 10.1594/WDCC/CMIP5.MIM5am 10.1594/WDCC/CMIP5.MIM5a4
MPI-ESM-LR r1i1p1 Stevens et al (2013) 10.1594/WDCC/CMIP5.MXELam 10.1594/WDCC/CMIP5.MXELa4
MRI-CGCM3 r1i1p1 Yukimoto et al (2012) 10.1594/WDCC/CMIP5.MRMCam 10.1594/WDCC/CMIP5.MRMCa4
CanESM5 r1i1p2f1 Swart et al (2019) 10.22033/ESGF/CMIP6.3535 10.22033/ESGF/CMIP6.3548
CNRM-CM6-1 r1i1p1f2 Voldoire et al (2019) 10.22033/ESGF/CMIP6.3922 10.22033/ESGF/CMIP6.3938
HadGEM3-GC31-LL r5i1p1f3 Williams et al (2018) 10.22033/ESGF/CMIP6.5853 10.22033/ESGF/CMIP6.5873
IPSL-CM6A-LR r1i1p1f1 Boucher et al (2020) 10.22033/ESGF/CMIP6.5113 10.22033/ESGF/CMIP6.5126
MRI-ESM2-0 r1i1p1f1 Yukimoto et al (2019) 10.22033/ESGF/CMIP6.6758 10.22033/ESGF/CMIP6.6771

2012) and amip-p4K in CMIP6 (Eyring et al, 2016). We will hereafter refer to140

these perturbed experiments as amip+4K.141

For each model and for the amip and amip+4K experiments, we use daily-142

resolution surface air temperature, surface upwelling and downwelling clear-143

sky SW fluxes, and the following fields that are produced by the ISCCP sim-144

ulator (Klein and Jakob, 1999; Webb et al, 2001): cloud fractions reported145

in joint cloud top pressure / visible optical depth histograms (C), along with146

grid-box mean cloud albedo (αc), cloud top pressure (pc), and total cloud cover147

(Ctot). The latter three fields are computed ignoring clouds with optical depths148

less than 0.3, the minimum detection threshold of ISCCP. Necessary model149

diagnostics from both amip and amip+4K experiments are available from five150

CMIP5 models and five CMIP6 models (Table 1).151

For the reasons discussed in Williams and Webb (2009), we assign each152

daily GCM grid point to a specific cloud regime by finding the minimum Eu-153

clidean distance between the models’ [αc, pc, Ctot] vector at that grid point154

and that of the observed centroids. The observed regimes to which we assign155

model data are the eight global weather states derived from ISCCP-H obser-156

vations (Tselioudis et al, 2021). The mean values of the three cloud properties157

for each centroid are given in Table 2 of Tselioudis et al (2021), except cloud158

optical depth rather than albedo is reported. We convert centroid-mean cloud159

optical depth (τc) to cloud albedo (αc) using the analytic formula:160

αc = τ0.895c /(τ0.895c + 6.82), (3)

which approximates the ISCCP lookup tables relating grid-mean albedo to161

grid-mean cloud optical thickness (Table 3.1.2 of Rossow et al, 1996), and is162

used by the ISCCP simulator to compute grid-box mean cloud albedo.163

Before computing Euclidean distances, we normalize the αc, pc, and Ctot164

values by their respective standard deviations, following Jin et al (2017a).165

The standard deviation is calculated across a concatenated vector of all grid166

points and all days over the period 2003-2005 in the amip experiment of each167

model. This normalization is necessary because the three fields have different168

units, and is done to both the modeled and observed fields to ensure that the169
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observational centroids are properly projected into model space. The process170

of regime assignment yields a binary occurrence matrix (n) that is a function171

of regime (r), day (d), latitude (φ), and longitude (θ) containing ones where172

that location belongs to a given regime and zeros where it does not.173

Cloud radiative kernels are a function of month, pc, τc, latitude, and –174

in the case of the SW kernel – clear-sky surface albedo (αclr). In order to175

compute feedbacks we need to aggregate the daily data to monthly resolution176

and map the SW kernel from its native αclr space to longitude1. For each177

regime and grid point, we determine the appropriate SW kernel based on the178

mean clear-sky surface albedo for that regime and grid point. First we compute179

monthly-averaged climatologies of the data segregated by regime (Xr) as the180

n-weighted average of daily data (x) over all days (d) in each of the 12 calendar181

months (m) over the same 9-year portion of the amip and amip+4K simulations:182

Xr(m,φ, θ) =
1

Nr

2008∑
y=2000

D(my)∑
d=1

x(d, φ, θ) ∗ nr(d, φ, θ), (4)

where D(my) is the total number of days within month m of year y, and Nr183

is the total number of occurrences of each regime in each month and at each184

location, computed as:185

Nr(m,φ, θ) =

2008∑
y=2000

D(my)∑
d=1

nr(d, φ, θ). (5)

The results presented hereafter are not sensitive to the number of years or the186

choice of years analyzed, but geographically-resolved results are less noisy as187

more years are included. The above process is performed for the cloud fraction188

histogram (in which case x and Xr additionally have dimensions of pc and189

τc) and clear-sky surface albedo (αclr). The resultant monthly- and regime-190

resolved αclr is then used to determine the appropriate SW cloud radiative191

kernel. This is the same process as described in Zelinka et al (2012b), except192

here we transform the kernel from its native latitude-αclr space to latitude-193

longitude space for each regime, based on αclr(m,φ, θ) for each regime. (This194

step is not needed for the LW kernels since they depend only on latitude and195

not on αclr.) Hence for each month and location, each cloud regime has its own196

SW kernel that is appropriate for the average αclr present on the days within197

the month assigned to that regime. Finally, we define the relative frequency of198

occurrence (fr) as the fraction of days within a month that a regime is present199

at a given location:200

fr(m,φ, θ) =
Nr(m,φ, θ)∑R
r=1Nr(m,φ, θ)

. (6)

