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14.1 Introduction

Solar arrays for use on the surface of the Earth must be designed to withstand an

extremely degrading environment: surrounded by a highly oxidizing atmosphere,

intermittently exposed to corrosive liquid water, subject to wind loading, abrasion by

sand and dust, and occasionally impacted by hail. Solar arrays for space are not subject to

these effects, but instead have a different set of environmental hazards, including more

extreme temperature cycles, particulate and ultraviolet radiation in space, micromete-

oroid damage, and exposure to a flux of atomic oxygen in low-Earth orbit. Over the

years since the first solar cells were sent into space on Vanguard 1 in 1958, space solar

array technology has advanced to make photovoltaic cells resistant to these degradation

mechanisms.

As each of the degradation mechanisms has been conquered, the range of environ-

ments in which we use photovoltaics has expanded outward [1], from initial use of arrays

in low-Earth orbit, to satellites flying in the high-radiation environment of the Van Allen

radiation belts, and outward to the dusty environment of Mars, the low-intensity (or

illumination)/low-temperature (LILT) conditions in the asteroid belt and beyond, and

with the success of the solar-powered Juno mission [2], even in the cold and high-

radiation environment in Jupiter’s orbit, with proposals made for photovoltaic power

even farther beyond [3,4]. It is also, however, of interest to expand the range of solar

arrays in the opposite direction: inward toward the Sun. The environment close to the

Sun has its own unique challenges, with one of the most obvious being high

temperatures.

Extending the temperature range of operation for solar arrays is highly desirable for

extending the range of operation of space missions to the near-Sun environment [5e7];
interestingly, high temperatures help prevent arcing of solar arrays [8]. Achieving

high-efficiency and reliable operation in these temperature regimes is a difficult tech-

nologic challenge. Existing solar cells lose performance at the high temperatures

encountered in Mercury orbit and inward toward the Sun. For future missions designed
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to probe environments close to the Sun, it is desirable to develop array technologies for

high (light) intensity and high temperature (HIHT). Approaches to solar array design for

near-Sun missions include thermal management at the systems level to optimize effi-

ciency at elevated temperature or the use of techniques to reduce the incident solar

energy to limit operating temperature. An additional problem is found in missions that

involve a range of intensities, such as the Parker Solar Probe mission [9,10], which ranges

from a starting distance of 1 astronomical unit (1 AU, roughly the distance from Earth to

the Sun) from the Sun to a minimum distance of 9.5 solar radii, or 0.044 AU. During the

mission, the solar intensity ranges from one to about 500 times the intensity at air mass

zero (AM0). This requires a power system to operate over nearly three orders of

magnitude of incident intensity. Another, more difficult problem is the environment of

the surface of Venus [11]. In this case, the photovoltaics must operate at high temperature

and low intensity, with the additional challenge of a modified spectrum shifted toward

the red end of the spectrum [12] and a high-pressure, corrosive atmosphere.

14.2 Solar cell operating temperature and efficiency

If future missions designed to probe environments close to the Sun will be able to

use photovoltaic power generation, solar cells that can function at high temperatures

under high light intensity and high radiation conditions must be developed. The sig-

nificant problem is that solar cells lose performance at high temperatures. In radiative

equilibrium, the operating temperature of a solar cell depends on the fourth root of the

incident intensity, as well as the ratio of solar absorptivity alpha (a) to thermal emissivity

epsilon (ε). According to radiative balance, if I is the incident intensity, the thermal

radiation from the array must equal the absorbed solar radiation:

aI ¼
!
εf þ εr

"
sT4 (14.1)

where T is the operating temperature in absolute (Kelvin) units, and the subscripts f and r

indicate the emissivity from the front and rear sides of the cell to account for the fact that

the array can radiate waste heat away from both front and back sides (εr should be left out
for an array with no backside radiation). For convenience, here we define the absorp-

tivity a as the net energy absorption, incorporating a factor of (1#h) to account for the

fact that the fraction of incident energy that is converted to electricity is not radiated by

the cell. Thus, the equilibrium operating temperature T is

T ¼
#!
a=

!!
εf þ εr

"
s
""
I
$1=4 ¼ cI1=4 (14.2)

where the constant c is defined as

c ¼
#
a=

!!
εf þ εr

"
s
"$1=4

(14.3)
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Note that since front and back sides of the cell need not have identical radiative

properties in the infrared, the value of ε is the average of front and back side properties.

