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Abstract 47 
Organic carbon in marine sediments is a critical component of the global carbon cycle, and 48 

its degradation influences a wide range of phenomena, including the magnitude of carbon 49 

sequestration over geologic timescales, the recycling of inorganic carbon and nutrients, the 50 

dissolution and precipitation of carbonates, the production of methane and the nature of the 51 

seafloor biosphere. Although much has been learned about the factors that promote and hinder 52 

rates of organic carbon degradation in natural systems, the controls on the distribution of organic 53 

carbon in modern and ancient sediments are still not fully understood. In this review, we 54 

summarize how recent findings are changing entrenched perspectives on organic matter 55 

degradation in marine sediments: a shift from a structurally-based chemical reactivity viewpoint 56 

towards an emerging acceptance of the role of the ecosystem in organic matter degradation rates. 57 

That is, organic carbon has a range of reactivities determined by not only the nature of the organic 58 

compounds, but by the biological, geochemical, and physical attributes of its environment. This 59 

shift in mindset has gradually come about due to a greater diversity of sample sites, the molecular 60 

revolution in biology, discoveries concerning the extent and limits of life, advances in quantitative 61 

modeling, investigations of ocean carbon cycling under a variety of extreme paleo-conditions (e.g. 62 

greenhouse environments, euxinic/anoxic oceans), the application of novel analytical techniques 63 

and interdisciplinary efforts. Adopting this view across scientific disciplines will enable additional 64 

progress in understanding how marine sediments influence the global carbon cycle.              65 

  66 
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 68 

1. Introduction 69 
To contextualize the recent biogeochemical breakthroughs that have been made regarding 70 

the fate of organic carbon in marine sediments, the first section of this review consists of a 71 

summary of its role in the global carbon cycle and how this has varied over space and time. 72 

Secondly, we describe the sources of new data that are shaping the transformation in how we think 73 

about organic carbon in the marine system. This is followed by a section on organic carbon in 74 

adjacent environments such as hydrothermal systems and the ocean basement, and then a brief 75 

overview of modelling advances. The topics covered in this communication are summarized in the 76 

schematic shown in Figure 1.         77 

  78 

1.1 Sedimentary organics and the global carbon cycle 79 
Organic carbon (OC) degradation in marine sediments is a critical component of the global 80 

carbon cycle and is intricately linked to Earth’s climate (Berner and Canfield, 1989; Berner, 1990; 81 

Siegenthaler and Sarmiento, 1993; Archer and Maier-Reimer, 1994; Mackenzie et al., 2004; 82 

Ridgwell and Zeebe, 2005; Ridgwell and Hargreaves, 2007; Hülse et al., 2017). The specific 83 

consequences of this process on biogeochemical cycles vary considerably depending on location 84 

as well as the temporal and spatial scales of concern. In the upper few meters of relatively recently 85 

deposited sediment, the oxidation of organic carbon controls the fluxes of oxygen and nutrients 86 

across the sediment-water interface (SWI), ultimately impacting primary productivity in the water 87 

column (Van Cappellen and Ingall, 1994; Lenton and Watson, 2000). As organic carbon is 88 

aerobically oxidized, pore water pH is decreased, potentially leading to dissolution of calcium 89 

carbonate and amplifying the direct effect of OC oxidation on the carbon cycle (Emerson and 90 

Bender, 1981; Hales and Emerson, 1996). Deeper in sediments, organic carbon that escapes 91 

oxidation can still be microbially reduced to CH4, and under some conditions, fuel the slow build-92 
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up of methane hydrates (e.g. Wallmann et al., 2012). Although hydrates represent a relatively small 93 

carbon reservoir, perturbations in temperature and/or pressure can render hydrates unstable, 94 

potentially leading to sudden transfers of carbon back into the ocean-atmosphere system that would 95 

have important consequences for global carbon cycling and climate (Ruppel and Kessler, 2017). 96 

The small fraction of photosynthetically produced organic carbon that entirely escapes degradation 97 

and thus is buried over longer timescales in sediments helps to modulate the long-term evolution 98 

of atmospheric CO2, has enabled oxygen to accumulate in the atmosphere (e.g. Berner, 2003) and 99 

has led to the formation of large reservoirs of hydrocarbons that provide most of the energy that 100 

humans use. Whether marine sediment organic carbon contributes to water column anoxia, 101 

becomes trapped in a clathrate, is transformed into petroleum or ends up as atmospheric CO2 is 102 

ultimately based on the flux of particulate organic carbon (POC) to sediments and the many factors 103 

that dictate its rate of degradation. 104 

  105 

1.2 POC fluxes and degradation rates 106 
The concentrations of POC shown in Figure 2 illustrate that the flux of organic carbon to 107 

and through sediments vary tremendously (Seiter et al., 2004; Wallmann et al., 2012; LaRowe et 108 

al., 2020). In this figure, it can be seen that POC concentrations are highest in recently deposited 109 

sediment underlying northern high-latitude and south-east Asian coastal regions and the Humboldt 110 

and South Equatorial currents to the west of Peru. They are generally lowest in abyssal regions far 111 

from land, and in older and deeper sediments. This span of concentrations is due to variable 112 

depositional fluxes and degradation rates. 113 

Field observations have revealed that rates of POC degradation are not constant (e.g. 114 

(Canfield et al., 2005), leading to burial rates that vary significantly in space (e.g. Canfield, 1994; 115 

Blair and Aller, 2012) and time (e.g. Arthur et al., 1985). In fact, first-order rate constants for POC 116 

degradation rates derived from field and laboratory data span over eight orders of magnitude, with 117 

older sediments having the smallest values (Middelburg, 1989). Many different factors have been 118 

invoked to explain this variability. They include, but are not limited to, organic matter composition 119 

(e.g. Westrich and Berner, 1984; Hedges et al., 1988; Tegelaar et al., 1989; Cowie et al., 1992; 120 

Canfield, 1994; Hedges and Keil, 1995), electron acceptor (EA) availability (e.g. Demaison and 121 

Moore, 1980; Emerson, 1985; Canfield, 1994; Hedges and Keil, 1995; Dauwe et al., 2001), benthic 122 

microbial community composition and functional capacities (e.g. Canfield, 1994; Arnosti, 2011; 123 

Steen et al., 2019), microbial inhibition by specific metabolites (e.g. Aller and Aller, 1998), 124 

priming (e.g. Stevenson, 1986; Graf, 1992; Aller et al., 1996; Sun et al., 2002a; van Nugteren et 125 

al., 2009), physical and physicochemical protection (e.g. Keil and Kirchman, 1994; Mayer, 1994; 126 

Kennedy et al., 2002; Estes et al., 2019; Hemingway et al., 2019), sediment deposition rate (e.g. 127 

Müller and Suess, 1979; Calvert and Pedersen, 1992b; Tromp et al., 1995) and macrobenthic 128 

activity (e.g. Aller, 1982; Aller and Cochran, 2019; Middelburg, 2019). 129 

The rates of POC degradation in marine sediments are first and foremost controlled by the 130 

source and transport of organic carbon. A higher lateral and/or vertical (i.e. sedimentation) 131 

transport rate not only increases the deposition flux but also influences the quality of the organic 132 

carbon deposited, since the degree of pelagic degradation during transport through the water 133 

column - and thus the nutritive value of POC - is reduced with extended sinking times. A 134 

compilation of deep sediment trap data reveals large regional variations in vertical export 135 

efficiency (Lutz et al., 2002; Henson et al., 2012a; Wilson et al., 2012). For instance, the fraction 136 

of the organic carbon export flux that reaches water depths greater than 1.5 km varies between 137 

0.28 and 30% (5.7% average) of the POC that escapes the photic zone (Lutz et al., 2002). Although 138 
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differences in export efficiencies are most likely not attributable to a single process, factors 139 

invoked to explain variations in export efficiency include sinking rates and ballast (e.g. Armstrong 140 

et al., 2002; Francois et al., 2002; Klaas and Archer, 2002; Lutz et al., 2002), the seasonality of 141 

export production (Antia et al., 2001) and ecosystem structure (Buesseler et al., 2008; Lam et al., 142 

2011; Henson et al., 2012a; Mayor et al., 2012). And while export of large particles from surface 143 

waters has been extensively investigated, it has also been shown that very small particles (< 1 µm) 144 

contribute to the chemical composition of exported POC (Close et al., 2013). In addition to the 145 

vertical transport of POC from the euphotic zone, the efficient lateral transport of POC in nepheloid 146 

layers, benthic storms, mud waves, strong (bottom) water currents or mass wasting events can 147 

support an important fraction of the POC deposition flux to continental slope and abyssal 148 

sediments in the vicinity of dynamic continental margins (e.g. Ohkouchi et al., 2002; Levin and 149 

Gooday, 2003; Mollenhauer et al., 2003; Inthorn et al., 2006b; Mollenhauer et al., 2007; Kusch et 150 

al., 2010; Henson et al., 2012b; Bao et al., 2019). The efficiency of terrestrial organic matter export 151 

from land is even more difficult to predict, given variable controls on residence times in soils, 152 

followed by widely varying degrees of alteration during transport through the 153 

riverine/estuarine/deltaic system and across the continental shelf  (Hedges et al., 1997; Schlünz 154 

and Schneider, 2000; Bianchi, 2011; Blair and Aller, 2011; Bauer et al., 2013a; Regnier et al., 155 

2013; Canuel and Hardison, 2016; Kandasamy and Nagender Nath, 2016). Organic carbon is also 156 

produced in sediments, by phototrophs in shallow waters (Middelburg, 2018, 2019) and 157 

chemoautotrophically (Veuger et al., 2012; Sweetman et al., 2017). Although the exact 158 

mechanisms controlling the high variability in POC degradation are not well understood, the 159 

variety of environments that have been sampled and examined in recent years has provided new 160 

insights to constrain which variables are most important in particular settings. 161 

  162 

1.3 Observations: Increased diversity of sample sites and data types   163 
            Over the last several decades, scientific drilling of the seafloor by the International Ocean 164 

Discovery Program (IODP) and its precursors, the Integrated Ocean Drilling Program (IODP), the 165 

Ocean Drilling Program (ODP) and the Deep Sea Drilling Program (DSDP), have enabled critical 166 

expansion of sampled environments and new data that have dramatically increased our knowledge 167 

of the distribution of organic carbon in marine sediments. The sample sites targeted by most of 168 

these expeditions were motivated by scientific questions about the structure of ocean crust, past 169 

climate, and tectonics, leading to drilling locations and sampling methods that were optimized for 170 

study of these topics.  Although total organic carbon was regularly measured on these samples, 171 

tools to study the agents of their transformation, i.e. microorganisms, were relatively rudimentary 172 

until culture-independent methods (e.g. DNA and RNA sequencing) became widely available in 173 

the early 2000’s. Much of the new understanding of controls on organic carbon degradation in 174 

marine sediments has to do with recent insight into the role of microorganisms. As pointed out in 175 

the ODP Leg 201 summary (D'Hondt et al., 2003), this is despite the fact that deep-sea drilling had 176 

revealed indirect evidence of microbial activity as early as the 1980s (Oremland et al., 1982; 177 

Whelan et al., 1986; Tarafa et al., 1987) and, by the 1990s, microbial abundances  (see Parkes et 178 

al., 2014)) for a review). Remarkably, ODP Leg 201, the first ODP cruise dedicated to studying 179 

microorganisms, did not sail until 2002. Since this time, a number of IODP expeditions have been 180 

focused on studying the limits to life: Expeditions 329 (South Pacific Gyre Subseafloor Life), 331 181 

(Deep Hot Biosphere), 336 (Mid-Atlantic Ridge Microbiology), 337 (Deep Coalbed Biosphere off 182 

Shimokita), 357 (Atlantis Massif Seafloor Processes: Serpentinization and Life), 370 183 

(Temperature Limit of the Deep Biosphere off Muroto), and 385 (Guaymas Basin Tectonics and 184 
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Biosphere). This explicit exploration of microbial communities further informs the perspective 185 

that the reactivity of organic carbon in marine sediments is an ecosystem property (Middelburg, 186 

2018).  187 

  188 

2. Ecosystem nature of the problem 189 
           Organic carbon in natural systems is often referred to as being either labile or recalcitrant 190 

(e.g. Hedges et al., 2000). Some have expended considerable effort expanding this classification 191 

to intermediate states such as semi-labile and semi-recalcitrant (Hansell, 2013). This reductionist 192 

classification system implies that the degradation rate of organic compounds is determined from 193 

specific attributes of the chemical compounds themselves. While the reactivity of organic 194 

compounds is certainly related to their chemical composition and structure, numerous factors have 195 

been invoked to explain the reactivity of organic carbon that are not intrinsic to the compounds, 196 

but rather the properties of the surrounding environment (e.g. see Hedges et al., 2000; Burdige, 197 