1 Note that we can alternatively use the daily clear-sky surface albedo to map the kernels
from albedo to longitude space and then assign this daily- and spatially- resolved kernel to
the appropriate cloud regime at every grid point prior to aggregating everything to monthly
resolution. So doing requires assuming that the radiative kernel from a given month is
applicable to each day within that month. Performing the analysis in this manner results in
identical results as shown hereafter.
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The sum of fr over all regimes equals 1 for that location. Hererafter we drop201

the notation specifying that regime-segregated quantities are additionally func-202

tions of month, latitude, and longitude.203

This analysis yields climatological cloud fraction histograms (Cr), cloud204

radiative kernel histograms (Kr), and relative frequency of occurrences (fr)205

that are segregated into 8 cloud regimes at each latitude and month, for both206

the amip and amip+4K experiments. A 9th clear-sky regime where Ctot = 0 is207

also tracked. Replacing Xr with the product of Cr and Kr in Equation (2),208

we can now express the cloud feedback as:209

λcld =
1

∆Ts

R∑
r=1

Kr(fr∆Cr +∆frCr +∆fr∆Cr), (7)

where Ts is the global mean surface air temperature, ∆ refers to the difference210

between amip+4K and amip climatologies, and any field without a ∆ preceding211

it refers to the amip climatology.212

The key novelty of our analysis is that Xr in (2) is replaced with CrKr213

in (7), where Cr and Kr are additionally functions of cloud top pressure and214

visible optical depth, giving us the ability to further break these terms down215

into components due to individual cloud property changes, something which216

cannot be done if X refers to CRE. We will now discuss this break down in217

greater detail.218

The first term on the RHS of Eq 7 (fr∆CrKr) is the cloud feedback arising219

from changes in within-regime cloud properties, and the third (∆fr∆CrKr) is220

the covariance term. Both of these naturally break down into amount, altitude,221

and optical depth components (Zelinka et al, 2012a, 2013). As shown below222

the covariance term is generally very small.223

The second term on the RHS of Eq 7 is the cloud feedback arising from224

changes in the relative frequency of occurrence of each regime. Because it is225

simply the product of a scalar change in regime RFO (∆fr), the control climate226

cloud histogram (Cr), and the radiative kernel (Kr), it can only manifest as an227

amount feedback. (The altitude and optical depth components are identically228

zero because this product implies a change only in total cloud amount rather229

than in the pc or τc distribution.) However, it is desirable to quantify cloud230

property feedbacks due to changes in the frequency of occurrence of regimes231

with different properties. For example, we would like to quantify the optical232

depth feedback arising from shifts from thinner-than-average to thicker-than-233

average regimes, which would be embedded in this second term. To do so, we234

express this term as the sum of four components:235

∆frCrKr = ∆fr(CK + CK ′
r + C ′

rK + C ′
rK

′
r), (8)

where C is the annual- and regime-averaged histogram at each location, and236

C ′
r = Cr − C contains all monthly- and regime-dependent deviations of the237

histogram from this. K ′
r and K are defined in the same manner. Note that the238

regime average quantities and deviations therefrom are computed only con-239

sidering the regimes with nonzero cloud fraction and that the cloud fraction240
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of clear-sky Regime 9 is fixed to zero. Of these terms, the third (∆frC
′
rK)241

turns out to be dominant when results are summed over all regimes (SI Figure242

1). This makes sense because regimes defined by clustering cloud fraction his-243

tograms essentially guarantees that across-regime variations in climatological244

cloud fraction histograms are substantial. These variations are much larger245

than across-regime variations in kernels (term 2) or their covariances (term246

4). Moreover, since the across-regime sum of ∆fr is zero by definition, the247

across-regime sum of a scalar (CK) times ∆fr (term 1) must also be zero.248

Therefore, we can express Equation 8 as:249

∆frCrKr = ∆frC
′
rK + ε, (9)

which leads to our ultimate expression for the cloud feedback breakdown:250

λcld =
1

∆Ts

R∑
r=1

(∆frC
′
rK + fr∆CrKr +∆fr∆CrKr + ε). (10)

We shall hereafter refer to these first three components as the “across-regime”,251

“within-regime”, and “covariance” components. As will be shown below (and252

in SI Figure 1), the neglected “across-regime” components encapsulated in ε253

are small. A schematic illustrating the complete break-down of cloud feedback254

produced in this study is shown in Figure 1.255

The analysis is performed for LW, SW, and net (LW+SW) cloud feed-256

backs, but for the sake of simplifying the presentation of results, we will focus257

hereafter on just the SW cloud feedback. LW and net cloud feedback results258

will be analyzed in future work.259

3 Results260

3.1 Cloud Regime Characteristics261

Multi-model mean cloud fraction histograms averaged within each of the cloud262

regimes and maps showing the relative frequency of occurrence of each cloud263

regime are shown in Figures 2 and 3, respectively. Global-mean values of total264

cloud cover, albedo, cloud top pressure, and relative frequency of occurrence265

for each regime averaged across all models (and their across-model standard266

deviation) are provided in Table 2. Comparing these figures with their obser-267

vational counterparts shown in Figure 1 of Tselioudis et al (2021), we see many268

qualitative similarities, as expected given that we are matching modeled cloud269

properties to the observed centroids, as well as some noteworthy differences.270

Regime 1 contains primarily high, thick clouds and is prevalent in regions of271

tropical deep convection, similar to observations. Regime 2 contains moder-272

ately thick high clouds (as well as some lower clouds) that are prevalent in the273

middle-latitude storm-track region. Unlike in the observations, this regime is274

not confined to middle latitudes and also occurs frequently in tropical ascent275

regions in the models. Regime 3 is a cirrus cloud category, with very high thin276
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Fig. 1 Schematic of the cloud feedback decomposition. We decompose the total cloud feed-
back into cloud regime components (within-regime, across-regime, and covariance terms),
which are further broken down into cloud property sub-components (amount, altitude, op-
tical depth, and residual terms). These resulting cloud property sub-components are re-
organized on the left branch of the diagram such that each cloud regime sub-component
is grouped by cloud property component. Feedback sub-components on the left- and right-
most branches with the same colors are identical, but simply organized differently to aid
complementary interpretations.

clouds that are prevalent in the Indo-Pacific warm pool region, but also over277

subtropical land regions, similar to observations. Regime 4 contains a broad278

range of cloud top pressures and optical thicknesses but is dominated by high,279

relatively thin clouds, similar to the observations. Unlike in observations, how-280

ever, this regime occurs frequently outside of the polar regions, including in281

tropical ascent regions. Given that it is a high cloud regime with average to-282

tal cloud cover and albedo lying between the values of the other high cloud283

regimes (Regimes 1-3), we refer to it as a ‘hybrid high’ cloud regime. Opti-284

cally thick mid-level clouds that are prevalent over the middle latitude oceans285

characterize Regime 5, in qualitative agreement with the observations. Unlike286

the observations, the regime occurs often in the East Pacific ITCZ region, and287

the overall frequency of occurrence is roughly twice as large as in observations.288

As in observations, Regime 6 is the most frequently observed regime (RFO of289

nearly 40%), and contains a mix of scattered thin cumulus and cirrus clouds,290

with generally small cloud fractions. It is most prevalent over trade cumulus291

regions. Regimes 7 and 8 are dominated by low clouds that are prevalent over292
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Fig. 2 Cloud fraction histograms for each regime, averaged across models and globally.

     a) Regime 1 [6.3]          b) Regime 2 [10.5]          c) Regime 3 [8.1]     

     d) Regime 4 [7.2]          e) Regime 5 [11.5]          f) Regime 6 [37.6]     

     g) Regime 7 [3.6]          h) Regime 8 [11.0]          i) Regime 9 [4.3]     
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Fig. 3 Relative frequency of occurrence of each regime, expressed as a percentage of time
that a given regime is present at each grid point, averaged across models. The global average
RFO is displayed in the title of each panel.
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Table 2 Multi-model mean global mean total cloud cover (Ctot), cloud albedo (αc), cloud
top pressure (pc), and relative frequency of occurrence (RFO) of each regime in the control
climate. The 1-σ range across models is shown in parenthesis.

