The PACE-MAPP algorithm

Simultaneous aerosol and ocean products from combined polarimeter and shortwave infrared measurements

2/27/2023

PACE-MAPP team

□ <u>PI</u>

> Snorre Stamnes

➤ James Allen

► Adam Bell

Sharon Burton

> Otto Hasekamp

- Collaborators
 - Chris
 Hostetler

🕨 Xu Liu

Johnathan Hair

> Yongxiang

Ни

Stamnes > Jacek Chowdhary

Ed Chemyakin

> Michael

Jones

2

Richard Ferrare

Bastiaan van Diedenhoven

PACE-MAPP collaborative algorithm project

- > Produce accurate aerosol optical and microphysical properties and ocean properties
- Use a coupled atmosphere-ocean vector radiative transfer (VRT) model
- Use accurate but fast Mie/SS/T-matrix LUTs
- Use scientific machine learning to speed-up retrievals by 1000x (PACE-MAPP Neural Network)

IOCCG data

×10⁻³

PACE-MAPP Science Applications Team

3

Involving interns in PACE

Michael Jones (PACE-MAPP neural network)

- ≻Mentor: Snorre Stamnes
- ► Goal: Speed-up PACE-MAPP by a factor 1000+

Grant Sims (Coated hydrosol LUT)

- ≻Mentors: Snorre Stamnes, Ed Chemyakin, James Allen
- ➢Goal: Shrink Coated Hydrosol LUT from 40GB to less than 1GB

PACE-MAPP deliverables

Type of Deliverable	Specify Deliverable	Discipline	Applicable PACE Sensor(s)	Input Data for Deliverable	Citation – prior work
Numerical modelNumerical ModelNumerical modelPACE-MAPP algorithm	Bio-optical model Aerosol model Thin cirrus model Coupled atmosphere-ocean retrieval algorithm for aerosol, thin- cirrus, ocean color ap & bbp spectra	Ocean color, atmosphere, ocean Atmosphere, ocean, land Atmosphere, ocean, land Ocean Color Algorithm, Aerosol Algorithm, Cloud Algorithm, Applications (coastal zones, NPP, AO, DRE)	OCI HARP2 SPEXone	Multi-Angle Total Radiance and Polarimetry OCI SWIR	Chowdhary et al., 2006, 2012, 2019. Stamnes et al., 2018. Diedenhoven et al., 2012, 2013. Yang et al., 2015. Stamnes et al., 2018. Cairns et al., 1999. Chowdhary et al., 2006, 2012, 2019. Diedenhoven et al., 2012, 2013. Yang et al., 2015.
					1

5

PACE-MAPP aerosol/thin cloud products

□ Aerosol optical and microphysical properties

- Fine mode AOD (aerosol optical depth), SSA (single-scattering albedo, quantifies absorption), real refractive index, effective radius (size), and effective variance (size distribution width)
- Seasalt AOD, effective radius and effective variance (CRI assumed)
- Dust AOD, effective radius and effective variance (CRI modeled according to Hasekamp/SRON model, with updates from Chowdhary, Schuster and Moosmüller)

Thin cirrus optical and microphysical properties

- > Thin cirrus optical depth (< 1.0) and effective radius
- Sensitivity to shape and height will be assessed

Parameter Values

All values randomly selected from a uniform distribution. For VZA 160 angles are generated between 65° and -65° for every observation. Altitude is fixed at top of atmosphere (TOA).

Parameter [Units]	Min	Max
SZA [degrees]	0	60
RAA [degrees]	0	180
n _{rf}	1.39	1.65
n _{if}	1e-5	0.045
r _{nf}	0.075	0.15
r _{nc}	0.5	1.5
$ au_{556f}$	1e-5	0.7
$ au_{556c}$	1e-5	0.3
σ_{gf}	log(1.4)	log(2.01)
σ_{gc}	log(1.35)	log(2.01)
FTL Base Height [km]	1.01	7.0
<i>v</i> [m/s]	1.0	13.0
Chla [mg/m ³]	0.01	9.0

PACE-MAPP framework

PACE-MAPP framework for running optimal estimation retrievals:

- Written in 100% Python (no complicated setup).
- Configuration file-based retrievals:
 - Models can be easily interchanged (we have a separate framework to rapidly train neural networks models).
 - Extendable pipeline that supports different modules.
 - Ability to run retrievals using data from multiple instruments at once across different channels.
- Full support to read from PACE Level-1C datafiles.
- Multiprocessing for retrievals across all available cores.

PACE-MAPP framework (continued)

BIMODAL AEROSOL MODEL

Spherical fine-mode and non-absorbing coarse-mode sea salt.

