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Abstract 

 

Atmospheric rivers (ARs) are long, narrow synoptic scale weather features important for Earth’s 

hydrological cycle typically transporting water vapor poleward, delivering precipitation 

important for local climates. Understanding ARs in a warming climate is problematic because 

the AR response to climate change is tied to how the feature is defined. The Atmospheric River 

Tracking Method Intercomparison Project (ARTMIP) provides insights into this problem by 

comparing 16 atmospheric river detection tools (ARDTs) to a common dataset consisting of            

high resolution climate change simulations from a global atmospheric general circulation model. 

ARDTs mostly show increases in frequency and intensity, but the scale of the response is largely 

dependent on algorithmic criteria. Across ARDTs, bulk characteristics suggest intensity and 

spatial footprint are inversely correlated, and most focus regions experience increases in 

precipitation volume coming from extreme ARs. The spread of the AR precipitation response 

under climate change is large and dependent on ARDT selection. 

 

Plain Language Summary 

Atmospheric rivers (ARs) are long and narrow weather features often referred to as “rivers in the 

sky”. They often transport water from lower latitudes to higher latitudes typically across climate 

zones and produce precipitation necessary for local climates. Understanding ARs in a warming 

climate is challenging because of the variety of ways an atmospheric river can be defined on 

gridded datasets. Unlike weather features such as tropical cyclones where identification 

methodologies are similar,  algorithms that determine the characteristics of ARs vary depending 

on the science question posed. Because there is no real consensus on AR identification 

methodology, we aim to quantify the algorithmic uncertainty in AR metrics and precipitation. 

We compare 16 different ways of defining an AR on gridded datasets and present the range of 

possibilities in which an AR could change under global warming. Generally, ARs are projected 

to increase but the amount of that increase is a function of the algorithm. Across all algorithms 

and focus regions, AR precipitation is projected to become more extreme.  

 

 
 



1 Introduction 

 

The intersection of climate change and atmospheric rivers (ARs) can be characterized as a cross-

disciplinary study that spans physical and social sciences across the globe (e.g., Reid et al., 2022; 

Sadeghi et al., 2021; Albano et al., 2020; Payne et al., 2020; Corringham et al., 2022; Viale et al., 

2018; Espinoza et al., 2018; Ralph et al., 2017; Ramos et al., 2015; Blamey et al., 2015; Lavers 

et al. 2013; Baek and Lora, 2021). ARs are synoptic scale weather features, longer than wide, 

that serve as water and energy transport vehicles (Zhu and Newell 1998). They are usually 

attached to a baroclinic zone or extratropical cyclones, typically travel meridionally across 

latitudes or climate zones and are an important component of Earth’s hydrological cycle (Ralph 

et al., 2018, AMS Glossary of Meteorology).  ARs are highly relevant to any populated region 

around the globe that depends on precipitation for a source of water and thus changes to these 

weather features are important for managing evolving water resources (e.g., Rhoades et al., 2021; 

Pan and Lu, 2020; Griffiths et al., 2020; Schick et al., 2020, Sousa et al., 2018; Paltan et al., 

2017). Despite the attention to ARs and climate change in the literature, much remains uncertain. 

AR characteristics, such as size, shape, and intensity, are tightly bound to how we define them 

and firmly tied to the science question being asked (Ralph et al., 2018; Shields et al., 2019; 

O’Brien et al., 2020).  Atmospheric river detection tools (ARDTs) that identify ARs in datasets 

reflect diverse perspectives of what constitutes an AR.  Given ARDTs are developed for unique 

and often complementary scientific questions or purposes, they are also widely varied in their 

methodology. The Atmospheric River Tracking Method Intercomparison Project (ARTMIP) was 

designed to quantify the uncertainties in AR science that arise solely from detection/definition 

methodology (Rutz et al., 2019; Shields et al., 2018, Ralph et al., 2019; Lora et al., 2020). There 

have been numerous applications and publications utilizing ARTMIP data (summarized at 

https://www.cgd.ucar.edu/projects/artmip/publications.html), with the most recent publications 

featuring a reanalysis intercomparison and a climate change modelling intercomparison using 

CMIP5 and CMIP6 (Coupled Model Intercomparison Project Phases 5/6). The reanalysis 

intercomparison highlights precipitation attributable to ARs across ARDTs and reanalysis 

products (Collow et al., 2022), and the CMIP5/CMIP6 modelling intercomparison focuses on 

climate change trends (O’Brien et al., 2022). Both of these studies robustly show that uncertainty 

across ARDTs is larger than the uncertainty across climate models and reanalysis products.   