Regime Description Ctot [%] αc [%] pc [hPa] RFO [%]
1 Tropical deep convection 83.8 (9.7) 54.7 (2.7) 281.7 (14.6) 6.3 (1.5)
2 Midlatitude storm track 80.9 (4.5) 57.8 (3.6) 429.9 (6.2) 10.5 (3.2)
3 Optically thin cirrus 42.8 (8.5) 18.8 (2.0) 239.8 (23.3) 8.1 (2.9)
4 Hybrid high 68.4 (6.6) 32.2 (1.7) 369.2 (17.8) 7.2 (2.5)
5 Optically thick mid-level 75.4 (5.5) 57.9 (3.3) 615.3 (15.5) 11.5 (4.1)
6 Scattered thin cumulus & cirrus 26.6 (4.0) 37.4 (4.7) 648.5 (41.4) 37.6 (7.4)
7 Shallow cumulus 61.6 (4.9) 39.3 (3.8) 805.2 (25.2) 3.6 (1.5)
8 Stratocumulus 71.1 (6.0) 48.6 (3.9) 723.5 (26.1) 11.0 (3.2)
9 Clear-sky 0.0 (0.0) 4.3 (3.3)

Table 3 As in Table 2, but showing the response to +4K warming for each regime.

Regime Description ∆Ctot [%/K] ∆αc [%/K] ∆pc [hPa/K] ∆RFO [%/K]
1 Tropical deep convection -0.28 (0.47) 0.24 (0.17) -3.06 (0.94) 0.36 (0.24)
2 Midlatitude storm track -0.69 (0.35) 0.27 (0.15) -0.48 (0.53) 0.02 (0.09)
3 Optically thin cirrus -0.07 (0.23) 0.19 (0.09) -3.21 (1.17) 0.14 (0.16)
4 Hybrid high -0.51 (0.27) 0.15 (0.07) -3.39 (1.17) -0.18 (0.10)
5 Optically thick mid-level -0.61 (0.16) 0.29 (0.10) 0.69 (0.99) 0.07 (0.22)
6 Scattered thin cumulus & cirrus -0.28 (0.21) 0.35 (0.11) -0.89 (1.20) 0.12 (0.38)
7 Shallow cumulus -0.28 (0.15) 0.16 (0.06) -0.14 (0.65) -0.23 (0.17)
8 Stratocumulus -0.49 (0.19) 0.18 (0.10) -0.00 (0.70) -0.32 (0.21)
9 Clear-sky 0.00 (0.00) 0.03 (0.15)

cold sea surface temperatures, as in observations. Regime 7 contains lower-293

topped, slightly thinner clouds with smaller fractional coverage than Regime294

8, which led Tselioudis et al (2021) to classify these as shallow cumulus and295

stratocumulus clouds, respectively. Unlike in observations where these two296

regimes occur with similar frequency, the RFO of Regime 8 is three times297

greater than that of Regime 7 in the model mean. Regime 9 is the clear-sky298

regime, which is prevalent over the subtropical continents and Antarctica. Its299

geographic distribution and global mean RFO are very similar to observations.300

Some of the model-observation discrepancies mentioned above may be alle-301

viated by performing the minimum Euclidean distance calculation with the full302

information content of the histograms (Williams and Tselioudis, 2007) rather303

than the simplified 3-element vector (Williams and Webb, 2009), though we304

have not tested this. However, this paper is not concerned with evaluating305

models’ ability to simulate the correct within-regime cloud characteristics or306

the correct frequency of occurrence of the various regimes. Such model evalua-307

tion studies have already been done previously, including for the regimes used308

in this study (Tselioudis et al, 2021). Our objective, rather, is to demonstrate309

the utility of employing a regime framework to better understand the processes310

driving cloud feedbacks, allowing us to distinguish within- from across-regime311

cloud changes in contributing to the various cloud property feedbacks, and vice312

versa. Such an analysis does not require that models’ cloud regime properties313

match observations particularly well, only that their clouds can be grouped314
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into a set of regimes with reasonably-distinct and physically-interpretable char-315

acteristics that facilitates such a breakdown. The attribution of across-regime316

changes to large-scale atmospheric dynamics is supported by the fact that the317

cloud regimes show skill in tracing distinct meteorological states and cloud318

formation mechanisms, as demonstrated in Tselioudis et al (2021). As will be319

demonstrated below, our breakdown is not sensitive to the exact definition of320

regimes. Hence the results are resilient to reasonable variations in how exactly321

the regimes are initially defined.322

3.2 Changes in Regime-Averaged Properties323

To aid in interpreting the feedback results shown below, in Figure 4 we show324

the change in the regime-averaged cloud fraction histograms under +4K warm-325

ing, averaged across the 10 models analyzed (Table 1). Table 3 shows changes326

in globally-averaged cloud properties in each regime, averaged across mod-327

els. In all regimes, the cloud fraction decreases for mid-level clouds of most328

thicknesses and for clouds with highest cloud top pressures (i.e., nearest to the329

surface). The fraction of clouds at the highest altitudes increases, most notably330

in regimes dominated by high clouds (Figure 4, Regimes 1-4). This, coupled331

with the strong decreases in cloud fractions at levels immediately below, indi-332

cates an upward shift of cloud tops. This upward shift has a theoretical basis333

in the fixed anvil temperature hypothesis which states that high cloud tops334

will rise so as to remain at an approximately fixed temperature as the tropo-335

sphere deepens with warming (Hartmann and Larson, 2002; Thompson et al,336

2017). In addition to being robustly simulated in global climate models, it is337

also simulated in high resolution models, and has been observed in response338

to climate variability and secular trends (Sherwood et al (2020) and references339

therein). Cloud fraction increases are also apparent between 680 and 800 hPa340

in most regimes, but most prominently in the cumulus and stratocumulus341

regimes (Figure 4, Regimes 7 and 8). In all regimes, these increases occur im-342

mediately above bins with similar decreases, again suggesting an upward shift343

of the low-level cloud population with warming.344

Aside from the aforementioned changes in cloud top altitude, two other345

gross cloud properties exhibit systematic changes with warming: In every346

regime, total cloud fraction decreases and optical depth increases. The for-347

mer is difficult to discern directly from the histograms, but is indicated by the348

change in total cloud fraction shown in Table 3. The latter can be inferred349

from the overall tendency for an increase in cloud fraction in higher optical350

depth bins of the histograms along with corresponding decreases in cloud frac-351

tion in the thinner bins, and verified in the ∆αc column of Table 3. Hence,352

for clouds of a given regime, warming causes them to systematically rise, in-353

crease in albedo, and decrease in coverage. As will be seen below, this leads354

to within-regime cloud feedback components that are highly consistent across355

models and across regimes.356
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Fig. 4 Temperature-mediated change in cloud fraction histograms for each regime, averaged
across models and globally. Stippling indicates locations where at least 8 out of 10 models
agree on the sign of the change (not shown for clear-sky Regime 9).

