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1. Abstract 
The Memphis Aquifer (MA) is located in the Mississippi Embayment that extends 250,000 square kilometers 
across eight states. Fayette and Haywood counties in West Tennessee are situated within the recharge zone of 
the MA and include the forthcoming Ford “mega campus” named Blue Oval City (BOC), which will consist 
of a vehicle-production facility and battery assembly division. Increased water demand and land cover change 
resulting from urban development, such as BOC in the MA’s narrow recharge zone, threaten the aquifer’s 
groundwater storage and recharge rate. Groundwater recharge factors that influence the narrow recharge 
zone of the MA include precipitation, evapotranspiration, runoff, and land cover type. In partnership with 
Protect Our Aquifer (POA) and the Center for Applied Earth Science and Engineering Research (CAESAR) 
at the University of Memphis, the team used data from the ECOsystem Spaceborne Thermal Radiometer 
Experiment on Space Station (ECOSTRESS), Integrated Multi-Satellite Retrievals for Global Precipitation 
Measurement (GPM IMERG), and Landsat 8 Operational Land Imager (OLI) and Thermal Infrared Sensor 
(TIRS). The team also used ancillary data from the National Land Cover Database (NLCD) and the North 
American Land Data Assimilation System (NLDAS) Noah Land Surface Model. These results identified 
“thriving” recharge locations, which are areas most conducive to aquifer recharge in Fayette County. The 
partners may use the results to prioritize specific areas in need of protection before they become susceptible 
to the effects of urbanization and industrialization. 
 
Key Terms 
precipitation, evaporative stress, remote sensing, evaporative stress index, thriving index, land cover change, 
runoff 
 
2. Introduction 

2.1 Background Information 
Groundwater depletion is a growing concern as the effects of increased agricultural activity, urbanization, and 
industrialization become apparent. In areas where groundwater is the primary water supply, it is vital to 
understand how this resource is replenished and what may endanger it. The Mississippi Embayment (ME) 
spans eight states in the southeast United States and is widely known for experiencing ground water depletion 
at a rapid rate (Ouyang et al., 2021). The Memphis Aquifer (MA), a part of the ME, supplies pristine water 
resources to Tennessee residents and for nearly all municipal, industrial, and agricultural needs in west 
Tennessee (TN Roadmap to Securing the Future of Our Water Resources, 2018). With an expected increase 
urbanization in Haywood and Fayette counties  due to Ford’s planned construction of their new battery 
assembly plant, Blue Oval City (BOC), replenishment of this water supply may be threatened due to the 
increased demand on the water supply and change in land cover type. An increase in impervious surfaces 
prevents precipitation from efficiently infiltrating and recharging the aquifer. While the runoff from 
impervious surfaces can eventually make its way into streams to recharge the aquifer—either naturally or 
from a drainage system—this water poses the threat of contaminating the aquifer with pollutants.  
 
In examining water balance and evaporative stress in the area, the team can understand if excess water is 
running off and if the vegetation in the area is efficiently transpiring due to adequate water availability. In a 
related DEVELOP project—Mississippi Embayment Water Resources—it was determined that a thriving 
index pinpointing areas conducive to recharge would be a useful tool for the partners (Mahoney et al., 2022).  
By examining the aforementioned hydrological factors, the thriving index identifies locations where water can 
efficiently percolate down to the aquifer to recharge it, meaning there is adequate water available. Identifying 
these thriving areas in the aquifer recharge zone is important for conserving and protecting the MA so that 
these areas are prioritized for protection efforts before being affected by urbanization and industrialization. 
The study area focused on the Hatchie-Obion Watershed, paying close attention to BOC and its surrounding 
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counties, Haywood and Fayette (Figure 1). The area stretches across three states; Kentucky, Mississippi, and 
Tennessee, and covers approximately 25,000 km2.  