The intensity depends on distance from the Sun:

I ¼ Io=r
2 (14.4)

where Io is the solar intensity at Earth’s distance from the Sun, 1 AU, and distance r is

measured in AU. This equilibrium temperature is shown as a function of distance from

the Sun in Fig. 14.1 for various values of the ratio of the a to ε (here ε is the average of
the front and back emissivity).

For the case of a planetary orbiter, the temperature is somewhat greater since the solar

array is heated not only by the incident solar flux, but also by solar flux reflected by the

planet (known as “albedo”), as well as infrared emitted by the planet. This additional

heating becomes more significant as the orbital altitude decreases. In the lowest orbit

limit, this results in about twice the incident intensity, so an absolute temperature in-

creases by a factor of the fourth root of 2 (w1.19).

Figure 14.1 Temperature as a function of distance from the Sun, for various values of a/ε ratio.
Courtesy NASA.
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A solar cell’s (unnormalized) temperature coefficient of efficiency k is defined (Eq.

14.5) as the change of conversion efficiency h per unit temperature,

k ¼ dh=dT (14.5)

and the power P at a temperature T can be compared to the power output from a

reference temperature (Eq. 14.6), typically 27$C (300K) by a linear extrapolation:

P ¼ ðh300Kþ kDTÞI (14.6)

In general, the temperature coefficient k is negative, corresponding to decrease in

performance with increasing temperature [13]. The temperature coefficient is not a

constant but varies slightly with both intensity and temperature [14], discussed subse-

quently, but these variations for the moment can be ignored in a first-order analysis.

From this, the power output from a cell in radiative equilibrium is a nonlinear

function of the intensity. Defining ho as the efficiency linearly extrapolated to 0 K, which

is calculated from the efficiency at 27$C as

ho ¼ h300K # 300k (14.7)

Eq. (14.8) results:

P ¼ Iðhoþ kTÞ ¼ I
%
hoþ kcI1=4

&
¼ Iho þ kcI5=4 (14.8)

Fig. 14.2 shows the calculated curve of power output as a function of temperature,

comparing a high-efficiency silicon solar cell with a wide-bandgap solar cell, in the case

of the linear assumption. For any given solar cell technology, there exists an incident

intensity above which the solar cell output decreases with increased intensity. In the

linear model of Eq. (14.7), this intensity is as follows:

Ipeak#output ¼ ð#ho=kcÞ4 (14.9)

14.3 Temperature coefficient(s)

Temperature coefficients of solar cells have been analyzed by Fan [13] and others

[14,15]. The power output of a solar cell can be composed as the product of three factors,

short-circuit current density (Jsc), the open-circuit voltage (Voc), and the curve fill-factor

(FF):

P ¼ ðJscÞðVocÞðFFÞ (14.10)
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The variation of solar cell performance as a function of temperature can be

approximated in terms of linear temperature coefficients:

Jsc ¼ dJsc
dT

ðT# ToÞ (14.11)

Voc ¼ dVoc

dT
ðT# ToÞ (14.12)

FF ¼ dFF

dT
ðT# ToÞ (14.13)

where T is the temperature of interest, and To is the nominal test temperature (often set

to 28$C).
Note that since these three factors all have different temperature dependence, the

maximum power point voltage of a solar cell will also vary with temperature. For an

Figure 14.2 Curve of power output (normalized) as a function of intensity, assuming linear tem-
perature coefficient. Courtesy NASA.
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optimized system, the power management will need to account for this and adjust the

operating point to maximize power if the spacecraft operates at a range of distances from

the Sun. Alternately, the operating point voltage can be selected for the most power-

critical phase of the mission, and losses associated with operation away from the

maximum power point accepted for other phases of the mission, where power is less

critical. Of the three components of temperature coefficient, voltage will decrease with

increasing temperature, while short-circuit current will increase (due to bandgap nar-

rowing). For well-optimized cells, the Voc temperature coefficient contributes the largest

amount to the total variation of efficiency with temperature.

Temperature coefficients are also often expressed in the form of normalized tem-

perature coefficients, where the normalization is done by dividing by the value at To, so

the variation is expressed as a fraction of the initial value. Using normalized temperature

coefficients, the overall temperature coefficient will simply be the sum of the Jsc, Voc, and

FF components. The temperature coefficient is, in general, nonlinear. For this analysis

we have been assuming a linear dependence of efficiency on temperature, but for a more

detailed analysis, the nonlinearity must be accounted for in more detailed modeling.