 

For many ARDTs, the most impactful component determining whether an AR exists is the 

moisture threshold (Shields et al., 2018). Therefore, by definition, moisture thresholds directly 

impact the AR frequency such that methods with absolute threshold values, or relative threshold 

values computed using a fixed historical climatology, will produce higher AR frequency values 

compared to other methodologies when air temperatures are higher (e.g., global warming 

experiments where the Clausius-Clapeyron relationship dictates that the increase in air 

temperature translates into increased background moisture; O’Brien et al. 2022).  Here, we build 

on this basic concept and explore projected changes in AR characteristics such as size, intensity, 

seasonality, and precipitation across regional and global ARDTs, using a high horizontal 

resolution global atmospheric general circulation model. Compared to lower resolution models, 

high resolution models better represent local geography and topography, as well as extreme 

precipitation and AR characteristics (Payne et al., 2020; Demory et al., 2020; Shields et al., 

2016; Guan and Waliser, 2017). This paper is divided into four additional sections. Section 2 

discusses data and approach and includes a discussion of the unique aspects of this high- 

resolution study; section 3 presents a global overview for context amongst previous ARTMIP 

studies; section 4 presents the regional view and ends with a discussion and summary in section 

5.  

 

 

2 Data and Approach  

 

2.1 Model and Reanalysis 

 

Precipitation, vertically Integrated Water Vapor (IWV) and Integrated Vapor Transport (IVT) 

were calculated from two integrations of a high horizontal resolution (~25km) version of the 

finite volume dynamical core version of the Community Atmosphere Model (fvCAM5.1). This 

global Atmospheric General Circulation Model (AGCM) was first forced by realistic sea surface 

temperatures and sea ice extent over the historical period of 1979-2005 (Wehner et al. 2014) 

under the protocols from the Atmospheric Model Intercomparison Project (AMIP) and will be 

referred to as “All-Hist”. The AMIP surface boundary conditions were then perturbed to 



represent a warmer world using output of the Community Earth System Model (CESM1), a fully 

coupled Ocean Atmospheric General Circulation Model (Hurrell et al., 2013). Monthly 

perturbations were defined as the difference between a CESM1 simulation forced under 

Representative Concentration Pathway (RCP) 8.5 (van Vuuren et al., 2011) conditions averaged 

over 2079-2099 and a CESM1 historical simulation averaged over 1979-2005. Thus, the 

perturbed sea surface temperatures and sea ice extent that forced the warmer future fvCAM5.1 

simulations preserved the observed interannual variability over the nominal period 2079-2099 

and will be referred to as “PlusRCP85.” Volcanic aerosols and solar irradiance were preserved, 

but trace greenhouse gasses were altered to be consistent with the RCP8.5 protocols in the 

perturbed fvCAM5.1 simulation. The imposed global warming from CESM1 in these 

perturbations was equivalent to 3.8oC with an equilibrium climate sensitivity of 4.1K (Meehl et 

al., 2013). This method of constructing perturbations to surface boundary conditions follows the 

methods of HAPPI (“Half a degree of Additional warming, Projections, and Prognosis and 

Impacts”) experiments except (1) a single climate model was used instead of a multi-model 

ensemble, (2) a specific timeperiod and emissions scenario was chosen instead of a global 

warming level.  Further details on ARTMIP experimental design are in Shields et al., 2018. AR 

tracking and analysis for fvCAM5.1 was conducted using 3-hourly IVT, IWV, and precipitation 

data.  For quality control, the historical simulation is compared to MERRA-2 products (Gelaro et 

al., 2017) with fvCAM5.1 coarsened to MERRA-2 resolution (~50km) for direct comparisons.  

IWV and IVT were calculated from the 3-hourly zonal (U) and meridional (V) wind fields, and 

specific humidity (Q) and computed according to ARTMIP protocol (Shields et al., 2018).  

(Calculation details in supplemental material).  

 

 

2.2.  ARTMIP Experimental Design and Catalogues 

 

ARTMIP is divided into two tiers that can be described by different levels of involvement.  Tier 

1, required for participation, serves as the baseline for subsequent experiments.  Tier 2 is 

subdivided into different sensitivity experiments and is designed to test scientific questions. 