 
 

 
Figure 1. The study area of this project includes Ford’s Blue Oval City, Haywood and Fayette Counties, the 

Hatchie-Obion Watershed (blue), and the Memphis Aquifer’s Recharge Zone (orange) 

2.2 Scientific Basis 
In order to identify water stressed areas, it is vital to consider the factors that directly affect recharge in the 
MA which include precipitation (P), evapotranspiration (ET), the evaporative stress index (ESI), land cover 
type, and runoff—all of which influence recharge rate and can impact water stressed areas (Mohan et al., 
2018). Precipitation—followed by evapotranspiration—is the largest global contributor to the water cycle 
(Cawse-Nicholson et al., 2020). P influences the presence of surface water, which can directly percolate down 
through the vadose zone to recharge the aquifer—especially in rural regions. In seasons with low P, 
agricultural areas increase their reliance on groundwater to maintain crop irrigation. ET, a combination of 
evaporation and plant transpiration, is an indicator of vegetation stress. When plants do not have access to 
water, their stomata close and reduce their transpiration rate, which increases their temperature. The 
ECOSTRESS instrument, located on the International Space Station, detects this increase in plants’ 
temperature when water stressed (Cawse-Nicholson et al., 2020). As a result, ET also influences how much P 
is available to become surface water. The construction of BOC will alter the land cover type and may impact 
the recharge rate due to the expansion of impervious surfaces (Smith, 2019). ESI is an indicator of potential 
plant water stress by highlighting areas where plant productivity is poor. Accurate estimation of these factors 
can provide insights into spatiotemporal changes in water availability.  

2.3 Previous Term 
In the spring 2022 term Mississippi Embayment Water Resources project, the team utilized various Earth 
observations, including the Terra Moderate Resolution Imaging Spectrometer (MODIS), Gravity Recovery 
and Climate Experiment (GRACE), and GPM IMERG to find thriving areas within the entire ME. A 
positive value for water balance is an indicator of a thriving area because it implies that the excess water may 
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run off to streams and has the potential to recharge the aquifer. An ESI value closer to 1 is another indicator 
of a thriving area because it shows how vegetation is efficiently transpiring. The thriving areas were located by 
comparing water balance and ESI maps along with land cover data. The previous team constructed a 
methodology framework to allow the current team to zoom in on the west Tennessee portion of the aquifer 
by incorporating higher resolution data from ECOSTRESS for a more detailed view of the thriving areas 
within the west Tennessee portion of the aquifer.  

2.4 Project Partners & Objectives 
Protect Our Aquifer (POA) is a nonprofit advocacy group interested in using Earth observations (EO) to aid 
their groundwater monitoring efforts and to help educate policymakers and Tennesseans about the 
importance of conserving the MA. POA relies on ground-based monitoring and uses some GIS mapping 
techniques but does not currently utilize any EO in their work. POA is particularly interested in how they can 
implement EO data in their long-term monitoring efforts, particularly due to the expected consequences of 
new development in the area—such as the construction of BOC. The creation of a thriving index from the P, 
land cover, ET, and ESI will allow POA to identify areas in the west Tennessee portion of the aquifer in need 
of protection. 
 
In an expanded partnership with POA and The Center for Applied Earth Science and Engineering Research 
(CAESER) at the University of Memphis, this project assessed water availability and vulnerability in the west 
Tennessee portion of the MA by investigating P data acquired from GPM IMERG, ET and ESI from 
ECOSTRESS, and land cover datasets from the NLCD and Landsat 8 OLI and TIRS. These data, along with 
ancillary data sets, would ultimately be used to create a water balance map and thriving area index (Table 1 
and Table 2). The thriving area index allowed for identification of areas in need of conservation and 
protection to their thriving characteristics, such as favorable water balance and land cover values.  
 