2007b; Arndt et al., 2013; Middelburg, 2018, 2019 and references therein). Examples include 198 

temperature, microbial community structure and benthic ecosystem, mineral types and surface 199 

area, redox state, light, nutrient availability, pH, salinity, porosity, permeability, water content and 200 

oxygen exposure time. Because these variables are biophysiochemical properties of the 201 

environment, the reactivity of organic matter is determined by the interaction between the 202 

compound and its ecosystem, not just the chemical nature of the organic compounds. Indeed, a 203 

particular organic compound can be extremely resistant to degradation under certain conditions, 204 

and be rapidly degraded in a different physiochemical context. For example, aerobic heterotrophic 205 

bacteria in incubation experiments have been shown to oxidize and incorporate 14C-free organic 206 

carbon preserved in marine black shales for millions of years (Petsch et al., 2001). This idea of 207 

ecosystem properties governing organic compound reactivity is not a new one (Middelburg et al., 208 

1993; Canfield, 1994; Harvey et al., 1995; Mayer, 1995), but it is only recently becoming the new 209 

paradigm in the soil science community (Marschner et al., 2008a; Kleber and Johnson, 2010; 210 

Schmidt et al., 2011; Lehmann and Kleber, 2015), and there are indication that it should prevail 211 

among sediment scientists as well (Eglington and Repeta, 2014; Middelburg, 2018, 2019). In fact, 212 

we suggest that the terms labile and recalcitrant be retired and replaced with the single term 213 

reactivity. Similarly, since the fate of organic carbon in natural systems can include oxidation to 214 

CO2, hydrolysis and fermentation into smaller organics, reduction to methane, adsorption to 215 

surfaces, incorporation into biomass and conversion to petroleum products and complex organic 216 

compounds, we recommend that the more inclusive term transformation be used to refer to the 217 

fate of organic carbon rather than the relatively restrictive term mineralization. In the following 218 

sections, we highlight some of the recent research that seeks to determine how a variety of 219 

ecosystem properties influence the rates of organic carbon degradation. 220 

  221 

2.1 Source and transit path  222 

A large fraction of the organic carbon that is buried in marine sediments originates from 223 

photosynthetic activity in the terrestrial (net primary productivity (NPP) = 56 Pg C yr–1) or marine 224 

biosphere (NPP = 49 Pg C yr–1) (Field et al., 1998). In addition, organic carbon can be transported 225 

to sediments by other means including the weathering of ancient organic carbon in rocks (Blair et 226 

al., 2003), the remobilization of organic matter from thawing permafrost (Mann et al., 2015) and 227 

resuspension of already-deposited carbon (see below). Autotrophic and Chemoautotrophic 228 

production as well as secondary production by microorganisms and animals can also contribute to 229 

the organic carbon deposition flux (Eglinton and Repeta, 2010; Middelburg, 2011; Lengger et al., 230 



6 

 

2019). Approximately two-thirds of terrestrially produced OC is rapidly degraded within soils or 231 

glacial environments. The remainder that escapes immediate degradation is either partially 232 

degraded or temporarily stored before being transported downstream with old, weathered OC 233 

within lakes, streams, rivers, estuaries, deltas, fjords, and ultimately, the oceans (Regnier et al., 234 

2013). An estimated 1.9 Pg C yr-1 ±1.0 Pg C yr–1 of total soil carbon (mostly POC and dissolved 235 

organic carbon, DOC, but also dissolved inorganic carbon, DIC) is exported to inland waters. Only 236 

0.45 Pg C yr-1 of the terrestrial-derived OC reaches the coastal ocean and 0.1-0.35 Pg C yr-1 makes 237 

it to the open ocean (Bauer et al., 2013b; Regnier et al., 2013). Thus, the land-ocean transition zone 238 

acts as an important modulator of OC fluxes that not only further degrades and transforms 239 

terrestrial OC inputs, but also stores OC on short and long timescales (Canuel and Hardison, 2016). 240 

However, the exact amounts of OC that are degraded and temporarily or permanently preserved 241 

during transit from land to ocean remain unknown (Regnier et al., 2013). 242 

Similar to terrestrially-derived organic carbon, a large fraction (80-90%) of the OC 243 

produced in the surface ocean is rapidly oxidized (Dunne et al., 2007; Hansell and Carlson, 2015). 244 

Just over one-quarter (27%) of OC produced in the marine photic zone is DOC that can be 245 

transported to the deep ocean by convection and mixing. While most of the exported DOC is 246 

degraded at mid-depths, an estimated 0.1 Pg C yr-1 is contributed to the large, apparently 247 

unreactive, deep ocean DOC reservoir (~ 680 Pg) that persists through multiple ocean mixing 248 

cycles (Hansell and Carlson, 2015). As POC sinks to the ocean floor, it can be laterally transported 249 

by ocean currents (Eglinton and Repeta, 2004) as it is further degraded. Degradation during burial 250 

further reduces this flux such that < 0.3% of the original exported flux is ultimately sequestered in 251 

deep marine sediments (Hedges and Keil, 1995; Eglinton and Repeta, 2004; Burdige, 2007b; 252 

Dunne et al., 2007; Middelburg and Meysman, 2007; Honjo et al., 2008).  253 

 In addition to the vertical transport from the photic zone to sediments, POC can also be 254 

transported after deposition on the seafloor via bioturbation and lateral motion following the 255 

resuspension of sediments into the water column. Bioturbation, the biological reworking of 256 

sediments near the SWI by macrofauna such as polychaetes and bivalves (Rhoads, 1974a; Aller, 257 

1982), can exert an important influence of organic carbon transformation (Meysman et al., 2006; 258 

Middelburg, 2018) in the upper 20 cm of sediments (Boudreau, 1994, 1998). These animals can 259 

have a complex impact on sediment POC – in some cases accelerating POC degradation through 260 

grazing, the redistribution of particles and reintroduction of electron acceptors and DOC, 261 

(Kristensen, 1985; Rice, 1986; Kemp, 1988; Aller, 1994; Aller and Aller, 1998; Kristensen and 262 

Holmer, 2001a; Kristensen et al., 2011) and, in other cases, depositing organics in the form of tube 263 

casings that can inhibit organic transformation (Kristensen et al., 1992; Kristensen, 2001).  264 

Generally, it seems that bioturbation accelerates POC degradation (Rhoads, 1974b; Findlay and 265 

Tenore, 1982; Aller and Aller, 1986; Herman et al., 1999; Aller et al., 2001; Kristensen and 266 

Holmer, 2001b; Kristensen and Kostka, 2005; Aller and Cochran, 2019). Furthermore, benthic 267 

macrofauna, in addition to being a source of OC, can affect sediment resuspension (Aller and 268 

Cochran, 2019) by altering the bulk properties of sediments (Eckman et al., 1981; Rhoads et al., 269 

1984), which in turn influences their lateral transport. 270 

 Sediments, and the POC within, on continental shelves and slopes can also be mobilized 271 

after initial deposition and redeposited under open-ocean waters. Not only does this process move 272 

organic carbon laterally to parts of the seafloor that typically have low POC deposition rates 273 

(Jahnke et al., 1990; Walsh, 1991; Bauer and Druffel, 1998; Ransom et al., 1998a; Thomsen and 274 

van Weering, 1998; Jahnke and Jahnke, 2000; Romankevich et al., 2009; Hwang et al., 2010), but 275 

it has the effect of accelerating the oxidation of POC that was buried in margin sediments (see 276 
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Section 2.5 for a discussion) (de Lange et al., 1987; Prahl et al., 1989; Cowie et al., 1995; Prahl et 277 

al., 1997; Cowie et al., 1998; Hoefs et al., 1998; Prahl et al., 2003). However, the scale of this 278 

phenomenon, as well as its impact on the global distribution of organic matter reactivity, remains 279 

unclear (Eglinton and Repeta, 2014) due to large uncertainties in lateral particle fluxes (Jahnke et 280 

al., 1990; Reimers et al., 1992; Inthorn et al., 2006a; Thullner et al., 2009).  281 

 282 

2.2 Organic carbon structure and composition  283 
Although the majority of organic carbon inputs to marine sediments originate as POC, 284 

these sources can be transformed and contribute to the DOC pool through microbial activities as 285 

well as sorption/desorption from mineral surfaces. Chemically, both POC and DOC range in size 286 

and complexity from simple monomers to mixtures of large, complex polymers as well as humic 287 

substances (de Leeuw and Largeau, 1993; Hedges et al., 2000), the last of which is an ill-defined 288 

molecular group of varying sizes that are solely defined by the extraction procedure used to isolate 289 

them. Most POC and DOC in marine sediments cannot be chemically identified at the structural 290 

level, leading to terms such as “molecularly uncharacterizable carbon, MUC" (Cowie et al., 1995; 291 

Prahl et al., 1997; Wakeham et al., 1997; Burdige and Gardner, 1998; Hedges et al., 2000; Burdige, 292 

2007b; Burdige and Komada, 2015). Depending on the sample, anywhere from 50-90 wt% of OC 293 

in marine sediments is referred to as MUC. Approximately 60-90% of pore water DOC has a 294 

molecular weight of less than 3 kDa, and the compounds that can be identified tend to be short-295 

chain organic acids such as acetate, amino acids, and carbohydrates (Burdige and Komada, 2015). 296 

High-resolution techniques have shown that thousands of organic compounds are found in pore 297 

water (e.g. Repeta et al., 2002; Koch et al., 2005; Schmidt et al., 2009; Fox et al., 2018), but many 298 

fall into a rather unsatisfactory category known as CRAM, carboxyl-rich alicyclic molecules - a 299 

poorly defined pool of organics thought to be less reactive than other DOC compounds (Hertkorn 300 

et al., 2006).  301 

            As with DOC, the bulk of organic compounds in the particulate fraction of marine 302 

sediments (i.e. POC) is rarely identified and often said to be ‘uncharacterizable’, at least with 303 

respect to partitioning it into compound classes such as amino acids, carbohydrates, lignin or lipids 304 

(Cowie et al., 1995; Prahl et al., 1997; Wakeham et al., 1997; Hedges et al., 2000; Benner, 2002; 305 

Koch et al., 2005; Burdige, 2007a; Mao et al., 2011; Ball and Aluwihare, 2014; Estes et al., 2019). 306 

Although it is not clear why this is the case, one of the explanatory hypotheses, that organics attach 307 

to mineral surfaces and condense into large macromolecules that are less accessible by 308 

exoenzymes, e.g. (Hedges et al., 1988; Keil and Kirchman, 1994; Hedges et al., 2000), no longer 309 

holds in the soil science community. Briefly, it was long thought that complex macromolecular 310 

carbon compounds form in soils through abiotic processes and that these large compounds were 311 

especially resistant to biological degradation. More recently, however, there is a growing 312 

consensus that these larger compounds are an artifact of extraction procedures and there is no 313 

evidence for their presence in situ (Kelleher and Simpson, 2006; Lehmann and Kleber, 2015).  314 

The structure and composition of organic matter serves as the first guidepost to determining 315 

its reactivity. For instance, relatively weak bonds between monomers render a biopolymer more 316 

reactive over a wide range of environmental conditions, than aliphatic moieties cross-linked by 317 

ether bonds (Tegelaar et al., 1989; de Leeuw and Largeau, 1993). At the most fundamental level, 318 

this structural heterogeneity is responsible for the higher reactivities of most algal organic carbon 319 

over most terrestrial organic matter (Canuel and Martens, 1996; Hedges and Oades, 1997; Dauwe 320 

and Middelburg, 1998; Camacho-Ibar et al., 2003; Burdige, 2005; Dai and Sun, 2007), the 321 

selective preservation of certain compounds in the geological record and the widely observed 322 



8 

 

decrease of organic carbon with depth and or transport/burial time (Goth et al., 1988; Tegelaar et 323 

al., 1989). However, the relative importance of organic structure and composition in controlling 324 

overall preservation/degradation remains unclear (see de Leeuw et al., 2006; Gupta et al., 2007; 325 

Gupta, 2015). In addition, because of the extremely limited availability of compound-specific 326 

kinetic data (e.g. Ming-Yi et al., 1993; Harvey and Macko, 1997; Sun et al., 2002b), a 327 

comprehensive knowledge of organic structure and composition does not help in quantifying 328 

organic matter reactivity. Ultimately, linking the identity of individual organic compounds to their 329 

reactivity would require knowledge of how many other biophysiochemical variables impact it as 330 

well.  331 

  332 

2.3 Sediment matrix 333 
Mineral surfaces are thought to slow or prevent the degradation of organic carbon, largely 334 

based on observations that there is a positive correlation between mineral surface area and the 335 

amount of organic matter in sediments (e.g. Mayer et al., 1985; Keil et al., 1994; Mayer, 1994). 336 