Outside of a narrow temperature range, temperature coefficient for multijunction

cells can be quite nonlinear. In particular, for multijunction cell technologies, the voltage

component of the temperature coefficient is the sum of the voltage dependence of the

individual subcells. At elevated temperature, the lowest bandgap subcells will drop to

zero output, and beyond this point, the temperature coefficient will depend only on the

remaining cells; this results in a discontinuous decrease in the temperature coefficient at

higher temperature, as the lowest bandgap subcells in the series drop out. Likewise, since

the bottom cells see a spectrum that has been filtered by the top cells in the cascade, and

the bandgap of these top cells varies with temperature, the current component of the

temperature coefficient can be nonlinear.

A temperature coefficient is also dependent on the illumination intensity [14e16].

The largest factor in temperature dependence is the dVoc/dT term, which depends on

the difference between the open circuit voltage of the cell and the bandgap voltage [6].

Since this decreases as the Voc increases, k decreases in magnitude proportionally to the

Voc, which increases as the logarithm of the intensity. This increases the output at high

intensities slightly over the constant k model.

The theoretical temperature coefficient of Voc can found from the ideal solar cell

equation (Eq. 14.14). As derived by Fan [13], for an ideal cell the temperature coefficient

is as follows:

vVoc

vT
¼ 1

T

'
Voc #

Eq

q
# 3kT

q

(
þ 1

q

vEq

vT
þ kT

qJsc

vJsc
vT

(14.14)

where T is temperature, Eg is the band gap energy in eV, k is Boltzmann’s constant, and Jsc
is the short-circuit current density of the solar cell. The factor q, electron charge,

398 Geoffrey A. Landis



converts the bandgap from units of electron-volts into units of volts. The first factor, in

general, is large compared to the others, so we can usually ignore the second two factors.

Thus, the temperature coefficient is proportional to the difference between the open

circuit voltage Voc and the bandgap Eg/q. Voc is always less than the bandgap, so the

temperature coefficient of Voc is always negative.

The question of how to improve the temperature coefficient of solar cells has been

addressed in earlier studies [5e7]. Since the fractional loss of Voc with temperature de-

creases in magnitude as bandgap increases [13], photovoltaic cells from wide-bandgap

materials can operate at higher intensity (so higher temperatures) than cells from

narrow-bandgap materials [5e7]. Any advance that improves the open circuit voltage (to

bring the voltage closer to the bandgap voltage) will also decrease the temperature

coefficient.

For an array designed to operate at high temperature, it is also a requirement that the

solar cell not physically degrade at high temperatures, for example, from degradation of

the semiconductor or from ohmic contacts diffusing through the junction. Ohmic

contacts that are stable at high operation temperatures have been demonstrated for GaAs

[17e19] and GaInP2 [20,21], but work remains to be done for other semiconductor

Figure 14.3 Modeled efficiency of a single-junction solar cell as a function of the semiconductor
bandgap, for temperatures ranging from 27 to 900$C. Courtesy NASA.
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technologies. Likewise, other components of the system, such as the cover glass adhesive

and the interconnect, must be stable at high-temperature operation.

From the basic semiconductor diode calculation and the calculation of temperature

coefficient as a function of bandgap, it is possible to calculate the effect of the solar cell

bandgap on the efficiency as a function of temperature. Fig. 14.3 shows this calculation

for a conventional single-junction cell. As is clear, the efficiency drops as the temperature

increases. It is also notable that the optimum bandgap rises with increased operating

temperature since higher bandgap solar cells have higher open circuit voltage, and thus

lose a lower fraction of their voltage as the temperature increases.

14.4 Approaches to solar arrays for near-Sun missions

Approaches to solar arrays for near-Sun missions include modifying any of the

terms governing temperature or efficiency of the cell: I, the incident intensity, a, solar
absorption, or ε, the emissivity of the cell, or k, the temperature coefficient. Possible

approaches include the following:

1. high epsilon/low alpha coatings

2. array off-pointing (i.e., array normal points at angle to Sun)

3. partially populated array (with missing cells replaced with mirrors)

4. Spectrally selective reflective coatings

5. solar cells designed to operate at high temperature, with low temperature coefficient k
6. solar arrays incorporating added thermal radiators

Since light that is not absorbed by the solar array does not contribute to the waste heat

rejected by the radiator, it is advantageous to reflect light in the wavelengths not used by

the cell. Most importantly, infrared light of energy less than the bandgap energy of the

bottom subcell contains significant energy but makes no contribution to the output

power. Blue-red rejection filters could enhance the performance of the radiators by

reflecting this unused band. The three subcells of a multijunction cell contribute roughly

equally to the temperature coefficient, although the bottom cell is only a small

contributor to the overall efficiency. Thus, it is likely that even more heat rejection could

be accomplished if the bottom (Ge) cell were omitted entirely from the stack, essentially

returning the technologic approach toward the earlier dual-junction cell technology.