Table 1. List of sensors and data products utilized for this project 

Platform and 
Sensor 

Data Product Parameters Dates Acquisition 
Method 

ISS 
ECOSTRESS 
 

ECOSTRESS 
Evapotranspiration dis-ALEXI 
Daily L3 CONUS 70 m V001 
ECOSTRESS Evaporative 
Stress Index dis-ALEXI Daily 
L4 CONUS 70 m V001 

Evapotranspiration, 
Evaporative stress 
index 
 

March 2019- 
August 2022 

LP DAAC 
AppEEARS 

GPM IMERG GPM IMERG Final 
Precipitation L3 1 month 0.1 
degree x 0.1 degree V06 
GPM IMERG Late 
Precipitation L3 1 day 0.1 
degree x 0.1 degree V06 

Monthly averaged 
precipitation 
Daily accumulated 
precipitation 

March 2019- 
August 2021  
September 
2021 – 
August 2022 
 

EarthData - 
Giovanni 

Landsat 8 OLI 
and TIRS 

USGS Landsat 8 Level 2, 
Collection 2, Tier 1 

Land cover January 
2019- 
August 2022 

Google Earth 
Engine Data 
Catalog 
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Table 2. Ancillary datasets used for land classification maps, runoff analysis, and reference maps 

Agency Data Product Purpose Acquisition 
Dates 

Acquisition 
Method 

US Census 
TigerLine 

US state county lines Contextual boundary 
for study area 

September 
2022 

US Census 
Bureau 

USGS - National 
Hydrography 
Dataset 

USGS National 
Hydrography Dataset 
Plus High Resolution 
(NHDPlus HR) for 4-
digit Hydrologic Unit - 
0801  

Watershed boundary 
for the study area 
 

October 
2022 

USGS The 
National Map 
download 
client. 

National Land 
Cover Database 
(NLCD) 

Land cover dataset Used to identify land 
cover and impervious 
land cover types to 
create a thriving index 

October 
2022 

NLCD 

North American 
Land Data 
Assimilation 
System  

Noah Land Surface 
Model 

Used to examine 
surface and subsurface 
runoff seasonally 

October 
2022 

EarthData 

 

3. Methodology 

3.1 Data Acquisition 
To obtain the shapefiles of the study area—Haywood and Fayette counties—the national county US Census 
Bureau dataset was downloaded from TigerLine. The team selected the two counties and merged them into 
one shapefile. Since political boundaries may not fully represent the ecological phenomenon in question—
groundwater recharge—the team extended the study area to align with the watershed Hydrological Unit Code 
6 (HUC-6) boundary obtained from United States Geological Survey’s (USGS) “The National Map” 
download client.   

The Final Run of GPM IMERG v06 precipitation data (FRM)—which captures monthly precipitation data 
—was downloaded from NASA’s EarthData Giovanni portal. The team selected the “Time Average Map” 
plot. The date ranges input matched the first day of the seasonal range to the last day of the season’s range in 
order to maintain consistency for the time frame. The ranges selected for the seasons were: Winter: 
December 1 to February 28; Spring: March 1 to May 31; Summer: June 1 to August 31; Fall: September 1 to 
November 30.  
 
In September 2019, GPM IMERG temporarily discontinued the monthly precipitation dataset with a new 
release date in early 2023. To solve this gap in data acquisition—from September 2019 to August 2022—the 
team used the Late Run of GPM IMERG v06 precipitation daily data (LRD) which was also downloaded 
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from NASA’s EarthData Giovanni portal with the same steps as the FRM data. LRD is computed 
approximately 14 hours after its observation time, whereas the FRM is processed approximately 3.5 months 
after the observation time and includes monthly gauge analyses (GES DISC, n.d.). To understand how P may 
contribute to excess water, the team examined runoff data from the monthly North American Land Data 
Assimilation System (NLDAS) Noah lLand Surface Model by downloading from EarthData.  
 