Most hypotheses explaining this phenomenon rest upon the notion that extracellular enzymes 337 

cannot access mineral-associated organic compounds. Compounds can associate with minerals via 338 

a number of mechanisms, both physical and chemical, including 1) physisorption (physical 339 

adsorption) in surface irregularities, 2) strong mineral surface bonding, 3) insertion into clay 340 

interlayers, 4) formation of mineral-OC aggregates, 5) co-precipitation with Fe-oxides and other 341 

authigenic minerals, 6) seclusion by exopolymeric substances (EPS) and 7) protection within 342 

biogenic minerals such as diatom frustules (Keil and Hedges, 1993; Keil et al., 1994; Mayer, 1994; 343 

Hedges and Keil, 1995; Ransom et al., 1997; Ransom et al., 1998b; Mayer, 1999; Arnarson and 344 

Keil, 2001; Mayer and Xing, 2001; Kennedy et al., 2002; Ingalls et al., 2003; Pacton et al., 2007a; 345 

Pacton et al., 2007b; Kennedy and Wagner, 2011; Lalonde et al., 2012; Hemingway et al., 2019). 346 

Chemical preservation mechanisms, in particular, are likely important, since OC concentration 347 

often correlates more strongly with the abundance of specific mineral classes such as smectite 348 

clays (Ransom et al., 1998a), metal oxides (Lalonde et al., 2012; Roy et al., 2013; Barber et al., 349 

2017) or tephra (Longman et al., 2019) rather than total mineral surface area, suggesting that the 350 

specific chemical bonds formed by these minerals with organic compounds are essential to 351 

decreased reactivity. 352 

Given the large variety of organic compounds and minerals found in marine sediments, it 353 

is probable that all of the mechanistic hypotheses noted above contribute to the long-term 354 

preservation of OC. The array of explanations is likely due to the fact that the samples used to 355 

generate them have come from different places and therefore are characterized by a variety of 356 

different biogeochemical conditions and timescales of preservation. Although there is a growing 357 

appreciation of the complexity of mineral-organic reactions, disentangling which mechanism 358 

operates under what set of environmental conditions is complicated by a lack of data that more 359 

fully contextualizes mineralogical observations such as oxygen exposure times (OETs). For 360 

example a study examining how OETs affect mineral-organic associations in northeast Pacific 361 

sediments (Arnarson and Keil, 2007) found that for OETs shorter than a year, OC was mostly in a 362 

mineral-free state. For sediments with OETs ranging from years to decades, OC was largely in 363 

mineral-organic aggregates. For longer OETs (centuries to millennia), the aggregates broke down 364 

and most OC was found sorbed to mineral surfaces or protected inside biogenic diatom frustules 365 

(see Section 2.5 for a discussion on electron acceptor availability).  366 

The exposure to a variety of geochemical conditions over varying timescales also impacts 367 

how solid phases can control organic carbon reactivity. For instance, microorganisms use Fe- and 368 
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Mn-oxide minerals to oxidize organic carbon in marine sediments (Ehrlich, 1971; Aller, 1980; 369 

Berner, 1981; Jones, 1983; Burdige and Nealson, 1986; Lovley, 1991; Thamdrup, 2000; Hyun et 370 

al., 2017), especially where manganese- and iron-oxides are abundant or rapidly recycled due to 371 

fluctuating redox conditions (Sørensen and Jeørgensen, 1987; Aller et al., 1990; Canfield et al., 372 

1993). In fact, it has been estimated that 3% of the POC degraded in the top 50 cm of global marine 373 

sediments is coupled to Fe-oxide reduction (Thullner et al., 2009), though this is spatially quite 374 

variable (Burdige, 2012; Dale et al., 2015). Yet, these same mineral phases provide protection and 375 

stabilization of organic matter (Lalonde et al., 2012; Johnson et al., 2015; Barber et al., 2017). 376 

Substantially more OC is associated with Fe oxides via inner-sphere complexation in coastal 377 

environments with short OETs than in low OC, deep-sea sediment (Barber et al., 2017). 378 

Experimental evidence additionally demonstrates that the composition of OC matters in 379 

determining the balance between degradation and preservation by minerals: the presence of 380 

disaccharides inhibits the abiotic degradation of protein by the manganese oxide mineral birnessite 381 

(Reardon et al., 2018). Furthermore, carbon compounds can serve as templates for mineral 382 

nucleation, and co-precipitate with minerals during mineral growth and aggregation (Mann et al., 383 

1993; Moreau et al., 2007; Kleber et al., 2015 and references therein). Beyond redox chemistry, 384 

(Taylor, 1995) showed that under some conditions sorbed proteins are hydrolyzed much faster 385 

than dissolved proteins, indicating that surface sorption can in fact enhance organic carbon 386 

degradation. 387 

Generalizations about organic-mineral interactions are further complicated by the fact that 388 

sediment types may vary on the centimeter scale and might be dominated by an array of mineral 389 

types that have distinct physiochemical properties. Common sediment lithologies include chert, 390 

siliceous ooze, carbonate, clay, silt and sand in the form of turbidites, volcaniclastics and limestone 391 

(Plank and Langmuir, 1998). Sediments made of these various constituents respond differently to 392 

increasing pressures and temperatures during diagenesis, leading to dissolution, precipitation, and 393 

solid-phase reordering reactions (Prothero and Schwab, 2004) that will certainly impact organic-394 

mineral associations. How specific mineral-organic associations change across environmental 395 

gradients is not well known, but potentially crucial to understanding the fate of OC in marine 396 

sediments. The common clay mineral smectite provides an illustrative example since it has been 397 

shown to preferentially sequester organics, relative to chlorite-rich clays  (Ransom et al., 1998a). 398 

With as little as 1.3 MPa pressure (Hüpers and Kopf, 2012), the interlayer in smectite begins to 399 

dewater and collapse, a process that also depends on temperature, the identities of interlayer cations 400 

and the concentrations of cations present in solution (Ransom and Helgeson, 1995). If organics are 401 

sequestered in this interlayer, they could be expelled during this transition and transported into 402 

other parts of the sediment. Likewise, the reductive dissolution of metal oxides may liberate 403 

chemically or physically adsorbed organics (Coppola et al., 2007). Other recent work suggests that 404 

the salinity gradient experienced by smectite during transport from the terrestrial to marine 405 

environments induces cation exchange reactions and the removal of associated pedogenic organic 406 

carbon, followed by repopulation of the mineral surface with marine OC (Blattmann et al., 2019). 407 

On the other end of the size spectrum, sandy sediments - half of continental shelf seafloor -  allow 408 

for water column POC to be pumped biologically or tidally into the subsurface. This reactive DOC 409 

stimulates organisms (Huettel et al., 2014) to consume it and more of the particulate organic 410 

fraction, contributing to low POC in sandy sediments (Boudreau et al., 2001).   411 
 412 
2.4 Hydrolysis and Fermentation 413 

When free oxygen has been exhausted in sediments, OC is thought to be transformed 414 

through a series of steps that include the extracellular enzymatic hydrolysis of large, complex 415 
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organic compounds into smaller ones that are then fermented into volatile fatty acids, H2 and other 416 

simple chemical species, some of which are then oxidized by microorganisms using electron 417 

acceptors such as nitrate, metal-oxides and sulfate, or reduced to methane (Schulz, 2006). Thought 418 

to be the rate limiting step in organic matter degradation, extracellular enzymes produced by 419 

microorganisms are known to break large and/or complex organic compounds to supply 420 

microorganisms with energy and nutrients such as nitrogen and phosphorous (Arnosti, 2011). 421 

Extracellular enzymes are diverse and present in low concentrations in marine sediments (Steen et 422 

al., 2019). Although temperature and pH are dominant controls on rates of enzyme-catalyzed 423 

reactions, patterns of activity across ecosystem types do not necessarily correlate with such physio-424 

chemical variables (Mahmoudi et al., 2020). It seems that the functional diversity of microbial 425 

communities, nutrient availability and organic matter reactivity are likely to better explain patterns 426 

of extracellular enzyme activities, with a notably strong correlation with particle composition, size 427 

and abundance (Arnosti et al., 2014). 428 

It is difficult to locate fermenting microorganisms in sediment columns since they do not 429 

leave a distinct chemical trace of their activity (Nealson, 1997). A near-limitless number of organic 430 

compounds can serve as reactants and products, and a considerable number of inorganic species 431 

can be produced and consumed by both fermentative and non-fermentative processes (LaRowe 432 

and Amend, 2019). In addition, many organisms can switch between fermentation and other 433 

catabolic strategies, and macrofauna can also leave signatures reminiscent of fermentative 434 

pathways as they partially digest organic matter during gut passage (McInerney et al., 2008; 435 

Jochum et al., 2017). Consequently, the specific forms of fermentation and diversity of 436 

fermentative mechanisms in marine sediments remain largely unknown. 437 

Recent analyses of biomolecular data (see Section 2.6) from sediments confirm that 438 

fermentation generally appears to be a widespread survival strategy for many cosmopolitan groups 439 

of microorganisms in anoxic sediments.  For example, Bathyarchaeota, Hadesarchaea, and the 440 

Atribacteria that are common in marine sediments all utilize fermentative strategies – using 441 

peptides, aldehydes, sugars and lignin as substrates (Lloyd et al., 2013; Baker et al., 2016; Nobu 442 

et al., 2016; Orsi, 2018; Yu et al., 2018a). As has been often presumed, fermenting bacteria have 443 

now been found throughout the anoxic sediment column across multiple geochemical zones (Orsi 444 

et al., 2017; Beulig et al., 2018). Many bacteria with the capability to ferment (in particular alpha- 445 

and gamma-proteobacteria) have also been found in oxic marine sediment such as deep-sea red 446 

clay, though they respire oxygen in these settings (Vuillemin et al., 2019). Eukaryotic 447 

microorganisms are also involved in fermentation processes in sediments.  For example, the 448 

majority of H2 produced in anoxic permeable sediments results from fermentation by eukaryotic 449 

algae (Bourke et al., 2016).  In deeper sediments down to at least 2,000 meters below the seafloor 450 

(mbsf), fermenting fungal cells can still persist (Ciobanu et al., 2014), suggesting that they have 451 

the ability to contribute to H2 production since this can be a product of their fermentative pathway 452 

(Orsi, 2018). Finally, metagenomic and proteomic data taken from terrestrial settings suggest that 453 

fermenting organisms constitute a large fraction of the Candidate Phyla Radiation, an uncultured 454 

but geographically widespread and genetically diverse group of bacteria (Wrighton et al., 2012; 455 

Wrighton et al., 2014; Anantharaman et al., 2016; Danczak et al., 2017).      456 

  457 

2.5 Electron acceptors  458 
Most sedimentary POC ‒ and its hydrolysis and fermentation products ‒ are consumed by 459 

microorganisms using an array of electron acceptors.  The identities and concentrations of EAs are 460 

in turn determined by the composition of the overlying seawater and the types of mineral phases 461 
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that are deposited along with organic compounds. The principal EAs encountered in marine 462 

sediments, O2, NO3
-, Mn(IV), Fe(III), SO4

2- and CO2, are traditionally thought to be consumed in 463 

the order listed based on the idea that this sequence follows the order of decreasing Gibbs energy 464 

yield of the corresponding organic matter oxidation reactions (Claypool and Kaplan, 1974; 465 

Froelich et al., 1979; Stumm and Morgan, 1996), though it should be noted that the range of Gibbs 466 

energies for reactions involving these EAs can overlap depending on the environmental conditions 467 

(LaRowe and Van Cappellen, 2011; LaRowe and Amend, 2014, 2015a). This hierarchy leads to 468 

redox zonation in marine sediments – oxic sediments nearest the SWI, followed by so-called sub-469 

oxic zones where NO3
- and Mn(IV) reduction occurs, a ferrigenous layer if Fe(III)-bearing 470 

minerals are present, then a sulfidic layer where the bulk of SO4
2- reduction takes place and finally 471 

a methanogenic zone at the bottom of the sediment column. Not all of these redox zones will 472 

necessarily be present in any given sediment column. The thickness of the zones can vary 473 

dramatically (Glud, 2008; D'Hondt et al., 2015; Egger et al., 2018) and the order of them can 474 

exhibit complex patterns (see Jørgensen et al., 2019). For instance, in many coastal sediments 475 

where POC fluxes are high, the oxic zone might be vanishingly thin (Glud, 2008), while the oxic 476 

layer in sediments underlying ocean gyres can penetrate tens of meters to the basement since POC 477 

fluxes are so low (Røy et al., 2012; D'Hondt et al., 2015). In fact, D'Hondt et al. (2015) estimate 478 

that 9-37% of the global sediment-basement interface is oxic (Figure 3a).  479 

In an undetermined volume of the ocean crust, deep sediment layers can exhibit higher 480 

concentrations of dissolved oxygen than in upper or middle layers due to the penetration and 481 

circulation of deep, oxygenated seawater into unsedimented adjacent basaltic outcrops (Orcutt et 482 

al., 2013b; Mewes et al., 2016; Kuhn et al., 2017). This subsediment, rapid movement of low-483 

temperature seawater allows oxygen to diffuse upward from basement basalt into sediments, thus 484 

creating a C-shaped O2 curve in these sediments. An example of this is shown in Figure 4 for a 485 

sediment pond near the mid-Atlantic Ridge, though it should be noted that these kinds of oxygen 486 

profiles have also been observed in the North Pacific near a fracture zone (Mewes et al., 2016; 487 