Examples of Tier2 studies include the reanalysis intercomparison across different global 

reanalysis products (Collow et al., 2022) and the CMIP5/6 climate change intercomparison 



across different global, coupled climate models (O’Brien et al., 2022).  ARDT developers 

participating in ARTMIP detect ARs using identical source data and create “catalogues” so that 

AR metrics can be directly compared.  Catalogues are gridded, temporal datasets in which binary 

indicators of AR presence (AR tags) are defined at each grid point and each time slice.  Details 

on participating algorithms are in Supplemental Table S1.  

 

The design of the ARTMIP High-Resolution project required developers of ARDTs to produce 

catalogues for the historical period (1979 - 2005) and for end-of-the-century RCP 8.5 (2079 - 

2099) to facilitate a comparison of ARs in two climates. Catalogues from two additional 

historical realizations (1995 - 2005) and one additional RCP 8.5 realization (2079 - 2084) were 

not required but generally contributed by participating groups.  Unless otherwise noted, results 

incorporate all realizations. This experiment involved 14 catalogues from various ARDTs, all of 

which have contributed Tier 1 for a baseline comparison to earlier results in MERRA-2.  

 

Tier 2 High Resolution (henceforth referred to as T2-HR) is different from Tier 2 CMIP5/6 

(O’Brien et al., 2022), the companion climate change ARTMIP Tier 2 experiment, in several 

ways. 
 

(1) T2-HR applies high horizontal resolution in a single model ensemble framework described 

above, while Tier 2 CMIP5/6 analyzed CMIP5 and 6 within a lower- resolution multi-model 

ensemble framework and a single simulation set (historical + future). 

(2) T2-HR highlights bulk characteristics, such as spatial footprint and intensity, and AR 

impacts, such as precipitation in a warmer world, where Tier 2 CMIP5/6 primarily focused 

on analyzing climate trends demonstrating that ARDT uncertainty far outweighs model 

uncertainty. 

(3) T2-HR describes regional detail for landfalling ARs, where CMIP5/6 generally focused on 

broad or global metrics.       
 

Although global metrics are presented in this work, the primary purpose is to provide quality 

control between Tier 1 (MERRA-2 Reanalysis, herein referred to as T1-MERRA-2) and Tier 2 

(T2-HR model simulations) as well as context for other ARTMIP experiments, both reanalysis 



and CMIP5/6 experiments (Collow et al., 2022; O’Brien et al., 2022). Although O’Brien et al. 

(2022) classify ARDTs by threshold choices (absolute or relative; time-evolving or time-fixed), 

here we choose to classify by “restrictiveness” of thresholds to highlight two distinct climate 

response regimes, (1) one that allows for many ARs to be detected (less restrictive) and (2) 

another that imposes numerous restrictions and allows for fewer ARs to be detected (more 

restrictive). Dividing the ARDTs into these two regimes side-steps labeling ARDTs by 

parameter types and choices (Shields et al., 2018) and instead groups ARDTs by typical AR 

frequency (using Tier 1 as a baseline) and is easier to interpret for impacts.  See Supplemental 

Table S2 for restrictiveness justification.  

 

 

3 Global overview  

 

To put the results of this paper into a global context, in this section we compare AR 

characteristics in the T2-HR dataset to those in the T1-MERRA-2 dataset for quality control and 

only the results for the global catalogues are shown in Figure 1 (see Table S1).  

        

      

 
Figure 1. (a) Historical AR frequency (fraction of time across analysis period) where hatching 

shows at least half of ARDTs are within 10% of MERRA-2 values from Tier 1. (b) Relative 

difference between RCP85 and historical catalogues showing an overall increase in AR 

frequency over the mid-latitudes, where hatching shows 100% agreement in positive frequency 

between algorithms. 

 



There is generally good agreement over main AR tracks and consistent with Tier2 CMIP5/6 

(O’Brien et al., 2022), although the lack of hatching in the Pacific indicates historical simulations 

are over 10% of MERRA-2. Figure 1a explains the degree of agreement between T2-HR and T1-

MERRA-2, and Figure 1b the fractional change in future AR frequency relative to the historical 

period (1979 - 2005). The average frequency is calculated for each algorithm for each dataset 

(e.g., historical, future and MERRA-2) then averaged across all ARDTs, respectively. There is a 

large range in the total number of events identified, but similarity of projected increases in 

frequency over the AR tracks with a slight expansion poleward. The most robust increases can be 

interpreted as locations where hatching exists in both panels, i.e., locations that most closely 

match MERRA-2 and full ARDT agreement.  Further exploring global ARDTs, but directly 

comparing the spatial footprint and IVT intensity (Figure 2), a relationship between size and 

intensity emerges and illustrates methods with a high mean AR IVT correspond to smaller AR 

fractional areas, whereas methods with a large spatial footprint generally have lower mean IVT. 