ECOSTRESS level 3 evapotranspiration and level 4 ESI products along with their associated quality flags 
were downloaded from The Land Processes Distributed Active Archive Center Application for Extracting 
and Exploring Analysis Ready Samples (LP DAAC AppEEARS) as GeoTIFF files. For additional monitoring 
of uncertainties in the data, ECOSTRESS level 2 surface temperature and emissivity quality control layers 
were downloaded as GeoTIFF files. Data were clipped to the study area before downloading. 
 
Surface reflectance and land surface temperature data from the Landsat 8 OLI and TIRS sensors were 
imported from the Google Earth Engine (GEE) data catalog. To monitor changes in landcover the team 
imported the USGS NLCD from the GEE catalog. While Landsat 9 data are available for some of the study 
period, the team did not incorporate this data because Landsat 8 has coverage for the entire study period.  
 

3.2 Data Processing 
3.2.1 Evapotranspiration and Evaporative Stress Index 
The team processed ET and ESI data in Python 3.9.12. Fill values for missing data—in addition to values 
greater than 1000 mm/day and less than 0 mm/day in the ET raster—were replaced with NaN (not a 
number; pixels with no data) from the analysis, as the expected ET rate is between 0 and 10 mm/day. 
Keeping these pixel values would skew the results. ET raster pixels were also replaced with NaN when the 
pixel values of the quality flag and quality control layers were not equal to 0 mm/day. Pixel values below the 
8th quantile and above the 98th quantile were categorized as outliers and also removed from the analysis. After 
an initial round of processing, specific processed images contained large areas with a pixel value of 0.1 
mm/day, which indicated undetected cloud cover. As a result, the team created an additional processing step 
to replace pixel values equal to 0.1 to NaN. The team removed images with more than 80% missing pixels 
and computed the seasonal averages with rasters containing fewer than 80% missing pixels. 
 
When using a large study area, data are not always collected for the entire area as frequently as it would be for 
a smaller area because of the size of the swath. As a result, the team utilized partially complete images to 
ensure the maximum possible data preservation to create the seasonal composites. For that reason, the team 
set the threshold of the missing pixels to 80%. The composites were then created by merging all the data 
arrays and then calculating the mean of those arrays. To visualize the processed imagery, the team exported 
the raw imagery as GeoTIFF files and imported them into ArcGIS Pro 2.9.3. The ESI products followed a 
similar workflow. For ESI, if the processed image was composed of only pixel values equal to 0, those images 
were manually removed from the analysis. The water balance equation included the final processed 
evapotranspiration images.   
 
3.2.2 Precipitation 
The team used FRM and LRD to create averaged seasonal maps utilizing the NASA Goddard Earth Sciences 
Data and Information Services Center (GES DISC) Giovanni web app. To create the seasonal average from 
FRM for 2019 to 2021, we selected each month for each season, plotted them in Giovanni (e.g., March, April, 
and May for Spring), and continued with each year. The team drew a bounding box encompassing the study 
area, and the units for GPM IMERG were changed to mm/day to match the units of ECOSTRESS data. 
After plotting the data, the team downloaded the precipitation data in a GeoTIFF format for further 
processing in ArcGIS Pro. GES DISC paused the post-processing of FRM for dates after September 2019. 
To complete the data gap for the remaining seasons, the team used LRD and the same method in Giovanni 
to plot the averaged seasonal maps.   
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The spatial resolution for GPM IMERG is very coarse at 10km x 10km, whereas ECOSTRESS is more 
detailed at 70m x 70m. To match the spatial resolutions, the team first clipped the GPM IMERG images to 
the study area extent. The team then rescaled GPM IMERG to match ECOSTRESS using ArcGIS Pro’s 
rescale raster function. Afterward, both datasets from GPM IMERG and ECOSTRESS were ready for 
analysis. 
 