The change in regime relative frequency of occurrence maps is shown in357

Figure 5, and in Figure 6 we show the zonal-mean RFO and its change. The358

RFO of high cloud regimes 1 and 3 increases systematically, most prominently359

where these regimes are prevalent climatologically. Regimes 4, 7, and 8 all show360

large decreases in RFO at nearly all latitudes, with the latter being especially361

prominent in the eastern ocean basins in Regime 8. These decreases in the362

RFO of Regimes 7-8 coincide with prominent increases in the RFO of Regime363

6, highly suggestive of a stratocumulus-to-cumulus transition.364

Comparing Figures 3 and 5, and panels (a) and (b) of Figure 6, one can dis-365

cern poleward shifts of cloud types. This is apparent for Regimes 2 and 5, for366

which increases in RFO occur at latitudes just poleward of the control-climate367

RFO maximum, where RFO is strongly decreasing with latitude. The opposite368

response is also apparent at locations just equatorward of the control-climate369

RFO maximum. Both of these regimes correspond to storm-track clouds, which370

are expected to shift poleward with warming (Yin, 2005; Barnes and Polvani,371

2013). Similarly, increases in the RFO of Regime 6 peak near 40S and 40N,372

where its control-climate RFO falls off rapidly with latitude. This is sugges-373

tive of a poleward expansion of the subtropics and of the already-ubiquitous374

cumulus regime.375

Overall, the cloud population tends to shift from cloudier and thicker376

regimes (2, 5, and 8) towards less-cloudy and thinner regimes (3 and 6) at377

low latitudes, with the opposite response in the extratropics. Put another378

way, the regimes characterized by bright and extensive clouds shift poleward379
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     a) Regime 1 [0.36]          b) Regime 2 [0.02]          c) Regime 3 [0.14]     

     d) Regime 4 [-0.18]          e) Regime 5 [0.07]          f) Regime 6 [0.12]     

     g) Regime 7 [-0.23]          h) Regime 8 [-0.32]          i) Regime 9 [0.03]     
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Fig. 5 Temperature-mediated change in the relative frequency of occurrence of each regime,
averaged across models. The global average RFO change is displayed in the title of each
panel. Stippling indicates locations where at least 8 out of 10 models agree on the sign of
the change.
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Fig. 6 (a) Zonally averaged relative frequency of occurrence of each cloud regime, averaged
across models, and (b) its temperature-mediated change in response to +4K warming. Stip-
pling in (b) indicates locations where at least 8 out of 10 models agree on the sign of the
change.

with warming, and in their wake the conditions are favorable for regimes char-380

acterized by thinner and less extensive clouds.381

3.3 Global mean feedback decomposition382

As mentioned above, the cloud feedback has previously been broken down into383

within-regime, across-regime, and covariance terms (Williams and Tselioudis,384

2007; Williams and Webb, 2009; Tsushima et al, 2016), but these have not385

been further segregated into their amount, altitude, and optical depth sub-386

components. Likewise, the previously-diagnosed amount, altitude, and optical387
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Global Mean SW Cloud Feedback Components

Fig. 7 Globally averaged SW cloud feedbacks for each model, broken down into cloud prop-
erty and cloud regime components. The “No Breakdown” cloud feedback, which is computed
without performing any regime decomposition, serves as a ground-truth for the sum of com-
ponents that are shown to the left and right. Results are identical to the left and right of the
center column, but organized differently to facilitate complementary comparisons. Columns
(a)-(d) show cloud property components along with the cloud regime sub-components com-
prising them, while columns (e) - (h) show cloud regime components along with the cloud
property sub-components comprising them.

depth feedback components (Zelinka et al, 2012b, 2013, 2016) have not been388

further broken down into their within, across, and covariance sub-components.389

In Figure 7 we perform this more extensive breakdown for the global-mean SW390

cloud feedback.391

At the center of the figure is the true global mean SW cloud feedback com-392

puted without performing any breakdown, labeled as “No Breakdown”. The393

four columns to the left (a-d) provide the cloud property breakdown of this394

feedback, which are further broken down into cloud regime sub-components395

and their sum. The four columns to the right (e-h) provide the same informa-396

tion, but organized differently: the cloud regime breakdown of the feedback,397

further broken down into cloud property sub-components and their sum. (The398

kernel residual term is not shown because it is very small in all cases.)399

Consider first Figure 7e, which shows the sum of all terms in Equation 10400

except the ε term. That the first sub-column within this category (“Total”)401

closely matches the “No Breakdown” results indicates that the neglected ε402

terms are small and that we can successfully interpret the across-regime com-403

ponent as primarily being due to ∆frC
′
rK in Equation 8. This also allows us to404

break this across-regime component into amount, altitude, and optical depth405

terms, which are shown in Figure 7g and discussed below. The global mean SW406

cloud amount component is robustly positive across the 10 models analyzed,407
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while the altitude component is unsurprisingly small with little inter-model408

spread (Figure 7e). The optical depth component is negative in all but two409

models, with a multi-model average that is smaller in magnitude than that of410

the amount component, leading to the overall positive multi-model mean SW411

cloud feedback.412

The within-regime component (Figure 7f) is robustly positive across mod-413

els, and is made up of two robust feedbacks of opposite sign: a robustly positive414

amount component and a smaller optical depth component that is negative415

in all but two models. The within-regime component of the total cloud feed-416

back, as well as its cloud property sub-components, are remarkably similar417

to those of the total cloud feedback (compare panels e and f). This is espe-418

cially true for the multi-model mean results, whereas the inter-model spread419

of the within-regime components are reduced relative to the full feedback.420

Hence, for the multi-model mean, one can largely attribute the total overall421

SW cloud feedback and its cloud property sub-components to within-regime422

cloud changes. This may indicate that – once obfuscating effects of changes423

in large-scale dynamics are removed – the temperature-mediated response of424

clouds is very systematic across models. That is, within distinct cloud regimes425

or weather states, warming causes a systematic decrease in the fractional cov-426

erage of clouds – a positive amount feedback – and a systematic increase in the427

albedo of clouds – a negative optical depth feedback in the vast majority of428

models. Below we will further show that this uniformity in sign of the within-429

regime amount and optical depth components holds not just across models in430

the global mean sense, but also geographically and across regimes.431

In contrast to the within-regime component, the across-regime component432

exhibits substantial spread across models but with a multi-model mean value433

that is very close to zero (Figure 7g, ‘Total’ sub-column). Similarly, the cloud434