Kuhn et al., 2017). The upward transport of such microbial energy sources could be common 488 

globally due to the vast number of seamounts that jut above the sediment-water interface (Wheat 489 

et al., 2019 and references therein).   490 

Other chemical compounds that can provide energy for microorganisms have been found 491 

to be transported upward in sediments. In one such case near the Peru Margin, sulfate diffused 492 

upward from a brine in the oceanic basement  (D'Hondt et al., 2004; Parkes et al., 2005; Engelen 493 

et al., 2008). In another, Cretaceous-aged organic-rich horizons support methane production that 494 

seem to, in turn, provide energy for microbial communities in and above it, driving unexpected 495 

distributions of EAs that differ from classical expectations (Arndt et al., 2006). In many anoxic 496 

sedimentary settings, the reduced products of POC oxidation, compounds such as Fe2+, H2S and 497 

NH4
+, diffuse upwards to be oxidized by chemolithotrophic microorganisms for energy. If redox 498 

conditions oscillate, this process can cycle, creating the impression that POC is being transformed 499 

more rapidly than it is (Thullner et al., 2009), though OC oxidation rates can be accelerated due to 500 

these oscillations (Sun et al., 1993; Aller, 1994; Sun et al., 2002a; Caradec et al., 2004).   501 

The deepest extent of the sulfate-reducing zone and thus the beginning of the methanogenic 502 

zone (sulfate-methane transition, SMT) varies widely on a global scale, and has been shown to 503 

strongly depend on sedimentation rates and associated organic matter burial fluxes (Berner, 1978; 504 

Borowski et al., 1999; Egger et al., 2018). In fact, Egger et al. (2018) recently used a compilation 505 

of 1,704 observations to correlate sedimentation rates with SMT depth to map the extent of the 506 

SMT globally (Figure 3b). It can be seen in this figure that SMT depth is spatially highly variable: 507 
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in many shallow continental shelf and slope settings, SMT depth is < 1 mbsf, and up to 10 mbsf. 508 

In deeper sediments, particularly water depths >2,000 m, SMT depth is at least 10 mbsf and in 509 

many instances, hundreds of meters deep. The majority of sediments in the abyssal plain (>66%) 510 

exhibit no SMT. 511 

The preservation of POC in sediments is sometimes attributed to anoxia, and therefore 512 

ascribed to the identities of the electron acceptors present (e.g. Demaison and Moore, 1980; 513 

Emerson, 1985; Calvert and Pedersen, 1992a; Lee, 1992b; Aller, 1994; Canfield, 1994; Wignall, 514 

1994), and to some extent the types of organic compounds deposited (Harvey et al., 1995; Harvey 515 

and Macko, 1997; Sun et al., 1997; Bianchi et al., 2000; Grossi et al., 2001; Sun et al., 2002a). 516 

Though there are many datasets and reports arguing for and against the idea that the presence of 517 

free oxygen plays a decisive role in POC reactivity (see Hulthe et al., 1998), there seems to be a 518 

growing consensus that the presence O2 typically enhances organic carbon reactivity in many 519 

marine sediments (Hartnett et al., 1998; Hedges et al., 1999; Keil and Cowie, 1999; Keil et al., 520 

2004; Moodley et al., 2005; Cowie et al., 2009; Middelburg and Levin, 2009; Aller, 2014; 521 

Eglington and Repeta, 2014; Keil et al., 2016). Notable exceptions to these observations include 522 

studies that show that  rates of POC degradation in anoxic sediments have been observed to be 523 

nearly equal to (e.g. Henrichs and Reeburgh, 1987; Lee, 1992a; Kristensen and Holmer, 2001b) or 524 

far exceeding those in oxic settings (Røy et al., 2012; D'Hondt et al., 2015). On a molecular level, 525 

fatty acids can be degraded at similar rates independently of their degree of saturation in the 526 

presence of oxygen, whereas unsaturated acids are preferentially degraded under anoxic conditions 527 

(Harvey and Macko, 1997; Sun et al., 1997; Grossi et al., 2001). In sediments dominated by sulfate 528 

reduction, measured cell specific sulfate-reduction rates vary by 10 orders of magnitude (Jørgensen 529 

et al., 2019). Furthermore, recent incubation experiments have built on other studies (e.g. Lee 530 

1992) showing that the identity of the electron acceptors used during POC transformation 531 

processes has little to no influence on the overall rate of organic carbon degradation (Beulig et al., 532 

2018).  Taken together, these studies suggest that the identity of the oxidant/reductant does not 533 

necessarily determine the reactivity of organic carbon, but that O2 has a special role among EAs 534 

in evaluating the reactivity of POC.   535 

 536 

2.6 Microorganisms 537 
Although many factors influence the reactivity of organic carbon in sediments, one of the 538 

most unifying is microorganisms. The extent to which organic carbon reactivity is influenced by 539 

the taxonomic and functional distribution of microorganisms is only beginning to be explored, 540 

after an era in which little attention was paid to microbial life in sediments (see Section 1.3). In 541 

the last decade or so, there has been a revolution in understanding the number, identity, functional 542 

capabilities and extent of life in marine sediments, and their role in OC degradation. 543 

 544 

 2.6.1 Abundance  545 

Microbial cell numbers correlate with mean sedimentation rate and distance from 546 

continental landmasses (Kallmeyer et al., 2012), as well as with the amount of organic matter in 547 

sediments (Jørgensen and Marshall, 2016). For surface sediments, those on continental margins 548 

contain 108 – 1010 cells cm-3, whereas those underlying oligotrophic gyres contain 105 – 107 cells 549 

cm-3 (Kallmeyer et al., 2012) (Figure 5). In most sediments, cell concentrations decrease with 550 

increasing depth below the seafloor, according to a power law. In OC-poor, oxic sediments, cell 551 

concentrations drop below ~102 cells  cm-3 between 10 and 15 mbsf  (Kallmeyer et al., 2012; 552 

Vuillemin et al., 2019).  Cell abundance in OC-rich, anoxic sediments on continental shelves 553 
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remain relatively high at great depths in the sediment, and only fall to ~102 cells  cm-3 between 554 

1,000 – 2,500 mbsf (Kallmeyer et al., 2012).    555 

  556 

2.6.2 Identity 557 
Rapid progress in high-throughput DNA sequencing and analytical tools over the last 558 

decade has completely revised our understanding of the tree of life (Hug et al., 2016). Many of the 559 

phylogenetic groups found in sediments are candidate phyla that are not yet cultivated, so their 560 

role in organic matter transformation is not entirely clear (Lloyd et al., 2018). Though common 561 

types of fungi, bacteria, and archaea have been found in sediments (Richards et al., 2012; Orsi et 562 

al., 2013), many new groups of microorganisms reside in the subsurface that appear to be endemic 563 

to this environment. These endemic groups are repeatedly found to be relatively abundant in 564 

subsurface settings (Anantharaman et al., 2016; Orsi, 2018), with widely differing diversity in oxic 565 

and anoxic sediments (Orsi, 2018).  In addition, sediments of varying redox state reveal evidence 566 

of viruses (Engelhardt et al., 2015; Tully and Heidelberg, 2016; Bäckström et al., 2019; Cai et al., 567 

2019), which may contribute to organic processing via lysis of microbial biomass (Danovaro et 568 

al., 2008; Orsi, 2018), with archaea potentially being disproportionally lysed in surface sediments 569 

under deep waters (Danovaro et al., 2016). 570 

  571 

2.6.3 Functional capabilities  572 
Before the molecular biology revolution, the functional capabilities of microbial 573 

communities in sediments were inferred from pore water profiles, with little to no direct biological 574 

information. For example, decreases in sulfate and increases in sulfide suggested microbial sulfate 575 

reduction and amendment experiments revealed that the addition of fermentation end products (H2, 576 

acetate) stimulated rates of sulfate reduction (Goldhaber et al., 1977; Iverson and Jørgensen, 1985). 577 

The ability to sequence and identify genes with known functions, and determine their expression 578 

levels, allowed for the discovery of new types of microorganisms as well as new functional 579 

capabilities (Biddle et al., 2006; Biddle et al., 2008), which could then be correlated to geochemical 580 

profiles.  581 

Knowledge of microbial functionality from environmental ‘omics data (the term ‘omics is 582 

commonly used to refer to the analysis of DNA, RNA, metabolite and protein sequences extracted 583 

from samples) can be inferred from a close similarity of protein encoding genes from 584 

environmental samples to those found in genomes of cultured microbes that have been assigned a 585 

function based on biochemical experiments (de Bruijn, 2010). Marine sediment communities are 586 

dominated by microorganisms that are not closely related to any current pure culture (Parkes et 587 

al., 2005; Biddle et al., 2006; Inagaki et al., 2006; Lloyd et al., 2018). Therefore, it is speculative 588 

to assume that distant genetic similarities from the in situ microorganisms to cultured strains imply 589 

that those genes are enabling microorganisms to perform the same function. A large number of 590 

genes encoding hypothetical proteins in marine metagenomes, which are digital libraries of all the 591 

DNA present from all the microorganisms in a natural sample, remain difficult to annotate with 592 

information about their identities or functions. For instance, in the large TARA Oceans 593 

metagenomic data set, only about 16% percent of DNA sequences that encoded a hypothetical 594 

protein had a statistically significant similarity to proteins with an experimentally determined 595 

function. Furthermore, 44% of the hypothetical proteins had no significant similarity to gene 596 

families that share general biochemical functions (Sunagawa et al., 2015a). This problem is 597 

difficult to solve using traditional bioinformatic approaches, which rely on comparing 598 

environmental sequences to genes whose function has been identified.  599 
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A further complicating factor is that databases of known genes are dominated by well-600 

characterized microorganisms, particularly from a single phylogenetic group (Proteobacteria), 601 

whereas marine environments are dominated by uncultured organisms from diverse lineages 602 

(Lloyd et al., 2018). Physiologies from some of these uncultured microbes have been inferred from 603 

whole genome reconstructions in marine sediments (Lloyd et al., 2013), metatranscriptomics 604 

showing which genes were being transcribed at the time of sampling (Orsi et al., 2013), 605 

compositions of natural isotopes of biomass (Biddle et al., 2006; Shah et al., 2008; Meador et al., 606 

2015), stable isotope probing (Morono et al., 2011; Trembath-Reichert et al., 2017), direct 607 

measurement of metabolites (Bird et al., 2019) and tracking increases in a microbial group’s cell 608 

abundance during laboratory enrichment of natural marine sediments (Kevorkian et al., 2018; Yu 609 

et al., 2018b). The limitations of these approaches are that DNA and RNA sequences from 610 

environmental samples can only be given functional annotations based on their similarity to known 611 

cultures. Therefore, truly novel functions cannot be determined from sequencing methods alone. 612 

Heterologous expression and characterization can be used to identify novel functions (Cottrell et 613 

al., 2005; Michalska et al., 2015; Wrighton et al., 2016), but such methods have only been applied 614 

to enzymes with enough homology to a known protein to develop a hypothesis. Determining the 615 

functions of genes encoding truly novel “hypothetical” proteins will be very important for inferring 616 

functions of uncultured microorganisms in marine sediments. 617 

 It should be noted that genome representation in databases represents one of the largest 618 

issues for making correct assignments of protein encoding genes in environmental genomics 619 

datasets. For example, the number of genomes from archaea in databases that derive from 620 

subsurface environments has grown substantially in recent years (Lloyd et al., 2013; Spang et al., 621 

2015; Anantharaman et al., 2016; Baker et al., 2016; Jungbluth et al., 2017; Dombrowski et al., 622 

2018; Tully et al., 2018; Seitz et al., 2019). Before these genomes were available, protein encoding 623 

genes expressed by archaea in marine sediments were estimated to be about 1% to 2% of total 624 

genes expressed (Orsi et al., 2013).  However, a re-analysis of that same data including these new 625 

archaeal genomes in the database showed that archaea actually express 25% of the total genes 626 