3.2.3 Water Balance 
The team used the Model Builder tool in ArcGIS Pro to iterate each raster and clip them to the HUC study 
area. To calculate the water balance, the team utilized Equation 1, where P refers to the GPM IMERG 
precipitation imagery, and ET refers to the evapotranspiration imagery acquired from ECOSTRESS. 
Equation 1 is a simplified version of water balance that analyzes water stress vulnerability (Cui et al., 2022). 
To create the new water balance raster images for each season, the team calculated the processed 
precipitation images from GPM IMERG and the evapotranspiration images from ECOSTRESS using the 
"Raster Calculator" geoprocessing tool in ArcGIS Pro 2.9.3. The output water balance images were then 
adjusted to a uniform scale of -3 mm/day as the minimum value and 8 mm/day as the maximum value. 
 

𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊 𝑏𝑏𝑊𝑊𝑏𝑏𝑊𝑊𝑏𝑏𝑏𝑏𝑊𝑊  =  𝑃𝑃 −  𝐸𝐸𝐸𝐸      (1) 
 

3.2.3 Land Cover 
The team adopted the land cover workflow from a previous DEVELOP project, Huntsville Urban 
Development (Paris, et al. 2020). First, the team processed Landsat 8 data in GEE by cloud masking to filter 
out any unusable images. For each year of Landsat 8 imagery, the median of each band was selected. NLCD 
data were then remapped to group the NLCD classifications into four broader groups: water, pervious 
surfaces, trees, and developed. Pervious surfaces included grasslands, shrublands, sedge and herbaceous land, 
lichens, moss, and pastures. See table G1 for exact band selection for each remapped class. Next, the team 
sampled the remapped 2019 NLCD data and 2019 Landsat 8 imagery together to get a feature collection of 
training data. In this step, the team also filtered out any null or no data pixels. The team then performed an 
unsupervised classification by making a random forest classifier with the feature collection data. This random 
forest classifier was used to classify each year of Landsat 8 imagery to the remapped NLCD bands. To test 
the accuracy of the training data, the team ran a confusion matrix with the random forest classifier. To get 
validation data, the 2019 Landsat 8 imagery and NLCD were sampled again with a random seed generator. 
These validation data were then classified and run through a confusion matrix to get the expected accuracy.  
Data were clipped to the Hatchie-Obion watershed and the rasters of each year of reclassified Landsat 8 data 
were exported out of GEE for visualization in ArcGIS Pro. 
 
3.2.4 Runoff 
To examine runoff at a seasonal scale, the team downloaded monthly runoff data from the Noah Land 
Surface Model from the NLDAS. For each month, the team added together the monthly surface runoff (Qs 
layer) and subsurface runoff (Qsb layer) raster layers to generate one raster to represent total runoff for each 
month in ArcGIS Pro. To get a seasonal value, the team averaged together the runoff for each of the months 
in each season. For example, for spring seasons the runoff rasters for March, April and May were added 
together and then divided by three to get the average spring runoff.  
 
 
 
4. Results 
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4.1 Data Analysis 
4.1.1 Evaporative Stress Index 
The team plotted seasonal ESI in ArcGIS Pro to assess overall spatiotemporal trends across the study area, 
paying particular attention to Fayette & Haywood counties. The plots assisted in identifying areas where 
vegetation is experiencing water stress. The team also plotted average seasonal ESI across the four-year 
period in Python Plotly to assess changes in average ESI over time (Figure 2).  
 

 
Figure 2. Average seasonal Evaporative Stress Index values from 2019 through 2022 

4.1.2 Water Balance 
The team plotted a time series of the seasonal changes in water balance from Spring 2019 to Summer 2022 to 
assess trends and visualize changes over the study period (Figure 3). Figure 3 displays a water balance time 
series, showcasing the range between the lowest and highest water balance value for each season. The season 
with the greatest range in water balance was Summer 2021 and the lowest range of water balance values was 
from Winter 2020. The Summer seasons range from around -4 to 5 mm/day. Fall also showed a consistent 
trend. Spring water balance range fluctuates the most. 
 