property sub-components of the across-regime feedback exhibit substantial435

inter-model variations that straddle zero, leading to near-zero contributions436

to the multi-model average total cloud feedback. This indicates that, averaged437

over the entire planet, shifts among cloud types (likely caused by changes in438

large-scale meteorology) can cause large feedbacks of either sign in models,439

but averaged across all models, these shifts make essentially no contribution440

to the global, ensemble mean feedback.441

In several models, however, the magnitude of the global-mean across-regime442

component is comparable or even larger than the within-regime component.443

Both the within- and across-regime SW cloud feedback components are well-444

correlated with the total global-mean SW cloud feedback across models (not445

shown). This correspondence extends to both the amount and optical depth446

sub-components. Hence, although the multi-model mean feedback is primarily447

attributable to the within-regime component, the inter-model spread in the448

global mean SW cloud feedback is driven by both the across- and within-regime449

components. Moreover, as will be shown below, the across-regime component450

can be very important locally, where shifts among cloud regimes with different451

properties cause substantial radiative impacts, often of larger magnitude than452
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the within-regime component. These local contributions can either reinforce453

or counteract the local within-regime contributions.454

The global mean covariance terms (Figure 7h) are very small, as expected,455

and will not be discussed further.456

Turning to the left four columns of Figure 7, we see the same information,457

but re-organized so as to better illuminate how within- and across-regime458

changes contribute to each of the cloud property feedback components – in-459

formation that was not revealed in previous studies performing this decompo-460

sition (e.g., Zelinka et al (2012a, 2013, 2016)).461

From Figure 7d, it is clear that the total cloud feedback, on average across462

models, is entirely coming from the systematically positive within-regime com-463

ponent. The across-regime component, in contrast, can be large and of either464

sign in models, but averages to a near-zero value across models. The SW cloud465

amount feedback is robustly positive in all models, with a large multi-model466

mean (Figure 7c). Again, this comes almost entirely from the within-regime467

component, which is systematically positive in all models but with inter-model468

spread that is smaller than the total amount component. The across-regime469

cloud amount feedback varies widely among models but is close to zero on av-470

erage across models. Owing to the weak dependence of reflected SW radiation471

on cloud top pressure, the SW altitude feedback and all of its sub-components472

are very small (Figure 7b). As previously mentioned, the optical depth feed-473

back is negative in all but two models and is moderately negative on average474

across models (Figure 7a, ‘Total’ sub-column). The multi-model mean value475

comes solely from the within-regime component, whereas the across-regime476

component is close to zero.477

From these global mean results, we conclude that, for any given model,478

both the within-regime and across-regime components can be substantial.479

However, their roles in the multi-model mean feedback are rather different:480

The across-regime components tend to exhibit substantial inter-model spread481

that straddles zero, leading to a multi-model contribution that is negligible.482

In contrast, the within-regime components tend to be of uniform sign across483

models (systematically positive for cloud amount and nearly systematically484

negative for cloud optical depth), such that they are the primary contributor485

to the positive ensemble-mean SW cloud feedback. Hence a robust signal of486

temperature-mediated cloud behavior across models becomes apparent when487

controlling for changes in large-scale meteorology, and one can attribute the488

positive multi-model mean SW cloud feedback to a robustly positive within-489

regime SW cloud amount feedback that is partially counteracted by a nearly490

robustly negative within-regime SW cloud optical depth feedback.491

Because the covariance and altitude components have been shown here492

to be small, we will focus hereafter on the amount and optical depth cloud493

property components and on the within- and across-regime components so as494

to simplify the number of fields to consider.495
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     a) Total [0.25]          b) Across [0.02]          c) Within [0.29]     

     d) Amount [0.45]          e) Across Amount [0.05]          f) Within Amount [0.42]     

     g) Optical Depth [-0.18]          h) Across Optical Depth [-0.03]          i) Within Optical Depth [-0.11]     
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Fig. 8 (a) Multi-model mean total SW cloud feedback and its breakdown into the dominant
terms comprising it: (b) and (c) show the across-regime and within-regime components,
while (d) and (g) show the amount and optical depth components. The amount component
(d) is broken down into its across-regime and within-regime sub-components in (e) and
(f), respectively. The optical depth component (g) is broken down into its across-regime
and within-regime sub-components in (h) and (i), respectively. Stippling indicates locations
where at least 8 out of 10 models agree on the sign of the change.

3.4 Spatial structure of the multi-model mean SW cloud feedback and its496

components497

The complementary views of the multi-model mean cloud feedback provided by498

the marriage of regime-based and kernel-based decompositions are exemplified499

in Figure 8. The total SW cloud feedback (a) is broken down in column 1 into500

its amount (d) and optical depth (g) components, and in row 1 into its across-501

regime (b) and within-regime (c) components. Note that the global mean value502

shown in (a) equals the sum of global mean values shown in (b) and (c),503

plus the covariance term which is not shown. It also equals the sum of global504

mean values shown in (d) and (g), plus the altitude and kernel residual terms505

which are not shown because they are negligibly small. The across- and within-506

regime components are broken down into their amount and optical depth sub-507

components in columns 2 and 3, respectively. Equivalently, the amount and508

optical depth components are broken down into their across- and within-regime509

sub-components in rows 2 and 3, respectively.510

SW cloud feedback is positive nearly everywhere equatorward of about 50511

degrees latitude and negative elsewhere, with large negative values centered512

around 60 degrees in both hemispheres (Figure 8a). Large positive feedbacks513

are present throughout the subtropical oceans and tropical land regions. This514
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overall pattern emerges due to the superposition of a strong positive amount515

feedback (Figure 8d) at low latitudes with maxima in the subtropics that falls516

to near-zero or weak negative values poleward of about 50 degrees latitude,517

and a strong negative optical depth feedback (Figure 8g) in the extratrop-518

ics that peaks around 60 degrees and that falls off or becomes weakly posi-519

tive equatorward of about 40 degrees latitude. Alternatively, one can describe520

the mean SW cloud feedback pattern as the superposition of a very spatially521

heterogeneous across-regime component (Figure 8b) that closely matches the522

overall SW cloud feedback pattern, and a much more spatially homogeneous523

within-regime component (Figure 8c) that is positive everywhere except at524

high latitudes.525

As summarized in Sherwood et al (2020), the positive low-latitude SW526

cloud amount feedbacks are consistent with a large body of work concluding527

that cloud cover should decrease with warming, including for tropical high528

clouds (Zelinka and Hartmann, 2011; Bony et al, 2016), tropical marine low529

clouds (Myers and Norris, 2016; Klein et al, 2017), and low clouds over land530

(Del Genio and Wolf, 2000; Zhang and Klein, 2013). Likewise, the latitudinally-531

varying response of cloud optical depth to warming is consistent with previous532

modeling studies, though observational analyses suggest a weaker negative533

extratropical feedback than produced in most models (Tselioudis et al, 1992;534

Eitzen et al, 2011; Gordon and Klein, 2014; Terai et al, 2016; Myers et al,535

2021).536

The tendency for the SW cloud amount component (Figure 8d) to be posi-537

tive at low latitudes and small or negative at high latitudes is primarily estab-538

lished by the across-regime component (Figure 8e), which shares this overall539

pattern. This means that, generally speaking, shifts from regimes with large540

cloud fraction to small cloud fraction occur at lower latitudes, particularly in541

the subtropics, and shifts from regimes with small cloud fraction to large cloud542

fraction occur at higher latitudes, with the overall radiative impact of these543

cloud amount changes being strongly muted (0.05 W/m2/K on average; Figure544

8e). In contrast, the within-regime cloud amount feedback (Figure 8f) is nearly545

uniformly positive across the globe, with substantial model agreement on the546

sign of the response (as indicated by the ubiquitous stippling). This indicates547

that, once controlling for population shifts among regimes, the temperature548

mediated response of nearly all clouds globally is to decrease in areal coverage.549