This relationship holds across climate states. Intensity and size were calculated by focusing only 

on the AR objects for each algorithm. Fractional area is calculated as the fraction of AR objects 

over the globe, and IVT is calculated from the average (for each time slice) of the IVT 

maximum, minimum, and mean. Although restrictive ARDTs (Table S2) generally fall into the 

smaller footprint/higher IVT category, this is not always the case. For example, AR-CONNECT 

is a tracking methodology that relies on high thresholding to construct AR tracks but uses low 

thresholding requirements for growth and consequently AR size. High IVT values are common 

over the ocean but tend to decay at landfall, meaning that AR-CONNECT has lower coastal 

persistence (Figure S3) though over the oceans its characteristics resemble those from less 

restrictive methodologies. The difference in performance between coastlines and ocean locales in 

the AR-CONNECT demonstrates the importance of understanding the nuances of each ARDT, 

and the developmental intent of the algorithm, when applying to specific science problems.  

However, across all global ARDTs, methods with larger spatial footprint have a larger increase 

with climate change, although their mean IVT stays the same. Uniformly across ARDTs, the 

time-mean object-maximum IVT increases with global warming.  

 



     

 
Figure 2. Boxenplot of (top row) object-mean AR IVT and (bottom row) fractional area for 

global ARDTs over the entire period (1979-2005, 2079-2099). The small boxes are mean object-

maximum values over all time slices, small circles show mean object-minimum values over all 

time slices. Pink is the future climate, blue is the historical climate, and gray is MERRA-2. 

Global ARDTs are listed on the x-axis, and statistical boxes show the median (center line) with 

each outward level containing half the remaining data. Up (down) arrows next to ARDT names 

indicate restrictive (less restrictive) methods.  

 

4 Regional Focus: Projected changes  

 

One advantage of utilizing high resolution climate data is better representation of coastlines and 

geography.  It is in this spirit that a regional analysis is performed for 5 subregions with frequent 

AR landfalls. Regional focus areas include (1) Western North America (32oN-52.5oN), (2) 

United Kingdom (49oN-60oN), (3) Iberian Peninsula (35oN-49oN), (4) South Africa (30oS-36oS), 

and (5) Southern South America (30oS-57oS).  Subsetting ARDTs into two categories, i.e., those 

with restrictive (Figure 3 f-j) versus less restrictive requirements (a-e) and compiling frequency 

metrics across the historical and climate change simulations and MERRA-2 reanalysis, 

disagreement is evident in frequency across all months when quantifying the climate change 



response. The range plotted in Figure 3 spans median to maximum frequency with climate 

change response in red bars and the historical in black bars. Less restrictive methods produce 

consistently higher occurrences in landfalling AR conditions across the entire period analyzed. 

Values have been normalized to percent (%) of time across each respective period. For some 

regions, such as landfalling ARs across Western North America and the Iberian Peninsula, there 

is essentially no difference between the historical spread versus the future climate spread for 

restrictive methods. For Western North American, this holds even if the region is subsetted 

between northern and southern latitudes (not shown). This result indicates that the climate 

change signal is sensitive to the detection method.        

 

The MERRA-2 climatology is plotted for reference (gray bars) and illustrates that fvCAM5.1 is 

able to reproduce the seasonal cycle of ARs  well. Magnitudes of frequency values are realistic, 

with only Western North America spring and summer seasons outside the MERRA-2 spread, 

where the model overproduces ARs. For northern hemisphere focus regions, both regional and 

global ARDTs are included and generally perform similarly. For the southern hemisphere 

regions, however, only global ARDTs are available and notably diverge in seasonality when 

comparing regional ARDTs from Tier 1 (Figure 3, Blamey et al., 2018, Viale et al., 2018).  