 
Figure 3. Water balance time series from Spring 2019 to Summer 2022 
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4.1.3 Land Cover 
The team conducted a statistical analysis to understand which land cover types had a percent increase or 
decrease. To start, the number of pixels of each land cover type in each NLCD raster were calculated to their 
respective coverage in square kilometers. From there, a percent change calculation was performed with the 
2019 and 2022 land cover type values. The amount of coverage of each land cover type in square kilometers 
from 2019 and 2022 across the entire study area with the percent change between the two years. There is a 
greater decrease in pervious surfaces than impervious surfaces (Table 3). Decreases in land cover types and 
lack of land pixels from 2022 data may result from the team only accessing partial data for 2022, up to 
August, while the team had a full year’s worth of data for the year 2019. 
 
Table 3. Land cover change over the study area 

 
2019  

(Land Cover in sq km) 
2022  

(Land Cover in sq km) Percent Change 

Trees 87173.73 58915.34 32.42% decrease 
Pervious 50712.04 40328.94 20.47% decrease 
Impervious 685.47 656.98 4.16% decrease 
Water 38.42 41.73 8.62% increase 

 
4.1.4 Runoff 
The team mapped each season of runoff data in ArcGIS Pro to visualize where excess runoff was occurring 
in the study area. The team also plotted each season of runoff for each year to graphically assess trends in 
runoff. The maps and graphs were also used when comparing land cover, ET, and ESI maps to make 
connections between these variables and excess runoff.  
 

 
Figure 4. Average seasonal runoff from 2019 to 2022 

4.1.5 Thriving Areas  
The team compared water balance, ESI, land cover, and runoff maps to pinpoint areas in need of 
conservation. Using this map, the team identified locations with abundant and healthy vegetation where water 
can efficiently percolate down to the aquifer to recharge it. The land cover map shows Fayette County in the 
region of the recharge zone with a land cover of mainly pervious surface. The darker blue colors from ESI 
illustrates high levels of ESI. In addition, there is run off in these areas and the water balance has yellow and 
green areas which indicate positive water balance values. 
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Figure 5. A map of the components that can be used to determine whether an area is thriving. 

4.2 Analysis of Results 
4.2.1 ET and ESI 
The seasonal raster plots of ECOSTRESS ET were composed of approximately six raster images on average 
with the highest for Summer 2019, with 17 images and the lowest for Spring 2022 with one image. The 
seasonal composites for ECOSTRESS ESI were composed of approximately eight images on average with 
the highest for Summer 2019 with 16 images and the lowest for Winter 2020 with one image. Weather was a 
significant determining factor for the number of images available; during periods of higher cloud cover there 
were fewer images. As a result, there is some uncertainty in the accuracy of the results presented in the 
images. In Figure 6, the error bars help with visualizing which seasons may be more accurate. The error bars 
were calculated by multiplying the ratio of the number of images expected to the number of images observed 
and the highest number of valid pixels to the number of valid pixels observed, followed by applying a scale 
factor (1/10). The expected number of images was determined by taking an average of the images observed 
per season. The expected pixel quantity was determined by the season with the highest number of valid data. 
Figure 6 displays average evapotranspiration across all seasons and years. The highest ET average was 
observed in Spring 2019, closely followed by Summer 2019, while the lowest ET average was observed in 
Summer and Winter 2022. Apart from the Fall seasonal averages, overall ET decreased throughout the four-
year period.  
 
Figures E1, E2, F1, and F2 depict the average ET across the entire study area. ET is typically highest in the 
spring and summer seasons and decreases by the end of fall and winter. These trends can be observed in 
Figure 6 where higher averages of ET were observed during the spring and summer months. ET depends on 
several factors, such as temperature, cloud cover, water availability, and vegetation type, so the patterns are 
not always uniform season to season and year to year. As expected, ET values varied across season and year. 
The spring plots in Figure A1 demonstrate a significant drop in ET across the entire study area, but 
particularly in the east and south-east. In the summer and fall seasons, ET was similarly lower in the southern 
region (Figure E2 and Figure F2).  
 