(Orsi, 2018), clearly demonstrating a database bias. Thus, we imagine that as more genomes from 627 

archaea are sequenced, their representation in environmental ‘omics datasets will continue to 628 

increase. The archaea are thus likely to be critically important for subsurface carbon cycling, as 629 

predicted by earlier studies from the marine subsurface (Biddle et al., 2006; Lloyd et al., 2013). 630 

 631 

2.6.4 OC Degradation potential based on biomolecular data 632 
The advent of inexpensive nucleic acid sequencing technology combined with the 633 

availability of user-friendly bioinformatics processing platforms has made it possible for non-634 

specialists in bioinformatics to substantiate biogeochemical work with ‘omics data. ‘Omics 635 

approaches that have proven valuable in sediment biogeochemistry include single-cell genomics, 636 

metagenomics and the related practice of “binning” metagenomic sequences into “metagenome-637 

assembled genomes” (Albertsen et al., 2013),  metaproteomics, and metabolomics  (for a review 638 

see Gutleben et al., 2018). These approaches, especially when used in concert, have enabled insight 639 

into the mechanisms of organic matter degradation that would be impossible from purely 640 

geochemical techniques. For instance, in deep sediments of the Baltic Sea, it appears that 641 

Atribacteria have the potential to act as a keystone species, accessing a wide range of organic 642 

carbon using a broad spectrum of extracellular enzymes, and then exporting the resulting free 643 

amino acids, possibly supporting the rest of the microbial community (Bird et al., 2019). 644 
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 Ideally, the integration of multiple molecular approaches will yield information on the 645 

rates and potentials of organic matter oxidation by microbial communities. Progress along this 646 

path has been made in studies of the nitrogen cycle, for which the genomic pathways of important 647 

transformations (N2 fixation, nitrification, etc.) are well-characterized and the relevant genes are 648 

highly conserved (Pachiadaki et al., 2017). This information has been used to construct a “gene-649 

centric” model of the nitrogen cycle in the Arabian Sea oxygen minimum zone, revealing 650 

interactions between the cryptic sulfur cycle and the nitrogen cycle which would have been 651 

difficult to observe using purely biogeochemical techniques (Reed et al., 2014). 652 

The use of biomolecular data to better understand organic carbon cycling is a nascent area 653 

of inquiry that presents researchers with many avenues of research to make sense of the 654 

tremendous diversity and complexity of organic structures, and therefore enzymes that catalyze 655 

organic matter transformations. One aspect of this complexity is illustrated in Figure 6, which 656 

shows that the phylogenetic diversity of putative secreted organic-degrading enzymes in anoxic 657 

marine sediments spans the tree of life (Orsi, 2018). Peptidases provide a more specific example: 658 

even though all peptidases catalyze essentially the same reaction, breaking a peptide bond, this can 659 

be performed by 268 different structural families of proteins via eight separate catalytic 660 

mechanisms (Rawlings et al., 2016). Other categories of enzymes related to organic carbon 661 

degradation are similarly diverse, obscuring relationships between enzyme structure and function 662 

(Michalska et al., 2015). Because many enzymes relevant to OC degradation can catalyze reactions 663 

beyond those including their “preferred” substrates, caution must be used when inferring 664 

degradation processes from genomic data or enzyme assays (Steen et al., 2015). It is also possible 665 

that novel uncultured clades harbor catalytic enzymes not identifiable by current annotation 666 

methods. Therefore, even if particular genes are present in an ecosystem, biomolecular data sets 667 

alone might not be sufficient for making specific predictions about the rate, quantity and type of 668 

organic carbon reacted in a given system. Lastly, recent experimental work using bioreactor 669 

incubations with marine sediments and different marine heterotrophs has directly demonstrated 670 

species-to-species differences in the rate, quantity, and type of organic matter oxidized, illustrating 671 

that the reactivity of organic carbon is also a function of the microorganisms that are present and 672 

active in a given environment (Mahmoudi et al., 2019). 673 

  674 

2.6.5 Energetic and power constraints 675 
Absent photosynthesis, all microbial energy is derived from catalyzing redox reactions, 676 

nearly all of which are ultimately driven by the degradation of organic carbon. The amount of 677 

Gibbs energy available in a number of sedimentary settings has been determined (e.g. Schrum et 678 

al., 2009; Wang et al., 2010; LaRowe and Amend, 2014; Teske et al., 2014), as have the metabolic 679 

rates in a number of subsurface habitats (Orcutt et al., 2013a). However, the rate at which this 680 

energy is used, microbial power utilization, is less well constrained, despite being critical for 681 

understanding activity levels and growth state (Hoehler and Jørgensen, 2013; LaRowe and Amend, 682 

2015a). In situ measurements of microbial power utilization are not yet feasible, but calorimetric 683 

measurements carried out in the laboratory have begun to assess low rates of heat production from 684 

small numbers of cells taken from the subsurface (Robador et al., 2016). However, a growing 685 

number of studies have computed power usage by combining geochemical data with modeling 686 

tools (e.g. LaRowe and Amend, 2015a, b; Bradley et al., 2018b). In these studies, data gathered by 687 

scientific drilling is used to inform POC degradation models (see Section 4) while the energetics 688 

of organic carbon degradation can be constrained by either using the total molecular composition 689 
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of dead microbial cells (Bradley et al., 2018b) or by relating the nominal oxidation state of organic 690 

carbon to its energy content (LaRowe and Van Cappellen, 2011).       691 

The results of these power studies have shown that in low-energy sediments, such as those 692 

underlying the South Pacific Gyre (SPG), microbial activity is limited, more or less, to maintaining 693 

cellular integrity through biomolecular repair and replacement (Bradley et al., 2018a), a state akin 694 

to dormancy (see Section 4.3). Thus, maintenance activities (the sum of activities that do not 695 

produce growth) constitute a much greater fraction of total power utilization by microbial 696 

communities in habitats where growth is minimal.  Indeed, bioenergetic modelling of the SPG 697 

sediments suggested that <0.1% of the power from organic carbon oxidation can be attributed to 698 

growth, with maintenance accounting for the rest (Bradley et al., 2019).  699 

Power calculations have also been used to constrain the cell-specific power requirement of 700 

microorganisms in sediments. Assuming that all counted cells are involved in organic matter 701 

degradation, minimal cell-specific power requirement of microbial cells in SPG sediments have 702 

been estimated to be around 1.9×10-19 W cell-1 (LaRowe and Amend, 2015b). Assuming this value 703 

for the non-growing cells in SPG sediments, the degradation of cells that died in the sediments, 704 

necromass, was estimated to provide 2 to 13% of the power used by microbial communities in 705 

shallow and relatively young sediments (<10,000 years) from SPG (Bradley et al., 2018b). In a 706 

similar study, mean cell-specific metabolic rates of functional groups involved in nitrogen cycling 707 

in oligotrophic North Pond sediments (on the western flank of the Mid-Atlantic Ridge) showed 708 

that an increased power supply in transition zones between oxic and anoxic regimes may be 709 

responsible for the revival of organisms from a maintenance state, and even for growth (Zhao et 710 

al., 2019). 711 

The lack of quantitative data accurately describing the distribution of various functional 712 

groups of microorganisms in marine sediments has impeded the calculation of cell-specific power 713 

requirements for particular catabolic groups. This has led to sometimes-untested assumptions 714 

about the fraction of a community catalyzing  a particular reaction (e.g. that ~10% of the total cells 715 

in organic-rich sediments are sulfate reducers (Hoehler and Jørgensen, 2013)). Quantification 716 

methods like marker-gene-based qPCR and FISH are useful means to measure the abundances of 717 

various functional groups in marine sediments (Schippers and Neretin, 2006; Lever, 2013; 718 

Buongiorno et al., 2017), though their application is limited by primer and probe biases.  719 

One of the goals motivating calculation of cell-specific power requirements for different 720 

types of functional groups (e.g. Zhao et al., 2019) under a wide range of natural conditions is to 721 

determine the limits that the environment imposes on basal power requirements (Hoehler and 722 

Jørgensen, 2013). Knowing what the ultimate limits are would greatly facilitate the prediction of 723 

the standing stock of biomass of different functional groups in marine sediments on a global scale 724 

using geochemical and physical data (e.g. Bowles et al., 2014; Egger et al., 2018) and without the 725 

requirement for the collection, analysis and assembly of biological samples on such a vast scale.  726 

 727 

2.6.6 Microbial turnover rates 728 
Most early studies focusing on microorganisms in marine sediments were largely 729 

conducted in the upper tens of centimeters of sediment, which are both younger and often more 730 

carbon-rich than deeper sediments (see Figure 2). While some studies measured microbial 731 

activities in subsurface sediments as deep as 1.5 mbsf at the Peru Margin (Parkes et al., 1990), 732 

these studies generally depended on laboratory incubations to measure metabolic rates, which tend 733 

to overestimate the in situ rate. 734 
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 In recent years, new approaches that are incubation-independent and sensitive to low 735 

activities have revealed that a large, active, yet slow-growing microbial community inhabits the 736 

deep subsurface. These microbes subsist on low power levels and have been ascribed some of the 737 

slowest turnover times ever documented. Amino acid racemization modelling has been used to 738 

estimate that some marine sediment microorganisms require hundreds to thousands of years to 739 

grow or replace all of their biomass (Lomstein et al., 2012), though these estimates have been 740 

adjusted to span years to hundreds of years (Braun et al., 2017). It should be noted that this work 741 

was carried out in relatively young, organic-rich sediments, (especially when compared to ancient 742 

sediments, e.g. from SPG). A different and perhaps more sensitive method, deuterium 743 

incorporation into lipids, has been used to estimate microbial community turnover times from tens 744 

to hundreds of years in relatively shallow (< 1 mbsf) subsurface sediments from the Baltic Sea 745 

(Wegener et al., 2012), as well as in very deep (up to 2,000 mbsf) sediments from offshore Japan 746 

(Trembath-Reichert et al., 2017). In all cases, these turnover times are several orders of magnitude 747 

slower than the doubling times of laboratory cultures, which are typically on the order of hours to 748 

days.  749 

With such slow replication rates, it is unlikely that subsurface sedimentary microorganisms 750 

have experienced a sufficient number of generations for specific adaptations to have evolved and 751 

spread through the community (Starnawski et al., 2017), calling into question whether these 752 

organism scan be considered endemic (see Section 2.6.2). Under this scenario, it is more likely 753 

that a community that is able to tolerate this increasing energy limitation is selected for as it is 754 

buried deeper in the sediment column (Marshall et al., 2019). This idea is substantiated by evidence 755 

that the microbial taxa that dominate deep subsurface sediments are common across a wide range 756 

of locations (Petro et al., 2017) and are often found in surficial sediments (Walsh et al., 2015; 757 

Starnawski et al., 2017), while the converse is not the case – surficial sediments contain microbial 758 

taxa that are not found deeper in the sediment column. In fact, it has recently been shown that at 759 

sites as diverse as the Indian Ocean and the Bering Sea, the operational taxonomic units that are 760 

most abundant at depth are a subset of the local seafloor community (Kirkpatrick et al., 2019). 761 

That is, net replication was not required to produce the microbial population observed in deep 762 

sediment, which could instead have been produced by differential mortality rates. These lines of 763 

evidence suggest that microbial community members with a slow-metabolizing survival strategy 764 

are selected for in the energy-limited deep subsurface environment, though it is unclear that these 765 

traits are passed on as in Darwinian selection. As noted above, the importance of energetic 766 

efficiency as a selective advantage for long-term microbial survival has been supported by 767 

modelling (Bradley et al., 2019) and experimental (Vuillemin et al., 2019) work. Metabolomic and 768 

transcriptional evidence has identified some specific mechanisms that likely underlie the slow-769 

metabolizing survival strategy – for example, the use of chemical protectants to stabilize nucleic 770 

acids and proteins, and metabolic interdependencies among members of the microbial community 771 

(Bird et al., 2019).  However, many of these mechanisms – and the impact of these slow 772 

metabolizers on the long-term carbon cycle – remain underexplored. 773 

 774 

2.7 Sulfurization 775 
Sulfurization is one of the mechanisms thought to be responsible for the preservation of 776 

organic carbon in marine sediments (for reviews see Sinninghe Damsté and De Leeuw, 1990; 777 

Werne et al., 2004; Amrani, 2014). Sulfurization is the process whereby sulfur atoms ultimately 778 

replace carbon atoms in organic compounds, producing organic sulfur compounds (OSC). OSCs 779 

are thought to be less accessible to microbial degradation since S replaces reactive functional 780 
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groups that tend to be the easiest parts for microorganisms and/or their exoenzymes to access 781 