This leads to a strong positive amount component from within-regime cloud550

property changes that is roughly equal to the full amount feedback. We will551

show below that this feedback component is uniformly positive even at the552

individual cloud regime level, not just when summing across cloud regimes.553

The local maxima in the amount feedback in the subtropics are regions where554

both the across- and within-components are positive. In these regions, both555

shifts towards regimes with smaller cloud fraction as well as decreases in cloud556

fraction within the regimes that are present reinforce one another. In contrast,557

the weak overall cloud amount feedback in the extratropics (Figure 8d) arises558

because the negative contribution from shifts toward regimes with extensive559

cloud cover at the expense of regimes with less extensive cloud cover (Fig-560
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ure 8e) counteracts the positive contribution from decreases in cloud fraction561

within the regimes that are present (Figure 8f). Elucidation of which regimes562

are favored and disfavored with warming were discussed in Section 3.2 (Fig-563

ures 5 and 6) and their individual radiative contributions are discussed further564

below.565

Consider now the SW cloud optical depth feedback and its sub-components566

(row 3). In a similar way to the amount component, the across-regime optical567

depth sub-component (Figure 8h) is small in the global mean but largely es-568

tablishes the overall spatial structure of the optical depth feedback (Figure 8g),569

while the within-regime sub-component (Figure 8i) is much more uniformly570

negative and the dominant contributor to the global mean feedback. An ex-571

ception is the Eastern Pacific stratocumulus regions, which exhibit robustly572

positive within-regime contributions to the optical depth feedback (Figure573

8i). Shifts from regimes with small optical depth to regimes with large opti-574

cal depth occur at high latitudes, and these coincide with regions where the575

optical depth of clouds increases within the regimes already present, result-576

ing in the very strong negative extratropical optical depth feedback (Figure577

8g-i). This is especially prominent over the Southern Ocean and the north-578

ern hemisphere midlatitude continents. In contrast, throughout much of the579

low-to-middle latitudes, the within- and across-regime sub-components oppose580

each other, resulting in weak overall optical depth feedback. For example in581

the North and South Pacific and southern Indian Oceans, shifts from thicker582

to thinner regimes make weak positive contributions to the optical depth feed-583

back, but this is counteracted by the thickening of the clouds within regimes584

that are already present (Figure 8g-i).585

Returning to a question posed in the introduction, it is now clear that586

the negative SW cloud optical depth feedback over the Southern Ocean (40-587

70S) receives contributions from both increased frequency of occurrence of588

thicker cloud types relative to thinner cloud types, as well as increases in the589

albedo of clouds of a given morphology. Given that both components matter,590

we cannot focus solely on constraining changes in meteorology that determine591

cloud morphology or solely on constraining thermodynamic processes that592

affect cloud reflectivity within a given meteorological condition.593

Let us briefly discuss the contributors to the across-regime and within-594

regime SW cloud feedbacks (columns 2 and 3, respectively). The near-zero595

global mean across-regime feedback (Figure 8b) results from the super-position596

of amount (Figure 8e) and optical depth (Figure 8h) sub-components that597

share very similar spatial structures – both are positive at low latitudes and598

negative at high latitudes, with nearly coincident zero-crossings at 45 degrees599

latitude. This is to be expected because the regimes with large cloud fractions600

also have large optical depths (Table 2). Therefore, an increase in the RFO601

of cloudier/thicker regimes at the expense of less cloudy/thinner regimes will602

result in similar negative contributions to the amount and optical depth feed-603

backs (e.g., over the high latitudes), and vice versa. In contrast, the within-604

regime SW cloud feedback (Figure 8c) results from a near-uniform positive605

amount sub-component (Figure 8f) that is partially counteracted at most lo-606
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cations by a near-uniformly negative optical depth sub-component (Figure607

8i). The latter is large enough at high latitudes to dominate over the amount608

sub-component. What little spatial heterogeneity exists in the within-regime609

component belies the vast regions of the globe in (Figure 8f) and (Figure 8i)610

over which at least 8 out of 10 of the models agree on the sign of the feedback.611

The results above indicate that much of the spatial structure of multi-612

model mean cloud feedback can be interpreted as due to changes in meteo-613

rology, which influences the relative amounts of the various cloud morpholo-614

gies present, but which makes a small globally-averaged radiative impact. Ex-615

cluding this component and focusing on the within-regime cloud changes, in616

contrast, highlights much more spatially uniform and systematic underlying617

cloud changes, whose radiative impact provides the dominant contribution to618

the globally averaged feedback.619

To what extent is interpretation of the across- and within-regime feedback620

components complicated by the fact that regimes are defined by the cloud621

properties themselves rather than by exogenous fields characterizing relevant622

aspects of the meteorological environment (e.g., 500 hPa vertical velocity)?623

Consider a case where clouds of a given morphology at a given location thicken624

with warming. If this thickening is relatively small, one would expect this to625

be classified as a negative within-regime SW optical depth feedback. But if626

the thickening were sufficiently large, that location could be re-classified to a627

different, thicker cloud regime resulting in a negative across-regime SW optical628

depth feedback. Fundamentally, the same cloud property change occurred in629

both cases, but our analysis would ascribe different meanings to them, which630

is not desired. It is worth recalling, however, that locations are assigned to631

regimes based on the combination of 3 cloud properties: albedo, cloud top632

pressure, and total cloud fraction, so it is not guaranteed that thickening would633

necessarily lead to reclassification to a thicker cloud regime if the cloud top634

pressure and total cloud fraction remain more similar to the original regime635

than to the thicker regime.636

Nevertheless, if such a scenario were common, one would expect high pat-637

tern correlations between the within- and across-regime cloud feedback maps.638

Comparing the spatial patterns of the across-regime and within-regime feed-639

backs (Figure 8, columns 2 and 3), it is clear that while there are some simi-640

larities, the patterns are largely distinct. Uncentered pattern correlations be-641

tween the within-regime and across-regime SW amount feedback maps are642

0.32 on average across models, with an across-model standard deviation of643

0.21. For the optical depth component, the pattern correlation is 0.48 ± 0.16.644

Hence while in some cases clouds of a given morphology may experience a645

large enough cloud property change that the resulting feedback is classified646

as across-regime rather within-regime, this does not appear to be a common647

occurrence.648
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Fig. 9 As in Figure 8, but showing the zonal mean contributions to the SW cloud feedback
from each cloud regime. Stippling indicates locations where at least 8 out of 10 models agree
on the sign of the change (not shown for clear-sky Regime 9).