Spring had the highest average ESI (Figure 2). Summer had a similarly high average ESI between 2019 and 
2021 but decreased by 2022. These results align with the ET findings, higher productivity in summer and 
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spring. Figures C1, C2, D1, and D2 depict the average ESI across the entire study area. The ESI was distinctly 
lower in the northern part of the study area across all seasons. Similarly, to the ET results, certain seasons also 
exhibited displayed lower productivity in the south-east.  
 

 
Figure 6. Seasonal average evapotranspiration from 2019 through 2022. 

4.2.2 Water Balance 
The results in Figure 3 show that each Summer tends to have a range of water balance values that start in the 
negative range. This is indicative of the decrease in precipitation and the increase of ET. The Winter water 
balance values are generally more positive, which can be directed to the lower ET and higher precipitation in 
these months. Figures A1, A2, B1, and B2 depict the water balance across the entire study area. Overall, the 
water balance plots demonstrated that the inflows and outflows of water were similar. Spring 2020 and 2021 
were the only seasons where precipitation values were higher than ET. In most of the other seasons, the 
water balance was slightly above 0 mm/day and negative mm/day. 
 

5. Discussion and Conclusions 

5.1 Results Discussions 
5.1.1 Evaporative Stress Index 
ESI was relatively high across all four years. Areas with high ESI, closer to 1, depict vegetation that is 
transpiring close to its potential. In such areas, plants are receiving a sufficient amount of water and efficiently 
transpiring. For that reason, high ESI is an indicator of thriving region. On the other hand, values closer to 
zero indicate that vegetation is not receiving sufficient water resources and they are becoming water stressed.    
 
5.1.2 Water Balance 
Low water balance indicates areas where P and ET are approximately equal. When they are equal, little water 
is left to recharge the aquifer. Thus, a healthy water balance is when ET is slightly lower than P. A high water 
balance is concerning as it indicates less plant uptake of water. Higher water balance values are expected to be 
present in urban areas with impervious surfaces, as rainfall turns to runoff and is not able to percolate into 
the ground. A negative water balance value is when there is an excess amount of evapotranspiration, which 
suggests that vegetation is getting its water from either runoff or irrigation. A negative water balance is 
concerning as it could mean groundwater resources are being depleted as it is used to irrigate the area.  



   
 

11 
 

 
5.1.3 Thriving Areas 
Based on the seasonal water balance analysis, evaporative stress maps, land cover change, and runoff models, 
the team identified Fayette County as a thriving area for further conservation. Fayette County is located 
within the recharge zone and the land cover in this area is predominantly pervious. These geographical 
features allow surface water to directly percolate into the aquifer. Furthermore, areas where the water balance 
is between 1-2 mm/day suggests that plants efficiently use up available water resources while having some 
water left to potentially recharge the aquifer. The water balance for this area was found to be in that range. 
There is also a network of streams within the identified thriving area where precipitation and runoff can 
laterally recharge the aquifer. In addition, the southern portion of the county has higher levels of runoff, 
which can supply the stream, and the remainder can percolate into the aquifer. The ESI was also high, 
meaning that vegetation is receiving a sufficient amount of water and efficiently transpiring. In addition to 
meeting these criteria, BOC is within these counties making it an area of concern for further monitoring. 
When comparing all of the factors across the entire study area, Fayette County appeared to be the most 
conducive to recharge.  
 