TRIMODAL AEROSOL MODEL AND THIN CIRRUS MODEL

TRIMODAL AEROSOL MODEL with added thin cirrus model.

TRIMODAL AEROSOL MODEL

BIMODAL AEROSOL MODEL with added non-spherical dust.

BIMODAL AEROSOL MODEL AND MULTI-PARAMETER BIO-OPTICAL MODEL

Multi-parameter ocean model enabled in the absence of dust and thin cirrus to study deep blue waters and coastal zones. Different PACE-MAPP neural network models can easily be selected inside the PACE-MAPP framework's config file.

PACE-MAPP NEURAL NETWORK MODELS

Retrievals using the bimodal aerosol neural network model take ~4.5 sec/core (1,000x speedup).

PACE-MAPP

Bimodal aerosol model with fine-mode absorbing aerosol and coarse-mode, nonabsorbing sea salt

Trimodal aerosol model also includes non-spherical coarse-mode dust aerosol

Coated hydrosol LUT. Scale invariance rule

Size parameter

$$x = 2\pi \frac{1.4}{2.264} = 2\pi \frac{r}{\lambda} = 2\pi \frac{\frac{0.355}{2.264} \cdot 1.4}{0.355}$$

Efficiencies

$$Q_p(.,r,\lambda) = Q_p\left(.,\frac{\lambda_r}{\lambda}r,\lambda_r\right)$$

In terms of integrals

$$\int_{r_{\min}}^{r_{\max}} Q_p(.,r,\lambda) d\ln r = \int_{\frac{\lambda_r}{\lambda}r_{\min}}^{\frac{\lambda_r}{\lambda}r_{\max}} Q_p(.,r,\lambda_r) d\ln r.$$

Normalized absorption efficiencies at wavelengths 0.355 and 2.264 μm are related by a uniform scaling transformation which is a type of Euclidean affinity transformation.

For more details see: E. Chemyakin, S. Stamnes, S. P. Burton, Xu Liu, C. Hostetler, R. Ferrare, B. Cairns, and O. Dubovik, "Improved Lorenz-Mie look-up table for lidar and polarimeter retrievals," Frontiers in Remote Sensing, 2:711106, doi: 10.3389/frsen.2021.711106 (2021).

Coated hydrosol LUT

- □ We have created a coated hydrosol LUT for PACE
- Coated particles can realistically simulate bbp without resorting to tiny sizes as required by solid spheres

Neural Network for Coated/Uncoated Hydrosol Particles

Coated hydrosol LUT neural network

Phytoplankton as Coated Hydrosols

14 **PACE-MAPP** Science Applications Team

Bio-Optical Model Workflow

Thin Cirrus Model: Tools

To understand the impacts of optically thin cirrus clouds on aerosol/ocean property retrievals we:

- Incorporated a Coupled Atmosphere-Ocean Vector Radiative Transfer solver into the PACE-MAPP retrieval framework (*Chowdhary et al., 2000*)
- □ Trained a Neural Network to reproduce ice particle optical properties (*Yang, et al., 2015*)
 - **inputs:** wavelength (200-1500 nm), effective diameter (0.6-590 μm), scattering angle
 - **outputs:** log(P11), P22, P33, P44, P12, P43, Qext, Qsca, albedo

Thin Cirrus Model: Next Steps

We can now get a better physical understanding of how thin cirrus clouds impact aerosol property retrievals as a function of optical depth and viewing geometry:

SZA fixed at 60°, Dust properties (Saito et al., 2021)

Conclusion

- PACE-related papers
 - Stamnes et al., "The PACE-MAPP algorithm: Simultaneous aerosol and ocean polarimeter products using coupled atmosphere-ocean vector radiative transfer" (submitted)
 - Chemyakin et al., "Improved Lorenz-Mie look-up table for lidar and polarimeter retrievals," Frontiers in Remote Sensing, 2:711106, doi: 10.3389/frsen.2021.711106 (2021).
 - Chemyakin et al., "Efficient single-scattering look-up table for lidar and polarimeter water cloud studies," Opt. Lett. 48, 13–16, doi: 10.1364/OL.474282 (2023).
 - Chemyakin et al., "Efficient single-scattering look-up table for lidar and polarimeter phytoplankton studies," Opt. Lett., to be submitted in 2023.
 - Allen et al., Bio-optical model using coated and uncoated hydrosols (in progress)
 - Bell et al., Simultaneous thin cirrus property retrievals using polarimetry (in progress)
- Working with the PACE SOT for PACE-MAPP to be included in the PACE data processing system
 - Aerosol, Cloud, Hydrosol, Coated Hydrosol IOP LUTs are freely available at https://science.larc.nasa.gov/polarimetry
- Questions or suggestions welcome! Email <u>snorre.a.stamnes@nasa.gov</u>