Modeling Nonequilibrium Reactive Systems with REACTER

Langley Research

Center

All Images Credit NASA unless otherwise indicated

Jacob Gissinger

Postdoctoral Advisor: Kristopher E. Wise

NASA Langley Research Center

Chemical Reactions are Everywhere

There was a Missing Scale for Reaction Modeling

- Quantum mechanics can model reactions from first principles
- Levels of abstraction come with a tradeoff: accuracy vs. speed
- Reactive force fields can achieve near-DFT accuracy
 - Much faster than DFT, much slower than classical MD
- Can a heuristic description of reactions allow for reactive modeling at much greater scales?

DFT: Density Functional Theory

There is Much Heuristic Knowledge in Chemistry

- Many relevant reaction pathways are already well characterized
 - Polymer chemistry, organic chemistry, materials science
 - Reaction pathways available in literature, textbooks, and online databases
- Dynamic modeling of products forming from reactants allows:
 - Creation of realistic initial configurations for further study
 - Large-scale, computationally-efficient simulations of reactive systems

Example of a sequence with complex but well-characterized reactions (artificial synthesis of caffeine).

What is REACTER?

- A protocol for modeling reactions during classical MD
 - Add/remove specific bonds, angles, dihedrals, etc.
 - Modify all force field types as well as atomic charges
 - Supports any fixed-valence force field (PCFF, OPLS, etc.)
 - Reaction stabilization
- Parallel implementation in LAMMPS as fix bond/react
 - User inputs: molecule templates of pre- and post-reaction topology
 - A map file relating atoms before and after the reaction

REACTER: A Heuristic Method for Reactive Molecular Dynamics. Gissinger, Jensen & Wise. Macromolecules 53, 22, 9953–9961 (2020).

www.reacter.org

Epoxy Crosslinking

Simple cross-linking mechanism of an amine to two epoxy molecules

Delete Atoms Based on Topology

- 1) Delete unwanted reaction by-products
- 2) Remove specific molecules based on topology (such as small rings)

deletion of condensed water molecule

Create Atoms (and their Bonds)

Example:

 Dynamic growth of polystyrene by creating monomers

Features:

- Place new atoms using best-fit between template and reaction site
- Prevent created atoms from overlapping with existing atoms

Bond-Breaking Reaction Trigger

NASA

- Simple criterion for mechanically-induced chain scission
- Or, if using custom criteria, REACTER can be used to reorganize topology

REACTER has Applications in a Variety of Fields

Gissinger et al. *Macromolecules* **2020**, 53.22, 9953.

Song et al. Composites Science and Technology **2021**, 209, 108790.

Yeganeh et al. Science Advances **2022**, 8.6, eabm0144.

Alzate-Vargas et al. The

Journal of Physical

Chemistry C **2021**, 125.34, 18588.

Tejedor et al. *Nature* Communications **2022**, 13.1, 5717.

10

Stevens, The Journal of Chemical Physics 2021, 155.5, 054905.

Dynamic Modeling of Molecular Machines

REACTER-ML Framework: Three-Step Approach

Step 1: Sampling the Committor Function

- DFTB with spin polarization and solvation model (toluene)
- Swarm of trajectories approach used to generate a probability of reaction for a given configuration
- 50 trajectories (500 fs) launched from a given configuration (temperature = 530 K)
- Bond-forming trajectories were identified if bonding atoms were separated by < 1.8 Å at end of run
- Khuong et al.: Reaction barrier:
 6.0 7.7 kcal/mol, Transition State
 (TS) bond length: 2.276 2.351 Å

42-node icosphere used for rotations

Reaction barrier: 4.7 kcal/mol

TS bond length: 2.29 Å

Equilibrium bond length: 1.57 Å

Khuong, K. S. et al. J. Am. Chem. Soc. 2005, 127, 1265-1277.

Step 2: Learning the Committor Function

- Fully-connected deep neural net used to learn committor using reaction coordinates as input
- Three hidden layers (shown to right)
- Key optimizations of the model:
 - Using reduced reaction coordinates
 - Normalizing and centering input values
 - Continuous representation of rotations
 E.g., rather than Euler angles, use 2D coordinates on unit circle (adds one dimension)
- Mean Absolute Error of Predicted Reaction Probabilities: 0.087

Step 3: Using the Committor Function

- Chain growth of polystyrene governed by Python-enabled reaction constraint
- Before every reaction attempt, reaction site coordinates exported to TensorFlow for evaluation of committor
- Soft Lennard-Jones potentials used to increase sampling of r < 2.5 Å
- Large-scale simulated polymerization completed (200K atoms)
- Simulated polymerization reaction rate agrees with previous distance-based reactive MD results

Extent of Reaction: 95%

15

A Framework for Modeling Organic Reactions at Scale

- REACTER is a versatile tool for reactive molecular dynamics simulations
 - Nonequilibrium reactive systems from battery interfaces to biomolecules
- A committor function was incorporated into classical molecular dynamics:
 - 1. Sampling the committor DFTB and swarm of trajectories method
 - 2. Learning the committor deep neural network using reduced reaction coordinates
 - 3. Using the committor REACTER with Python-enabled reaction constraint
- Future work: Improve REACTER-ML interface; automatic typing of new interactions

Thank You!

Email: jacob.gissinger@nasa.gov