5.2 Future Work 
The LRD data was a workaround for the missing FRM data for the seasons from September 2021 and 
August 2022. For future work, the team recommends utilizing this methodology to apply the FRM data from 
2022 when it becomes available from GES DISC in early 2023. The preliminary results that were generated 
from LRD during the 2021 to 2022 seasonal analysis can then be compared to seasonal analysis using the 
newly acquired FRM data. The data from ECOSTRESS was also limited for the winter and the seasons in 
2022, as most of the images were affected by clouds. Considering the climate of the study area, Synthetic 
Aperture Radar (SAR) might be something to consider for future projects since it can penetrate through the 
clouds. SAR data would also be beneficial to understand ground subsidence in the region, which would help 
future teams understand if the water table has significantly changed over time. The water balance equation 
was simplified to ensure the feasibility of completing the project on time; for a future project, it would be 
beneficial to explore other factors that influence groundwater recharge. The ESI results could be used to 
identify areas that may require additional inputs of water in the future as a result of drought. These inputs 
may increase reliance on the aquifer for water resources. The team recommends adding NASA’s Gravity 
Recovery and Climate Experiment (GRACE) Earth observation sensor to this project and consider creating a 
suitability map by combining all the datasets into one map that will accurately reveal areas with high and low 
water storage. 

5.3 Conclusion  
This project demonstrated the use of NASA Earth observations to assess water availability and vulnerability 
in the MA. The team determined that areas where the water balance is low, ESI is high, runoff is high, and 
there is mainly pervious land cover, recharge can effectively take place. Identification of effective recharge 
locations may be used by the partners to prioritize areas in need of protection before they become victim to 
industrialization and urbanization.   
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7. Glossary 

Earth observations – Satellites and sensors that collect information about the Earth’s physical, chemical, and 
biological systems over space and time 
ECOSTRESS – ECOsystem Spaceborne Thermal Radiometer Experiment 
GPM IMERG – Global Precipitation Measurements - Integrated Multi-Satellite Retrievals for GPM 
Evapotranspiration (ET) – The sum of evaporation from the land surface plus transpiration from plants 
Evaporative Stress Index (ESI) - Highlights areas with unusually high or low rates of water use across the 
land surface.  
Water balance – The result of the equation subtracting evapotranspiration from precipitation (P – ET); a 
measure comparing inflows (precipitation) and outflows (ET) in the water system  
Vadose zone – Unsaturated zone spanning from the ground surface to the water table.  
Thriving area - Locations where water can efficiently percolate down to the aquifer to recharge it, meaning 
areas with healthy and abundant vegetation and pervious ground. 
FRM – Final Run Monthly GPM IMERG precipitation data; data taken 3.5 months after observations period 
LRD – Later Run Daily GPM IMERG precipitation data; data taken 14 hours after observation period 
GES DISC – NASA’s Goddard Earth Science Data and Information Services Center 
LP-DAAC – NASA’s Land Processes Distributed Active Archive Center 
GIOVANNI – GES DISC’s web application that provides a convenient way to access, visualize, and analyze 
remote sensing data. 
Time series – A graph displaying change in values over time. 
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Appendix A

 
  

 

Figure A1 Spring Seasonal Water Balance 

 

 
Figure A2 Summer Water Balance 
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Appendix B 

  

Figure B2 Winter Seasonal Water Balance   

  

Figure B1 Fall Seasonal Water Balance 
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Appendix C 

 

  

Figure C1 Spring Evaporative Stress Index 

 

Figure C2 Summer Evaporative Stress Index 
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Appendix D 

 

  

Figure D1 Fall Evaporative Stress Index 

Figure D2 Winter Evaporative Stress Index 



   
 

19 
 

Appendix E 

 

  

Figure E1 Spring Evapotranspiration 

 

Figure E2 Summer Evapotranspiration 
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Appendix F 

 

 

  

Figure F1 Fall Evapotranspiration 

Figure F2 Winter Evapotranspiration 
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Appendix G 

Table G1 Land cover classes 

Remapped Value  NLCD 2019 Bands 
0 – No data or Difficult to define 
pervious or impervious 

31 

1 - Trees 41, 42,43 
2 - Pervious 21, 51,52, 71, 73, 74, 81, 82 
3 - Developed 22, 23, 24 
4 – Water 11, 12, 91, 95 
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