These Tier 1 southern hemisphere ARDTs are designed for their unique, respective regional AR 

characteristics. Comparing regional methods to global methods in these panels highlights 

discrepancies between ARDT climatologies for these locations. The largest discrepancy lies with 

South American ARs and can be tied to the latitudinal distribution (Figure S2). The regional 

ARDT (Viale et al., 2018) with relative IVT threshold (85th percentile) preferentially detects 

landfalling ARs between 50°S and 40oS during wintertime, whereas the global methods detect 

ARs that dominate in the southernmost (south of 50°S) and subtropical bands. The higher AR 

frequency in summertime in South America by global methods compares more directly to UK 

AR climatology and storm track-driven AR occurrences. This suggests that global methods with 

fixed IVT threshold would produce an AR climatology in South America more weighted by the 

southernmost band with higher frequency of storm tracks.  Although further investigations into 

the discrepancies between regional and global methodologies are subjects for future research, the 

uncertainty uncovered here supports past ARTMIP findings (Ralph et al., 2019, Rutz et al., 2019, 



O’Brien et al., 2022, Collow et al. 2022, Shields et al. 2018) and highlights the importance of 

considering uncertainty arising from choice of ARDT.   



      



Figure 3. ARDT spread for landfalling AR occurrence climatology. The method with the median 

number of ARs is plotted as the lower bound, and the method with the most ARs, the upper 

bound.  Tier 1 MERRA-2 (gray), Tier 2 high resolution “All-Hist” historical simulations (black), 

and Tier 2 high resolution “PlusRCP85” RCP8.5 (red). ARDTs are grouped by restrictiveness 

with less restrictive ARDTs (a-e) and more restrictive ARDTs (f-j).  Regions include Western 

North America, United Kingdom, Iberian Peninsula, Southern South America, and Southern 

Africa (Coverage shown in S4). Gray dots in Southern Africa and Southern South America 

represent regional ARDTs from Tier 1 (Blamey et al., 2018, Viale et al., 2018). Although they 

did not participate in Tier2, they are shown to highlight discrepancies between regional and 

global ARDT climatologies. All other regions include both regional and global ARDTs that 

perform similarly with respect to seasonality.  Because not all methods provide contributions for 

all ensemble members, frequency is given in % of time across analysis periods, scaling each 

ARDT contribution by number of years provided.  

 

 Regional evaluations of AR precipitation rate distributions and how they have changed between 

historical and global warming periods are shown in Figure 4. ARDT outputs are used to extract 

AR-linked precipitation from the climate model runs and are plotted based on intensity bins and 

each bin’s fraction of total AR rainfall volume, as following techniques in Pendergrass and 

Hartman (2014a, b). For example, in Figure 4b, the mean ARDT results show that 1.5% of AR 

rainfall in the Northwest United States in the historical period comes at a rate of 200 mm/day or 

greater, while this jumps up to 4.3% in the RCP8.5 climate runs. Shaded envelopes show the 

spread of detected precipitation volume fractions per ARDT and the bold lines indicate mean 

values. Regional boxes (Figure S4) are defined using the same latitude limits as Figure 3.  We 

choose to use a broad localized box centered around focus regions to maximize the character of 

the impact from precipitation in these regions that incorporate land points, coastlines, and 

regional ocean influences.  A general pattern emerges from all regions: a decrease from baseline 

in rainfall volume fraction at the lower end of the intensity spectrum (roughly the 3-30 mm/day 

range) and an increase in the higher 50-200+ mm/day range. In all regions, the differences 

between periods at these intensity bins cannot overcome the range of ARDT spread, indicating 

that an intensification signal is sensitive to ARDT selection, illustrating the necessity of 

considering an ensemble of techniques to investigate AR science questions as recommended in 



O’Brien et al. (2021). The most noticeable difference in spreads occurs in the British Islands 

(UK), where a particularly large signal is evident in the 50-200 mm/day range, showcasing a 

large change in precipitation volumes between periods. This result falls in line with expected 

intensification of AR precipitation at the extreme end of the spectrum (Wuebbles et al. 2017; 

IPCC WG1 Chapter 8 (Douville et al. 2021), Chapter 11 (Seneviratne et al., 2021)) and is 

consistent with other AR studies that show a shift towards more extreme precipitation      

(Shields and Kiehl, 2016a, Polade et al., 2017, Gershunov et al., 2019). It is also consistent with 

global warming studies that demonstrate the increase in heavy precipitation is tied to both the 

expansion of the subtropics, thus pushing mid-latitude cyclones poleward, and wetter ARs due to 

thermodynamics (Gerhunov et al., 2019, Shields and Kiehl, 2016b, Baek and Lora, 2021).   

Other noteworthy results of interest are the relatively large change in upper tail (200+ mm/day) 

rainfall in South Africa between periods and the relatively low change between periods in South 

America. Because uncertainty across ARDTs generally increases as the AR reaches further 

inland (Collow et al., 2022), the AR-precipitation spread impacting land points only was also 

considered and found to be similar, although the ARDT spread is wider (Figure S5).  

