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Motivation and Background

• Improve propulsion capabilities on 
the Akronauts Rocket Design Team

• Hot-fire tested first liquid rocket 
engine Fall 2021

• Design a reusable engine with 
regenerative cooling

• Demonstrate a 15-s hot fire test

• Build upon existing capabilities

• Oxidizer: nitrous oxide (N2O)

• Fuel: ethanol 

• Develop existing test stand
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Design for Additive Manufacturing (DfAM)

The whole process 

must be considered 

in the design stage

Designer – vendor communication is critical:  Vendors perform several of the process steps.
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Design for Additive Manufacturing (DfAM)

Part design,

Build direction,

Supports/overhangs,

Sacrificial material

Laser powder bed 
fusion,

GRCop-42,

Powder removal,

Build plate removal

NDE Evaluation: 

CT Scanning,

Witness 
samples

Hot isostatic 
pressing (HIP),

Final machining 
(datums),

Water flow 
testing

Polishing,

Cleaning

Assembly,

Testing



5

Injector Design

• F-O-F triplets, influenced by previous injector design

• Ethanol orifice area designed using single phase, 

incompressible model

ሶ𝑚𝑆𝑃𝐼 = 𝐴𝑖𝐶𝑑 2𝜌1∆𝑃

• Nitrous orifice area designed using Dyer model 
• Accounts for vapor formation from low chamber pressure

• Nearly follows SPI model due to high manifold pressure

• DfAM allowed the manifolds to be printed onto 

injector face

• One part design with no manifold seals

• Instrumentation and chamber pressure ports
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Thrust Chamber Design

• Kept same flange and injector face diameter as 

previous thrust chamber assembly

• NASA CEA used to find ideal operating point
• 3.2 MR selected to lower heat loads with minimal 

performance loss (at 400 psi).

• Bartz heat transfer correlations used to design 

rectangular coolant channels
• Near-linear coolant temperature increase

• Truncated ideal contour (TIC) nozzle design
• Method of characteristics contour shortened for 

weight and length savings

• High manifold pressure to keep ethanol above 

critical pressure
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Feed System Overview



• Designed to hold up to 1.5x of a 1,600 psi MEOP with a factor 
safety of 2.

• Oxidizer and fuel tanks are pressurized with N2.

• Oxidizer tank: 3 modules that can hold up to 5-,10-, and 15-s 
worth of nitrous oxide. It includes:

• N2O inlet and outlet.

• Pressure Safety Valve set to 1,800 psi.

• Vent valve.

• Thermocouple.

• Fuel tank: single module that holds up to 15 s of burn time.

• Fuel drain.

• Fuel inlet and outlet
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Tank Design



• Pressure regulator to set nitrogen pressure for system
• For steady-state testing

• Pressure gauge before and after regulator for operator

• Pressure relief valve set to 2,000 psi for safety of the 
system in case of regulator malfunction

• 3 total lines are connected to the test stand
• Oxidizer tank 

• Fuel tank

• Purge lines

• Another N2 cylinder will be added to the system for 
increased mass flow rate and volume
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Nitrogen Gas Pressurant System



• Team-written software, HIVE, is the everything 

software for the system

• Controls valves and DAQ

• Controls the DAQ and control board from an 

external computer

• Inputs data and directly relays it to a UI for live 

graph output and saving during testing 
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Instrumentation and Controls
• 2 Labjack T7’s used for system control and data acquisition

• 11 pressure transducers

• 8 thermocouples

• 3 load cells

• 6 solenoid valves

• Team-made op-amp is used to amplify load cells inputs and 

reduce noise during testing
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Proof Testing

• Proof tested the test stand and fill cart 

feed lines/tanks using hydrostatic pump

• Proved to a higher pressure than 

expected during testing:

Subsystem Pressure (psi)

Test stand feed system 2,400

N2O fill cart 1,500

EPPS fill cart before regulator 5,000

EPPS fill cart after regulator 2,400

Combustion chamber 1,200



• Designed and developed combustion 

hardware with regenerative cooling

• DfAM

• Upgraded test stand with new:
• Propellant Tank

• Feed system

• Control systems and instrumentation

• Nitrogen gas pressurant system

• Future Work:
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Summary and Future Work

Water and nitrous oxide 
blowdowns pressurized with N2 to 

collect test data.
Hot fire testing beginning in April.
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