(Kohnen and Sinninghe Damsté, 1989). Sulfur has been found in a wide variety of organic 782 

compound types in sediments (Werne et al., 2004), occupying the full range of sulfur oxidation 783 

states (-2 to +6) (Amrani, 2014). The preservation potential of OSCs is based on a) observations 784 

that the S:C in POC increases with depth in sedimentary systems (Francois, 1987; Eglinton et al., 785 

1994; Hetzel et al., 2009; Amrani, 2014), b) the isotopic composition of organically bound S 786 

(Francois, 1987; Mossmann et al., 1991) , c) intense sulfurization of POC-rich Cretaceous and 787 

Jurassic deposits (van Kaam-Peters et al., 1997; Sinninghe Damsté et al., 1998; Van Kaam-Peters 788 

et al., 1998; Kolonic et al., 2002; Kolonic et al., 2005; Böttcher et al., 2006; van Dongen et al., 789 

2006; Hetzel et al., 2009; Raven et al., 2018; Raven et al., 2019) d) observations that many fossil 790 

fuels and their precursors have high levels of OSCs (Sinninghe Damsté et al., 1989a; Sinninghe 791 

Damsté et al., 1989b) and e) laboratory studies (Krein and Aizenshtat, 1994; Schouten et al., 1994). 792 

Sulfurization is thought to proceed in anoxic environments in which sufficiently high 793 

concentrations of POC and H2S coexist in the absence of metals such as reactive Fe (Gransch and 794 

Posthuma, 1974; Werne et al., 2004; Amrani, 2014), although there is some evidence that 795 

sulfurization can happen in the presence of reactive iron species since it can lead to the formation 796 

of polysulfides which in turn seem to enhance the incorporation of S atoms into organic structures 797 

(Kohnen and Sinninghe Damsté, 1989; Werne et al., 2004; Heitmann and Blodau, 2006). 798 

Somewhat paradoxically, sulfurization is thought to be an abiotic process, yet the requisite sulfide 799 

is attributed to microbial sulfate reduction, leading to the observation that high organic content is 800 

sometimes required for its preservation (Quijada et al., 2016).  801 

Sulfurization takes place in a variety of environments on a range of timescales. Although 802 

it was traditionally thought to be a relatively slow process taking place in sediments and petroleum 803 

reservoirs (Sinninghe Damsté and De Leeuw, 1990; Werne et al., 2004), more recent research has 804 

shown that it can take place in hydrothermal systems (Gomez-Saez et al., 2016), in sinking marine 805 

particles on a timescale of hours (Raven et al., 2016; Raven et al., 2019), and surface sediments 806 

subjected to oscillating redox conditions (Jessen et al., 2017). It has been shown that such rapid 807 

sulfurization of organic carbon likely exerted an important feedback on ocean redox geochemistry 808 

and climate during the end of a major Cretaceous extinction event (OAE2), ultimately terminating 809 

the extreme environmental conditions that caused it (Raven et al., 2019, Huelse et al., 2019). 810 
 811 
2.8 Terrestrial studies 812 

Investigations on the cycling of organic carbon in terrestrial settings offer valuable insights 813 

to analogous processes within the marine subsurface. Moreover, terrestrial settings are easier to 814 

access than deep marine environments, and thus they are more amenable to long term observations 815 

and manipulation for field and laboratory-based experiments. Through such studies, the stability 816 

of organic carbon has been found to be largely dependent on the complex interplay of the 817 

physicochemical (e.g. OC-mineral interaction and aggregation, temperature, moisture, salinity, 818 

etc.) and biological (e.g. microbial community composition, nutrient availability, extracellular 819 

enzyme production, etc.) properties of the environment rather than on the molecular properties of 820 

the OC itself (e.g. elemental composition, presence of functional groups, molecular conformation, 821 

etc.). Given that a substantial fraction of POC buried in marine sediments is of terrestrial origin 822 

(Burdige, 2007a), understanding the factors governing OC stability in terrestrial ecosystems 823 

provides valuable insight into the marine carbon cycle. 824 

            Within soils, certain organic compounds such as lignin have classically been viewed as 825 

resistant to biodegradation due to their large and complex molecular structures. However, lignin 826 

and lignocellulose compounds are no more likely to persist in soils than other organics given the 827 
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proper conditions (Marschner et al., 2008b; Klotzbücher et al., 2011; Schmidt et al., 2011). This 828 

is largely due to the activity of fungi, who play a critical role in the degradation of poorly reactive 829 

organic substrates on land (Treseder and Lennon, 2015) and thus may also play a similar role in 830 

marine sediments containing soil-derived organics. In fact, new experiments show that fungi living 831 

in coastal marine sediments play a role in degrading lignocellulose at the land-sea interface 832 

(Ortega-Arbulú et al., 2019).   833 

The ability of microorganisms to degrade soil OC may, at times, also be restricted by 834 

nutrient or energy limitations. This is especially pronounced in deep soil layers where turnover 835 

times are on the order of thousands to tens of thousands of years (Schmidt et al., 2011). Recent 836 

studies suggest that this long turnover time cannot be solely attributed to the chemical structure of 837 

OC as there is not always a significant change in composition with depth (e.g. Fontaine et al., 838 

2007). However, amendments with fresh OC to subsoil via root exudates or decomposition (often 839 

called priming) has been shown to stimulate increased degradation of the old OC, indicating that 840 

the fresh OC may provide a needed energy source to promote the activity of existing microbial 841 

degraders (Fontaine et al., 2007; Marschner et al., 2008b; Kuzyakov, 2010). This mechanism has 842 

also been shown to occur to marine OC as well (Steen et al., 2016). The mechanism behind priming 843 

effects, however, is unclear. Common root exudates such as oxalic acid may enhance organic 844 

carbon degradation by removing organic carbon from mineral surfaces, thereby increasing its 845 

reactivity (Keiluweit et al., 2015). In the case of permafrost, which is also primarily composed of 846 

old organic carbon, temperature has been found to be a dominant factor governing its degradation. 847 

While frozen, decreased water availability and microbial and enzymatic activity lead to an increase 848 

in OC stability. With rising temperatures, these limitations are largely erased and OC degradation 849 

rates increase (Schuur et al., 2009; Schmidt et al., 2011) and references therein).  850 

     Molecular biological tools have revealed that anoxic freshwater sediments contain similar 851 

microbial groups that exist in their marine counterparts (Vuillemin et al., 2018).  The presence of 852 

the common phylum, Bathyarchaeota, in deep terrestrial sediments that contain high amounts of 853 

unreactive plant derived organic matter (e.g. lignocellulose) is thought to be due to their ability to 854 

use lignin as an energy source (Yu et al., 2018b).  Bathyarchaeota might also be involved in the 855 

turnover of terrestrially derived organic matter, such as lignin, in marine sediments in coastal 856 

settings where land-derived OC is commonly deposited.  Other bacterial “dark matter” groups that 857 

are present in marine sediments such as the candidatus groups Latescibacteria, Omnitrophica, and 858 

Parcubacteria have been shown to have similar rates of organic carbon turnover in freshwater 859 

sediments relative to more well-studied groups such as the Proteobacteria (Coskun et al., 2018). 860 

Given their transcriptional activities in marine sediments (Orsi, 2018), these  groups could also be 861 

important for benthic carbon cycling in the ocean. 862 

   863 

3. Old, hot and deep organic carbon 864 
 Most studies concerning the rates of POC degradation in marine sediments focus on the 865 

shallowest, most recently deposited material. However, it is becoming clear that deeply-buried 866 

organic carbon is actively being consumed and that fluid circulation in the ocean basement can 867 

impact OC reactivity through the modification of organic compounds as well as the composition 868 

of sediment pore water.    869 

 870 

3.1 Ancient sediments 871 
Throughout Earth’s history there have been numerous periods of time when the deposition 872 

flux of organic carbon into sediments has been much higher than the present day (Pedersen and 873 
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Calvert, 1990). A fraction of this ancient OC persists in modern marine sediments within layers of 874 

elevated OC concentrations (Condie et al., 2001; Jenkyns, 2010; Ohkouchi et al., 2015). Although 875 

the details vary depending on the time period, there is evidence that large-scale tectonic processes 876 

and volcanism are ultimately responsible for the relatively high concentrations of OC deposited in 877 

the past (Berry and Wilde, 1978; Condie et al., 2001; Jenkyns, 2010; Trabucho-Alexandre et al., 878 

2012; Ohkouchi et al., 2015). One such example is a section of Cretaceous-aged sediments located 879 

in an area of the equatorial Atlantic known as the Demerara Rise, where drill cores from ODP Leg 880 

207 have revealed shales that typically contain between 2 and 15 wt% POC in layers ranging from 881 

56 to 94 meters thick (ShipboardScientificParty, 2004). Biogeochemical reaction transport 882 

modelling has revealed that deep Demerara organic-rich strata likely host organisms that convert 883 

the POC in these shales into CH4 which is subsequently consumed by anaerobic methane oxidizing 884 

microbial consortia using SO4
2- as the oxidant (Arndt et al., 2006). Although data on microbial 885 

abundance are not available, it is likely that biomass concentration is higher in POC-rich sediment 886 

layers as well as the adjacent sulfate-reducing zone than in the hundreds of meters of sediment 887 

separating these layers from the SWI, in which the POC content is far lower. Supporting this 888 

notion, cell abundances in core sections 1,500 to 2,500 mbsf near the Shimokita Peninsula, Japan, 889 

are orders of magnitude higher in organic-rich lignite layers than surrounding, organic-poor 890 

sediments (Inagaki et al., 2015). Although much of this deeply-buried organic matter looks to have 891 

escaped microbial degradation, it seems as if it is actually hosting a very slowly metabolizing 892 

community. Observations and diagenetic modeling results show that the organic matter in ancient, 893 

deeply buried organic carbon-rich strata still provides a suitable substrate for ongoing microbial 894 

respiration (Krumholz et al., 1997; Coolen et al., 2002; Krumholz et al., 2002; Moodley et al., 895 

2005; Arndt et al., 2006; Arndt et al., 2009). Microbial biomass and cell activity have also been 896 

shown to peak at redox transition zones, including at oxic-anoxic transition zones in North Pond 897 

sediments (Zhao et al., 2019), and in deep (~90 m below the SWI) Peru Margin sediments 898 

associated with ODP Leg 201 (site 1229) where there is a convergence of methane and sulfate, the 899 

latter of which is diffusing upwards from a brine (Jørgensen et al., 2003).  900 

The rate at which old, deeply buried organic carbon is metabolized by microorganisms in 901 

marine sediments becomes extremely slow with depth (Middelburg, 1989), but as these organics 902 

are exposed to sufficient pressure and temperature, they can be converted abiotically into 903 

petroleum through a process known as catagenesis.  Although it is thought that the principle zone 904 

of oil formation in organic-bearing sediments occurs from ~ 50 - 160o C, with pressure playing a 905 

lesser role, hydrocarbons and methane can be generated abiotically from complex organic matter 906 

at lower temperatures (Tissot and Welte, 1984; Hunt, 1996). As noted by LaRowe et al. (2017a), 907 

nearly 35% of the volume of marine sediments are above 60oC, and even if sediments do not 908 

contain enough OC to be commercial sources of petroleum (TOC > 0.5% by weight), the remaining 909 

organic carbon in them can still be converted to microbially accessible hydrocarbons through 910 

abiotic processes. Some fraction of small-molecular weight hydrocarbons and CH4 produced 911 

abiotically in sedimentary basins could be expelled and migrate to regions that are more conducive 912 

for life. Both petroleum and natural gas can migrate hundreds of kilometers from source rocks 913 

(Selley, 1998), and there are certainly thermophilic anaerobes capable of oxidizing common 914 

products of catagenesis such as alkanes and benzyl-compounds (Teske et al., 2014). In addition, 915 

water, CO2 and H2S can also be produced in large amounts during the catagenesis of Type II 916 

kerogens (Tissot and Welte, 1984), fueling microbial activities with carbon and electron acceptors 917 

and donors.  Furthermore, it has been estimated that more CH4 has been produced by methanogens 918 

degrading petroleum reservoirs than there is primary CH4 produced from catagenesis (Milkov, 919 
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2011). In total, 1.97 – 3.94 × 1013 kg of free CH4 generated from the microbial degradation of 920 

petroleum is estimated to exist in sedimentary basins (Milkov, 2011).  Taken together, catagenesis 921 

could be fueling microbial communities deep in marine sediments of unknown size. 922 

  923 

3.2 Hydrothermal sediments  924 
Sediments that are deposited in regions near spreading centers or volcanic hot spots are 925 

subjected to advecting hot fluids that transform organic molecules. The effects are particularly 926 

pronounced near continental settings, such as the Guaymas Basin in the Gulf of California 927 