3.5 SW cloud feedback contributions from individual regimes649

The SW cloud feedback and its components presented above are computed by650

summing across all 8 regimes. We can gain further insights into the processes651

contributing to these feedbacks by considering the contributions to the feed-652

back from individual regimes. With the exception of Regime 1, the total SW653

cloud feedback is positive equatorward of about 50 degrees in all regimes, then654

becomes strongly negative in the extratropics, with a negative peak at around655

60 degrees (Figure 9a). Similar to the maps shown in Figure 8, these features656

are closely mimicked by the across-regime component (Figure 9b), whereas657

the within-regime component is uniformly positive in nearly all regimes and658

all latitudes except poleward of about 55 degrees latitude (Figure 9c).659

The amount and optical depth sub-components of the across-regime feed-660

back are shown in column 2 of Figure 9. These panels are the SW cloud661

feedback counterpart to the actual change in RFO shown in Figure 6b. Nearly662

everywhere, these two components act in the same direction, for reasons that663

were previously noted. For regimes characterized by thicker-than-average clouds664

and more extensive cloud cover (Regimes 2, 5, and 8), increased RFO in the ex-665

tratropics (see Figure 6b) causes negative SW cloud amount and optical depth666

feedback contributions, and decreased RFO at lower latitudes causes positive667

contributions (Figure 9e,h). For regimes characterized by thinner-than-average668

clouds and less extensive cloud cover (Regimes 3 and 6), increased RFO at low669
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latitudes causes positive SW cloud amount and optical depth feedback contri-670

butions, while decreased RFO in the extratropics causes negative contributions671

(Figure 9e,h). The overall features of the across-regime component suggest a672

tendency for the cloud population to shift from cloudier and thicker regimes673

(Regimes 2, 5, 8) towards less-cloudy and thinner regimes (Regimes 3 and 6)674

at low latitudes, with the opposite response in the extratropics. This leads to675

an overall across-regime SW cloud feedback that is positive at low latitudes676

and negative at high latitudes (Figure 9b). Below we will show that this basic677

pattern holds across all models.678

One exception to this result is the behavior of Regime 1, for which the679

frequency of occurrence increases with warming at every latitude (see Figure680

6b). This causes uniformly negative amount and optical depth components681

because of the regime’s relatively thick and extensive cloud cover. The global682

increase in the RFO of Regime 1 may be due to the overall upward shift683

of clouds with warming, such that some locations get reclassified from lower684

regimes into this high cloud regime.685

Figure 9 column 3 shows the feedbacks from changes in cloud properties686

within the already-present regimes. As shown previously, not only are the687

global mean within-regime components uniform in sign across models, but688

their geographic distributions are also nearly uniform in sign, with substan-689

tial inter-model agreement. In Figure 9f and i we can see that this uniformity690

extends to regime space. That is, contributions to the SW cloud amount feed-691

back are positive within all individual regimes and at all latitudes, particularly692

equatorward of about 60 degrees (Figure 9f). Similarly, contributions to the693

SW cloud optical depth feedback are negative within all individual regimes694

poleward of about 40 degrees latitude (Figure 9i). Hence, despite the wide di-695

versity of cloud types and geographic distributions among the 8 regimes, they696

exhibit remarkably similar behavior in all regimes in response to warming (in697

the multi-model average): Clouds decrease in coverage at all latitudes and698

increase in albedo in the extratropics, causing positive amount and negative699

optical depth feedbacks, respectively.700

3.6 SW cloud feedback contributions from individual models and between701

model generations702

We now examine the zonal mean SW cloud feedback contributions in each703

of the ten individual models. The contributions to cloud feedback across all704

individual models agree qualitatively with the multi-model mean responses705

discussed previously, with inter-model differences primarily occurring in the706

relative magnitude of the responses as opposed to fundamental differences in707

geographic structure. For example, all models indicate a positive low-latitude708

feedback transitioning to a negative high-latitude feedback, with the former709

coming primarily from the amount component and the latter coming from710

the optical depth component. Previously we showed that the within-regime711

amount component is systematically positive across latitude and regime for712
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Fig. 10 As in Figure 8, but showing the zonal mean contributions to the SW cloud feedback
from each model. Horizontal line separates CMIP5 models (above) from CMIP6 models
(below).

the multi-model mean, and across all models for the global mean. We now see713

in Figure 10f that it is systematically positive across all models and latitudes714

as well. Similarly, Figure 10i confirms that the within-regime optical depth715

feedback is systematically negative at high latitudes across all models, with716

inter-model differences in sign at lower latitudes.717

The extratropical SW cloud feedback has shifted towards stronger positive718

or weaker negative values between CMIP5 and CMIP6, which is a key driver719

of the increased climate sensitivity of these models (Zelinka et al, 2020). In720

the smaller subset of models considered here, we see this manifest in weaker721

negative feedbacks at high latitudes and stronger positive feedbacks at lower722

latitudes in the CMIP6 models (Figure 11a). Consistent with Zelinka et al723

(2020), both the amount and optical depth feedbacks contribute to the shift,724

most dramatically in the extratropics (Figure 11d,g). The latitude range expe-725

riencing positive amount and optical depth feedbacks has expanded poleward726

in CMIP6, most notably in HadGEM3-GGC31-LL and IPSL-CM6A-LR (Fig-727

ure 10a,d,g).728

Whereas the within-regime component has shifted towards more positive729

values at all latitudes (Figure 11c), this shift is confined mostly to the extrat-730

ropics for the across-regime component (Figure 11b). The shift of the within-731

regime component is primarily coming from a systematically stronger positive732

/ weaker negative optical depth component (Figure 11i), with a smaller con-733

tribution from a stronger positive amount component (Figure 11f). The shift734

towards a weaker negative optical depth feedback in CMIP6 is consistent with735

a weaker cloud phase feedback owing to improved mean-state cloud phase in736
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Fig. 11 Zonal mean contributions to the SW cloud feedback, averaged across CMIP5 (blue)
and CMIP6 (orange) models. Solid lines represent the multi-model means and the shading
spans the ±1σ range across models. The difference between ensemble means is shown in
black, with the shading representing the combined uncertainty from summing the individual
ensembles’ 1σ ranges in quadrature. Global mean values are shown in the top right.