  

 
 

Figure 4. Distribution of rainfall rates produced by ARs calculated as its fraction of total AR 

precipitation volume during the baseline (All-Hist) period shown in black and RCP8.5 period 



shown in red, distributed by rainfall rate. The shaded envelopes show distribution of all ARDT 

methodologies, all T2-HR simulations, encompassing the mean values shown by thick lines. 

Each subfigure indicates distributions from different regions (Figure S4) of frequent AR landfall: 

a) Southwestern US, b) Northwestern US, c) the British Isles, d) Iberia, e) Southwestern South 

America, and f) Southern Africa. 

 

 

5 Discussion and Summary 

 

High-resolution historical and future climate simulations are used to evaluate ARDTs for both 

global and regional domains.  High horizontal model resolution is applied to better represent 

bulk AR characteristics, regional geography to landfalling locations, and more accurate 

precipitation and extremes. Historical simulations produced by fvCAM5.1 produce realistic AR 

metrics for frequency, intensity, global distribution, and seasonality. The methods also broadly 

support the notion that AR frequency and intensity will increase in a warmer, future climate, 

although regional differences exist, especially regarding the magnitude of the increases and their 

spatial distribution. The current literature shows the thermodynamic response dominates AR 

changes (e.g. Michaelis et al., 2022, Payne et al., 2020, Gershunov et al., 2019, Gao et al. 2015, 

Lavers et al., 2013, Baek and Lora, 2021), but the degree to which the ARs respond to climate 

change is highly uncertain (O’Brien et al. 2022). ARTMIP Tier 2 CMIP5/6 shows that the 

uncertainty across ARDTs in the AR frequency trends far surpasses the uncertainty across 

climate models. Here, HR-T2 analysis shows that the restrictiveness of the algorithmic 

parameters largely explains the scale of the response, despite agreement in bulk characteristics.      

Across global algorithms, IVT intensity and spatial footprint are inversely correlated, such that      

methods with higher IVT intensity tend to have a smaller spatial footprint. With a less restrictive 

algorithm, more ARs are detected but with a lower average AR IVT.   
 

Seasonally, regional methods and global methods also tend to behave similarly, but only in the 

northern hemisphere. For example, global ARDTs applied to South America have a distinctly 

different climatology compared to Tier 1 regional ARDTs which can be tied to the dominant 

type of ARs detected.  Applying a South American-specific ARDT (Viale et al. 2018), the 



dominant ARs lie in the storm track south of 40oS whereas the global ARs tend to detect more 

ARs in the subtropics. Despite these regional nuances, even from a seasonal viewpoint, 

restrictive algorithms detect far fewer ARs than less restrictive ones and display a far weaker 

climate change signal consistent across all focus regions. Simply, the choice of ARDT can 

determine whether a climate change signal is present at all.  

 

Regarding precipitation attributable to ARs compared across ARDTs, like bulk characteristics, 

precipitation distributions align well with each other across regional focus areas; however, 

precipitation amounts span a wide envelope of possibilities.  Under the RCP8.5 scenario and 

consistent with current literature, precipitation intensity generally increases for more extreme 

precipitation rates, and decreases for light rates, yet the spread of values across ARDTs for 

RCP8.5 conditions falls within the spread for the historical, thus adding to previous ARTMIP 

conclusions that uncertainty due to ARDT overwhelms metrics dependent on AR frequency 

numbers. Ultimately, relying on one ARDT, or ARDTs too similar to each other without 

understanding algorithmic sensitivities, does a disservice to quantifying AR impacts. Given that 

precipitation generated or transported by ARs is used to quantify water availability for many 

local communities, changes to AR precipitation, and the uncertainty associated with any AR 

metric, is highly relevant for water resource planning now (Michaelis et al., 2022) and in the 

coming decades. 

 

Tier2-HR illustrates the necessity of understanding ARDTs sensitivities when choosing 

methodologies suitable for the science question posed. If possible, a selection of ARDTs should 

be applied to climate change AR analysis that applies both restrictive and nonrestrictive groups. 

Type of AR and/or regional focus area matter. Restrictive ARDTs applied to Western North 

America and the Iberian Peninsula produce a climatology that is essentially unchanged for a 

future climate compared to less restrictive algorithms for the same area. Minimally, for climate 

change AR analysis, an evaluation of the ARDT’s restrictiveness, and AR metrics compared to 

other published ARDTs, should be standard procedure to alert readers to both context and 

associated uncertainties.  
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