(Simoneit and Lonsdale, 1982) and at Middle Valley on the Juan de Fuca Ridge, off the coast of 928 

Washington State (Cruse and Seewald, 2006). The transformations that occur have been compared 929 

to the formation of petroleum on geologic time scales (Simoneit and Lonsdale, 1982), but with 930 

important differences due to the presence of water (Seewald, 2001). In laboratory experiments, 931 

sediments heated in the presence of water typically release a large pulse of organic matter into the 932 

fluids, followed by a slow decline in overall organic concentrations, presumably due to the 933 

formation of degradation products such as CO2 and CH4 (Seewald et al., 1990; Lin et al., 2017). 934 

Organic acids, acetate in particular, are some of the most abundant degradation products (Eglinton 935 

et al., 1987; Fisher, 1987; Lundegard and Kharaka, 1994; Kawamura et al., 1996; Shebl and 936 

Surdam, 1996; Seewald, 2001), although reactive amino acids, polysaccharides, and small peptides 937 

have also been found to be released from Guaymas Basin sediments by heating (Martens, 1990; 938 

Lin et al., 2017). These ancient petroleum-derived substrates are further catalyzed by subsurface 939 

microbes (Pearson et al., 2005). Acetate and other low molecular weight organic compounds 940 

including formate, lactate, methanol and ethanol have been identified in Guaymas Basin sediments 941 

and were found to have a microbial rather than thermal source (Zhuang et al., 2019). Hydrothermal 942 

alteration of DOC begins at temperatures as low as 68 C (Hawkes et al., 2016), suggesting that 943 

the hydrothermal influence may be widespread (LaRowe et al., 2017a).  944 

 945 

  946 

3.3 Ocean basement fluids  947 
Scientific drilling into the seafloor has revealed that the chemical constituents of fluids 948 

circulating in the ocean crust basement, such as oxygen, diffuse into overlying sediments (Orcutt 949 

et al., 2013b; Wheat et al., 2013) (see Figure 4). The implications of this for POC degradation in 950 

sediments is only just being explored. The oceanic basement is generally considered a net sink for 951 

marine OC (Lang et al., 2006; Shah Walter et al., 2018) with both microbiological and abiotic 952 

removal mechanisms. In addition to the sediment column, deep-ocean DOC, POC and sedimentary 953 

particles enter the crust with oceanic bottom water through exposed outcrops. Most of this fluid 954 

flux occurs away from active ridge axes in older, cooler crust and is equivalent to about one fifth 955 

of the global riverine flux into the ocean (Johnson and Pruis, 2003). 956 

Recent studies have described the concentration and isotopic composition of DIC and DOC 957 

in ocean basement fluids from naturally outflowing fluids from the Dorado Outcrop (McManus et 958 

al., 2019) and fluids recovered from IODP CORK observatories on the flank of the Juan de Fuca 959 

Ridge (Lin et al., 2019) and North Pond (Shah Walter et al., 2018) - all relatively cool settings 960 

away from mid-ocean ridge spreading centers. Although fluid chemistry is variable on the flanks 961 

of ridges, ranging from warm, anoxic fluids recovered from near the Juan de Fuca Ridge (Lang et 962 

al., 2006; Lin et al., 2019) to oxygenated fluids that resemble bottom seawater at North Pond 963 

(Meyer et al., 2016), fluid temperatures are low enough to allow for microbial activity to influence 964 

the OC reservoir (McCarthy et al., 2011; Shah Walter et al., 2018; McManus et al., 2019). 965 
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Heterotrophic activity has been identified in these environments (e.g. Furnes et al., 2001; Lin et 966 

al., 2015; Robador et al., 2015; Russell et al., 2016) and DOC concentrations in circulating 967 

basement fluids are lower than in overlying bottom water. Compared to 35-45 µM in deep 968 

seawater, cool hydrothermal DOC concentrations can be <15 µM (Lang et al., 2006; Lin et al., 969 

2012; Shah Walter et al., 2018; Lin et al., 2019). This DOC removal has been attributed to selective 970 

oxidation on the basis of a concurrent loss of oxygen, the 14C content of the remaining organic 971 

matter and characterization by NMR and FT-ICR-MS (LaRowe et al., 2017b; Shah Walter et al., 972 

2018; Lin et al., 2019). The DOC removed in the crustal subsurface has a 14C age of up to 4,300 973 

years at North Pond, indicating a long residence time in the open ocean before oxidation by 974 

basement microorganisms, underscoring the importance of treating OC degradation as an 975 

ecosystem property. Chemoautotrophic DOC, isotopically and molecularly distinct from deep-976 

ocean DOC, has also been identified in cool hydrothermal fluids, although their concentrations are 977 

lower than DOC in bottom water, implying a slow production rate (McCarthy et al., 2011; Shah 978 

Walter et al., 2018). 979 

Fluids that pass through high temperature black smoker hydrothermal systems have DOC 980 

concentrations that are approximately one-third that of deep seawater (Lang et al., 2006). Abiotic 981 

removal pathways are dominant in regions of active hydrothermal venting where fluids are 982 

intensely heated and can reach temperatures of 400°C. Thermal decomposition of OC to volatile 983 

gases, CO2, H2 and CH4, has been demonstrated experimentally (Siskin and Katritzky, 1991; 984 

Seewald, 2001; McCollom and Seewald, 2003b, a) and is known to be an important loss 985 

mechanism that “scrubs” fluids of deep-ocean DOC in high temperature reaction zones (Lang et 986 

al., 2006; Hawkes et al., 2015), although DOC sorption to crustal surfaces is also possible 987 

(Schwarzenbach et al., 2005). In subseafloor regions adjacent to high temperature venting, 988 

oxygenated seawater can mix with reduced hydrothermal fluids, creating chemical disequilibria 989 

that autotrophic microorganism can use to fuel primary production (McCollom and Shock, 1997). 990 

These regions can be hot spots of organic matter production both within the fluids and within the 991 

surrounding sediments (Karl et al., 1980; Lang et al., 2006; Wankel et al., 2011). DOC is seemingly 992 

produced abiotically at vents hosted on ultramafic rocks, with elevated concentrations compared 993 

to overlying bottom water (Lang et al., 2010). Most of this increase is thought to be due to the 994 

abiotic formation of small organic acids (Lang et al., 2010; McDermott et al., 2015). A 995 

combination of microbial, abiotic and sedimentary sources likely contributes to subseafloor DOC 996 

pools, which if circulated in the basement from the ridges, could diffuse into overlying sediments, 997 

potentially fueling communities. 998 

  999 
4. Computational models  1000 

A theoretical understanding of the carbon cycle in marine sediments underpins much of the 1001 

present knowledge and constraints on the burial and transformation of organic carbon in this 1002 

setting, both in the present day and throughout Earth’s history. Numerical models have been used 1003 

for decades within this framework to quantify how POC drives sediment diagenesis at particular 1004 

locations (Berner, 1964; Lerman, 1971; Berner, 1980; Boudreau, 1997).  These models can include 1005 

the role of particular electron acceptors, secondary redox reactions, sorption and desorption, and 1006 

microbial dynamics while simultaneously accounting for transport processes such a sedimentation, 1007 

bioturbation, bioirrigation and the diffusion of solutes. A comprehensive review of reaction 1008 

transport models and their use in marine sediments is provided in (Arndt et al., 2013), covering 1009 

the formulation of various reaction and transport networks, their application to natural and 1010 

engineered systems across a wide range of temporal and spatial scales, and the challenges and 1011 
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limitations of implementing these models. The following sections highlight recent modeling 1012 

advances with respect to marine sediments and new research directions that could further improve 1013 

them. 1014 

 1015 

4.1 Representing pools of organic molecules 1016 
It is both infeasible and ineffectual to explicitly resolve the true complexity of organic 1017 

carbon in marine sediments in numerical models. Rather, owing to its complexity and 1018 

heterogeneity, OC is usually characterized by its apparent bulk reactivity. Therefore, numerical 1019 

models for OC transformations in marine sediments must account for changes in both (1) 1020 

concentration and (2) reactivity of the bulk substrate. If more specific information describing how 1021 

the proportions of compound types are changing were available, ideally, this would be quantified 1022 

as well. The concentration of organic carbon is usually defined in absolute terms as the sum of all 1023 

of the various reactive fractions, and corresponds directly to conventional laboratory 1024 

measurements of POC. Models of organic carbon reactivity can be broadly divided into two 1025 

classes: discrete and continuum. Within discrete models, OC is attributed to either a single pool of 1026 

concentration G (one-G) with a constant first-order degradation rate (Berner, 1980), or divided 1027 

across a discrete number of pools representing various classes of  reactivity (multi-G), where the 1028 

apparent reactivity of the bulk organic matter is related to the reactivity of each class (Jørgensen, 1029 

1978). Continuum models, alternatively, assume a continuous distribution of organic matter 1030 

compounds across an infinite spectrum of reactivities (Aris, 1968; Ho and Aris, 1987; Boudreau 1031 

and Ruddick, 1991). The choice of model formulation is generally governed by the overarching 1032 

research question, the relevant spatial- and timescales, data availability, and mathematical 1033 

expedience. Since these numerical formulations are abstracted from measurements, it can be 1034 

challenging to constrain reaction rate constants based on experimental data. Consequently, organic 1035 

matter reactivity is traditionally constrained by inverse modeling of comprehensive sets of 1036 

sediment depth profiles. 1037 

  1038 

4.2 Organic molecular data 1039 
There are very few models describing the degradation of OC in sediments that use 1040 

information about the molecular character of organic compounds. This is primarily because there 1041 

are relatively few reports describing the chemical formulas and structures of marine sedimentary 1042 

organic compounds in a way that could be parameterized in a model (see Section 2.2). The 1043 

modeling studies that have used molecular information have only tangentially addressed how this 1044 

information impacts rates of marine OC degradation. Reaction transport modeling  (Niggemann et 1045 

al., 2007; Freitas et al., 2017) and kinetic modeling studies (Schouten et al., 2010) have explored 1046 

how different degradation rates of specific biomarker compounds could influence the 1047 

interpretation of past sea surface temperatures. The abundance and proportion of certain types of 1048 

amino acids in marine sediments has been used as an index for the degradation state of POC 1049 

(Dauwe et al., 1999). In another study that evaluated the abundance of particular organic 1050 

compounds, the Gibbs energy associated with the degradation of organic compounds was used to 1051 

explain patterns of biomarker degradation in sediments from the Southeast Atlantic ocean 1052 

(Hernández-Sánchez et al., 2014). The Gibbs energies in this study are estimated based on the 1053 

oxidation state of the carbon in organic compounds, which is in turn calculated from the 1054 

stoichiometry of the compounds (see LaRowe and Van Cappellen, 2011). LaRowe and Van 1055 

Cappellen used this approach to argue that the rate of organic carbon degradation in anoxic marine 1056 

sediments is retarded by the molecular character of the organic compounds. The rationale for this 1057 
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is based on the idea that the rate of microbial catabolism is proportional to the Gibbs energy of that 1058 

metabolism: less exergonic reactions are catalyzed more slowly than more exergonic reactions (see 1059 

Jin and Bethke, 2003; LaRowe et al., 2012). 1060 

 1061 

4.3. Microorganisms in models 1062 
Although the actions of microorganisms are implicitly accounted for within models of OC 1063 

degradation in marine sediments, they are rarely explicitly resolved within the mathematical 1064 

formulae, i.e. as a separate state variable. This is mostly due to (a) model applications that are 1065 

focused on geochemistry or biogeochemistry rather than microbiology, and (b) the uncertainties 1066 

concerning microbial growth, maintenance, death, and dormancy in marine sediments which must 1067 

be resolved in order to accurately simulate microbial dynamics (Hoehler and Jørgensen, 2013; 1068 

Jørgensen and Marshall, 2016; Kempes et al., 2017; Bradley et al., 2018a). Nevertheless, 1069 

(Boudreau, 1999) was the first to couple microbial processes to organic carbon diagenesis, and 1070 

derive a mathematical basis between previously observed microbial biomass and organic carbon 1071 

concentrations in sediments (Bird and Duarte, 1989). Later work incorporated explicit 1072 

mathematical representation of microbial processes into reactive transport frameworks linking 1073 

sediment redox gradients and reaction rates to microbial processes  (Wirtz, 2003; Thullner et al., 1074 

2005), the competition of different microbial groups for a common substrate (Thullner et al., 2007) 1075 

and to assess the impact of transport processes on transient biomass distributions, anaerobic 1076 

oxidation of methane rates and methane release fluxes from the sea floor (Dale et al., 2006; Regnier 1077 

et al., 2011; Puglini et al., 2019). Formulations of microbial processes in sediment models have 1078 

been developed further to account for the relative importance of growth versus maintenance, and 1079 

variable physiological states (i.e. dormancy) (Bradley et al., 2018a, 2019). 1080 