CMIP6 (Tan et al, 2016; McCoy et al, 2015). While this represents a shift to-737

wards better agreement with the broader body of evidence that this feedback738

is not strongly negative (Sherwood et al, 2020; Zelinka et al, 2022), it remains739

uncertain whether the improved mean-state necessarily means the latest mod-740

els are better capturing all the physics needed for this feedback (Mülmenstädt741

et al, 2021).742

The more-positive extratropical across-regime component in CMIP6 ap-743

pears to receive roughly equal contributions from the amount and optical744

depth components (Figure 11e, h). The notable large increase around 30-50S745

is related to a much larger increase in the RFO of Regime 6 – which has the746

thinnest and least extensive cloud coverage (not shown). In this same region,747

the cloudier/thicker Regime 5 decreases in CMIP6, whereas it increases in748

CMIP5 (not shown). At higher latitudes, the negative across-regime compo-749

nent has become weaker. This is because of a weaker increase in the RFO750

of cloudier/thicker Regimes 2 and 5 and a weaker decrease in the RFO of751

less-cloudy/thinner Regimes 6 and 7 in CMIP6 (not shown). Hence the shift752

away from thinner and less extensive cloud regimes towards thicker and more753

extensive cloud regimes at high latitudes is more muted in CMIP6, whereas754

the shift towards thinner / less extensive cloud types at lower latitudes is a bit755
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stronger in CMIP6. Both of these contribute to a more positive extratropical756

cloud feedback from across-regime shifts in CMIP6.757

4 Conclusions and Discussion758

In this study we have brought together for the first time two diagnostic strate-759

gies that offer complementary information about the processes causing the760

cloud feedback. One, cloud radiative kernel analysis, allows for quantifying761

the cloud feedback arising from changes in cloud amount, altitude, and optical762

depth with warming. The other, cloud regime analysis, allows for determina-763

tion of the feedback from changes in cloud properties within distinct cloud764

regimes separately from the feedback from changes in the relative occurrence765

frequencies of various cloud regimes. Having first presented the mathemat-766

ical basis for combining these techniques, we then presented novel insights767

about the cloud feedback that arise from applying the analysis to ten models768

from CMIP5 and CMIP6 simulating a uniform 4K increase in sea surface tem-769

perature. The analysis is performed for both longwave and shortwave cloud770

feedback but for brevity we focused herein on the shortwave cloud feedback771

results.772

For any given model, both the within-regime and across-regime cloud feed-773

back components can be substantial. However, their roles are rather different:774

In the global average, the across-regime components tend to exhibit substan-775

tial inter-model spread but a negligible ensemble-mean contribution. Their776

geographic structures, however, largely determine the spatial pattern of the777

total SW cloud feedback. These patterns reflect the fact that thinner, less ex-778

tensive cloud types increase at the expense of thicker, more extensive cloud779

types at low latitudes, with the opposite response at high latitudes, leading780

to an overall positive across-regime component at low latitudes and negative781

across-regime component at high latitudes.782

In contrast, the global mean within-regime components tend to be of uni-783

form sign across models (systematically positive for cloud amount and nearly784

systematically negative but of weaker magnitude for cloud optical depth),785

such that they are the primary contributor to the positive ensemble-mean786

SW cloud feedback. Their spatial patterns are very homogeneous, with near-787

uniform positive contributions from cloud amount decreases and near-uniform788

weaker negative contributions from cloud albedo increases.789

Results are highly consistent when we perform the same analysis but with790

the models’ clouds matched to the 11 MODIS cloud regimes of Cho et al (2021)791

rather than the 8 ISCCP cloud regimes of Tselioudis et al (2021), as shown792

in the Supplementary Information. One quantitative difference is that the en-793

semble mean across-regime amount component increases in strength slightly794

relative to those shown here (compare Figure 8e with SI Figure 3e), and the795

within-regime amount component decreases in strength slightly (compare Fig-796

ure 8f with SI Figure 3f). This is unsurprising, as the likelihood of a location797

being reclassified to a different cloud regime in a warmed climate increases as798
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the number of regimes increases, owing to the necessarily more subtle inter-799

regime differences in cloud properties when more regimes are present. It re-800

mains the case, however, that the ensemble mean across-regime feedback is801

near zero and the within-regime feedback is by far the dominant contributor802

to the overall feedback (compare Figure 7 with SI Figure 2). This indicates803

that our overall qualitative results are insensitive to the choice of observational804

cloud regimes to which the model fields are assigned.805

Substantial model-to-model variations in the across-regime cloud feed-806

back component are likely tied to variations in how large-scale meteorology807

– and the cloud regimes that it (dis)favors – changes with warming. How-808

ever, these changes are not systematic across models, so the multi-model mean809

across-regime feedback is near zero. In contrast, very consistent feedbacks from810

temperature-mediated decreases in cloud coverage and increases in cloud op-811

tical depth are revealed once the obfuscating effects of changing large-scale812

meteorology are removed. The latter result is true even when considering in-813

dividual cloud regimes, which exhibit systematic changes at all latitudes.814

The negative optical depth feedback over the Southern Ocean receives con-815

tributions from both the increased frequency of occurrence of thicker cloud816

types relative to thinner cloud types, as well as increases in the albedo of817

clouds of a given morphology. This means that changes in meteorology that818

determine cloud morphology as well as thermodynamic processes that affect819

cloud reflectivity within a given meteorological condition are important.820

CMIP6 models exhibit weaker negative feedbacks at high latitudes and821

stronger positive feedbacks at lower latitudes than their predecessors in CMIP5,822

consistent with previous work (Zelinka et al, 2020; Flynn and Mauritsen,823

2020). Both cloud amount and optical depth feedbacks contribute to this shift,824

most dramatically in the extratropics. Within regimes, the decrease of cloud825

amount is greater in CMIP6, while the increase in cloud albedo is weaker826

in CMIP6, possibly related to increased mean-state supercooled liquid frac-827

tions that weaken the phase feedback. Additionally, the increased frequency828

of thicker/cloudier regimes at high latitudes is less dramatic in CMIP6, while829

the shift towards thinner/less-cloudy regimes at lower latitudes is more dra-830

matic, both of which contribute to a more positive across-regime extratropical831

feedback in CMIP6.832

To the extent that internal climate variability and long-term greenhouse833

warming lead to distinct changes in large-scale circulation, whereas the re-834

sponse of cloud properties to warming within meteorological regimes is timescale-835

invariant, future work should investigate whether across-timescale correspon-836

dence of cloud feedback improves if considering only the within-regime compo-837

nent. If so, this could provide an effective strategy for constraining a portion838

of cloud feedback, especially in regions where changes in large-scale meteorol-839

ogy or model biases in control-climate meteorology (Kelleher and Grise, 2022)840

may obscure the otherwise close relationship between temperature-mediated841

changes in cloud properties of a given morphology across time scales.842
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Colin J, Guérémy JF, Michou M, Moine MP, Nabat P, Roehrig R, Mélia1060
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