  1081 

4.4 Application scale 1082 
Despite marine sediments comprising a significant volume of the Earth’s surface (LaRowe 1083 

et al., 2017a), playing a dominant role in the global carbon budget on long time scales (Arndt et 1084 

al., 2013), and hosting a significant fraction of Earth’s living biomass (Kallmeyer et al., 2012), 1085 

their treatment in global-scale models of the Earth’s climate and biogeochemistry may often be 1086 

little more than a simple closure term for mass conservation (Soetaert et al., 2000; Hülse et al., 1087 

2017; Lessin et al., 2018). In case they are explicitly resolved, the interactions between marine 1088 

sediments and the overlying water column, i.e. benthic-pelagic coupling, are often neglected or 1089 

crudely implemented in such global-scale models (Soetaert et al., 2000; Gehlen et al., 2006; 1090 

Munhoven, 2007; Hülse et al., 2017). Even relatively simple reaction-transport models are more 1091 

typically applied to regional scales (Ruardij and Van Raaphorst, 1995; Luff and Moll, 2004; Arndt 1092 

and Regnier, 2007) over idealized global ocean hypsometric transects or provinces (e.g. Soetaert 1093 

et al., 1996; Thullner et al., 2009; Krumins et al., 2013) and over time-spans of thousands to 1094 

millions of years (e.g. Arndt et al., 2009; Krumins et al., 2013; Orcutt et al., 2013b). Only a very 1095 

small number of global scale biogeochemical or Earth System models employ an explicit, 1096 

vertically resolved, multi-component description of diagenetic dynamics (e.g. Heinze et al., 1999; 1097 

Munhoven, 2007; Shaffer et al., 2008; Palastanga et al., 2011; Ilyina et al., 2013; Tjiputra et al., 1098 

2013; Hülse et al., 2018a).Yet, due to the need to find computationally efficient analytical solutions 1099 

to the diagenetic equations these descriptions generally rely on simplifying assumptions and/or are 1100 

restricted to the upper few centimeters of the sediment. However, coupled models can provide 1101 

important insights into ocean biogeochemical cycling and climate feedbacks. For instance, the 1102 

recent coupling of a vertically resolved benthic model to the three-dimensional Earth System 1103 
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Model CGENIE (Hülse et al., 2018b) has revealed that organic matter sulfurization reduces the 1104 

extent and intensity of toxic euxinic conditions, and accelerates climate cooling on a scale that is 1105 

globally significant during ocean anoxic event recovery (Hülse et al., 2019). Alternatively, large 1106 

ensemble runs of complex one-dimensional diagenetic models have also been used to derive 1107 

transfer functions for specific target outputs such as benthic fluxes or benthic methane gas hydrates 1108 

that have then been applied on a regional and global scale (Gypens et al., 2008; Dale et al., 2015; 1109 

Capet et al., 2016). In another large-scale effort, (LaRowe et al., 2020) have developed a global-1110 

scale model based on the analytical solution of the one-dimensional conservation equation for 1111 

benthic organic carbon dynamics  that reveals the 3-D distribution of marine sediment POC for 1112 

Quaternary-aged sediments (< 2.6 Ma) as well as rates of its degradation. Bradley et al. (in 1113 

revision) have built on this model to quantitatively estimate the cell-specific power utilization of 1114 

microorganisms transforming POC in global aerobic, sulfogenic and methanogenic sediment 1115 

horizons.        1116 

 1117 

5. Outlook  1118 
Although it is well known that human activity is responsible for a rapid rise of atmospheric 1119 

CO2, it is unclear how this disturbance will impact the natural fluxes of carbon among major global 1120 

reservoirs. In particular, it is still an open question how human-induced climate change will alter 1121 

the strength of the marine sedimentary carbon sink, and therefore control of atmospheric CO2. 1122 

Recent observations and model projections suggest that the impact of climate change on marine 1123 

POC is likely going to be regionally heterogeneous (Passow and Carlson, 2012), and will include 1124 

warming waters, disappearing sea ice, increased DIC content, lowered pH and altered fluxes of 1125 

organic carbon into and through the water column (Levin and Le Bris, 2015; Sweetman et al., 1126 

2017), particularly from terrestrial sources (Bauer et al., 2013b; Regnier et al., 2013). Each of these 1127 

factors have potential implications for how organic carbon is delivered to and processed within 1128 

sediments. Yet, because benthic carbon dynamics are first and foremost controlled by the quantity 1129 

and quality of OC that settles onto the seafloor, perhaps the most important factor in controlling 1130 

the response of deep ocean (< 200 m) benthic carbon dynamics to projected environmental change 1131 

is the biological carbon pump, the process by which organic carbon produced in the euphotic zone 1132 

is exported into the deep ocean. In addition, coastal benthic carbon cycling, in particular in 1133 

nearshore depositional environments in the vicinity of large rivers such as, among others, the 1134 

Arctic shelf, the Amazon shelf or the South China Sea, will also be affected by changes in 1135 

terrestrial inputs. 1136 

The geologic record includes numerous examples of such climate change induced 1137 

perturbations in the functioning of the biological carbon pump (Arthur et al., 1985; Kohfeld et al., 1138 

2005; Ridgwell, 2011; John et al., 2014; Hülse et al., 2019). For instance, abundant black shales 1139 

in the sedimentary record speak to periods when much or all of the world’s bottom ocean waters 1140 

were devoid of free O2 (Jenkyns, 2010), likely due to a warmer climate, the paleogeography, 1141 

enhanced nutrient supply and elevated marine primary productivity that in turn might have been 1142 

maintained by benthic nutrient cycles perturbed by this bottom water anoxia (Ingall and Jahnke, 1143 

1994; Van Cappellen and Ingall, 1994). Ultimately, the widespread anoxic and euxinic 1144 

depositional conditions enhanced organic carbon preservation such that atmospheric CO2 and, 1145 

therefore, temperatures decreased and O2 eventually returned to bottom waters, a process lasting 1146 

tens to hundreds of thousands of years (Arthur et al., 1988; Kolonic et al., 2005; Jarvis et al., 2011; 1147 

Hülse et al., 2019; Raven et al., 2019). Though there is a consensus that it is not currently possible 1148 

to gauge how the biological pump will be altered in the next several decades (Pörtner et al., 2014), 1149 
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a number of studies are hinting at how climate change will impact the flux of carbon to marine 1150 

sediments.   1151 

As a master variable for biogeochemical reactions, temperature will have likely have a 1152 

significant impact on the reactivity of organic carbon in marine sediments. Ocean warming has 1153 

already led to the expansion of oxygen minimum zones in the water column over the last 50 years 1154 

(Schmidtko et al., 2017; Bertagnolli and Stewart, 2018; Breitburg et al., 2018), disrupting the role 1155 

of bioturbation on POC reactivity. Warmer water seems to select for smaller plankton altering the 1156 

export flux of POC to the seafloor (Morán et al., 2010) since smaller particles tend to have longer 1157 

transit times to the seafloor. In high latitudes, the disappearance of sea ice, an increase in the length 1158 

of the growing season, fundamental changes to regional circulation (e.g. Atlantification) resulting 1159 

in changing salinity, temperature and nutrient conditions will exert important, yet poorly known 1160 

impacts on ecosystem structure. In general, temperature changes are known to influence the 1161 

structure and function of marine microbial communities (Sunagawa et al., 2015b), and, in addition 1162 

to other environmental forces, virus-host relationships (Danovaro et al., 2008; Danovaro et al., 1163 

2011), which in turn can alter patterns of carbon sequestration (Guidi et al., 2016) in sediments. 1164 

The combination of warming, acidification, eutrophication and human activities such as bottom 1165 

trawling (Hiddink et al., 2017) and seafloor mining (Orcutt et al., 2020) might lead to ecosystem 1166 

destruction and/or many areas of the seafloor to become covered in microbial mats (de Bakker et 1167 

al., 2017; Ford et al., 2018), rather than bioturbated sediments. In addition, lower than normal pH 1168 

cause some marine bacterioplankton to express genes for maintenance rather than growth (Bunse 1169 

et al., 2016), thus slowing the flux of C to sediments. Although it is difficult to predict how it will 1170 

impact the reactivity of organic carbon in sediments, e.g. (Isla and DeMaster, 2018), it is clear that 1171 

climate change is altering the physiochemical variables that govern microbial behavior. Therefore, 1172 

attempts to better understand how carbon fluxes will respond to projected climate change and also 1173 

how carbon fluxes have responded to past extreme climate and carbon cycle perturbations will 1174 

require an ecosystem approach that includes the role of microorganisms (Cavicchioli et al., 2019). 1175 

The information summarized in this contribution supports the emerging view that organic 1176 

matter reactivity in marine sediments is a complex function of biological, geochemical and 1177 

physical forces that vary from one part of the seafloor to another.  Given the large variety of 1178 

organic compounds, minerals, organisms, and environmental conditions found in marine 1179 

sediments, it is undoubtedly true that all of the mechanistic hypotheses described in this review 1180 

contribute in some way to the long-term preservation of organic carbon, with the relative 1181 

importance of each changing with both time and space. Going forward, it will be critical that 1182 

studies examining sedimentary organic carbon account for the whole array of biophysiochemical 1183 

factors that impact reactivity, thus providing the much needed interdisciplinary data sets required 1184 

to advance our quantitative understanding and predictive capabilities. Disentangling which 1185 

mechanism operates under what set of environmental conditions is a complicated task requiring 1186 

integration of measurements, laboratory experiments, quantitative modelling and an open mind. A 1187 

community effort will be required to understand not only what determines organic carbon 1188 

reactivity in marine sediments now, but how this will change in the future. Moreover, integrated 1189 

approaches considering marine sediments in relation to the terrestrial and water column settings is 1190 

needed to gain a truly global and comprehensive understanding of the carbon cycle. 1191 
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Figure captions: 1216 
 1217 

Figure 1. Schematic of topics discussed in this review: ecosystem factors that influence the 1218 

reactivity of particulate organic carbon, POC, in marine sediments.  The bulleted 1219 

processes/variables and four categories are not necessarily independent of one another.  1220 

 1221 

Figure 2. Concentration of particular organic carbon (POC) at a) the sea floor, b) 1 meter below 1222 

the sea floor and c) 10 meters below the seafloor, based on calculations by LaRowe et al. (2020) 1223 

and data summarized in Wallmann et al (2012), which, for Holocene sediments, is taken from a 1224 

compilation by (Seiter et al., 2004). Grey areas in c) indicate regions where Quaternary sediments 1225 

(i.e. sediments deposited throughout the last 2.59 million years) are less than 10 m thick. The 1226 

Quaternary cutoff is the temporal limit for the model used by LaRowe et al. (2020). 1227 

 1228 

Figure 3. Estimated a) regions of the seafloor where dissolved O2 is modeled to be present 1229 

throughout the sediment to the underlying oceanic basement and b) depth of the sulfate-methane 1230 

transition (SMT) zone. The dark shading in a) refers to the minimum extent of modeled O2-1231 

penetrating regions while the light shading, together with the dark shading, indicate the maximum 1232 

extent, based on D’Hondt et al (2015). The white regions in b) denote regions where there is no 1233 

SMT. All data for b) from Egger et al (2018).  1234 

 1235 

Figure 4. Oxygen concentration profiles as a function of depth in marine sediments and ocean 1236 

basement crust from three IODP drill cores located on  ~ 8 Ma flank of the mid-Atlantic Ridge 1237 

(also known as North Pond – see Orcutt et al., 2013). The bottom panel contains a cross section 1238 

schematic of what is thought to be the mechanism of O2 delivery to basal sediments – upward 1239 

diffusion from oxygenated fluid flowing rapidly in the basement. This fluid is chemically very 1240 

similar to local bottom seawater and is likely introduced to the subsurface from locally outcropping 1241 
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basalt (see Meyer et al., 2016).  Oxygen loss in flowing fluids is thought to result from both 1242 

diffusion into sediments and consumption during microbial oxidation of DOC.     1243 

 1244 

Figure 5. Calculated cell concentrations in marine sediment at a) the seafloor, b) 1 meter below 1245 

the sea floor and c) 10 meter below the seafloor using the data compilation and approach described 1246 

by Kallmeyer et al. (2012). 1247 

 1248 

Figure 6. Phylogenetic tree showing microbial groups containing genes encoding putatively 1249 

secreted enzymes capable of degrading proteins and carbohydrates in anoxic marine sediments 1250 

(modified from Orsi et al, 2018). The term CAZymes refers to carbohydrate-active enzymes 1251 

(Lombard et al., 2013).  1252 
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