This would allow all the energy of wavelength longer than about 850 nm to be reflected

away by an infrared-rejection (dichroic) filter. Since the controlling parameter for the

radiator sizing is the efficiency of conversion of the light absorbed by the cell, not the

overall solar conversion efficiency, some reflection of the above-bandgap spectral range is

acceptable, so the filter does not need a sharp cutoff at the band edge. This means that a

thin metal film (for example, gold) or a transparent conductor could be a good choice for

infrared rejection.
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14.5 Solar arrays with constant power at variable heliocentric
distance

An additional problem is presented in that most missions involve a range of in-

tensities, requiring a power system capable of operating all the way from Earth departure

through a close solar pass. There are several approaches to such a power system. One

straightforward approach would be to utilize several different arrays, each one optimized

for a different heliocentric distance. For example, a large solar array could be used for the

highest solar distances, and then discarded, or else folded away in the shadow behind the

spacecraft, so that a smaller solar array optimized for higher intensity could be used.

Another approach would be to progressively use increasing amounts of off-pointing, so

that the area exposed to the Sun decreases with distance. The problem of adapting to

multiple intensity regimes is particularly difficult if the mission is required to operate

both at a near-solar approach and also at distances farther from the Sun than the Earth, for

example, missions using a gravity-assist at Jupiter, solar sail missions, and missions that

follow a comet from distant reaches of the solar system through close approach to the

Sun.

One approach is to design the array to produce a constant amount of power regardless

of distance from the Sun. Fig. 14.4 shows a design that makes use of the fact that the

angular diameter of the Sun increases as the spacecraft approaches the Sun. A Fresnel lens

array focuses light onto a light pipe to transmits the light through a shield of multiple

Figure 14.4 Concept for a concentrator solar array designed to have constant power output for
variable heliocentric distances. Courtesy NASA.
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layers of foil. At high distances from the Sun, the fact that the array is a concentrator array

minimizes the effect of cell operation under LILT conditions. As the array approaches the

Sun, the light pipe acts as an aperture stop. As the image of the solar disk at the focal plane

gets larger, the added incident light is reflected by the mirrored plate. The solar cells are

mounted on a heat spreader that allows the full backside surface to serve as a thermal

radiator. The portions of the collector exposed to the sunlight are refractory material

(silica or high-alumina glass for the optical elements; titanium or carbon for the structural

components). The solar cells, located behind the multiple layers of metal-foil insulation,

are not exposed to high temperature. This array can thus be designed to put an amount of

solar intensity on the cells exactly equal to that of the peak defined above.

14.6 Thermal conversion for near-Sun missions

As a spacecraft approaches the Sun, the temperature of a flat plate exposed to the

Sun increases. This brings out a natural question of whether it is possible to convert this

heat, using a heat engine, rather than using photovoltaic arrays. Thermal power con-

version is a demonstrated technology, and there exists a choice of conversion technol-

ogies, including thermoelectric conversion, a technology with comparatively low

efficiency, but high spaceflight heritage, or Stirling conversion, which has the advantage

of higher efficiency but no spaceflight heritage.

Stirling converters have demonstrated 38% conversion efficiency [22] operating at

850 hot-end, 90$C cold-end temperatures, which is slightly over 50% of the theoretical

(Carnot) efficiency. System efficiency, accounting for other losses, is on the order of 26%.

These efficiency numbers are roughly comparable to the best photovoltaic technologies.

The efficiency scales with temperature directly with the Carnot efficiency, proportional

to the difference between the hot- and cold-end temperature. Thermal conversion

approaches would require a heat rejection radiator at the cold end of the system, which

must be not exposed to the Sun, either in the shadow of an absorber or the thermal

shield, or else edge-on to the incident flux. The radiator must be sized to radiate the

waste energy at the cold-side temperature.

Fig. 14.5 shows the block diagram of the energy flow in such a thermal system. Since

the power produced is proportional to the conversion efficiency h, and the radiator area

proportional to the waste power radiated, which is proportional to (1 e h), the radiator

area Ar (Eq. 14.15), which depends sensitively on the conversion efficiency and the

radiator temperature, is

Ar ¼ ½ð1# hÞ= hð Þ(=
!
εsT4

"
Pelectric (14.15)
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Emissivity ε for thermal radiators is typically very close to 1. If the radiator is two

sided, the area A includes both front and rear sides. The same equation for radiator size

can be used if the thermal radiator is used to cool a solar array instead of a heat engine.

The thermal system chosen must operate over a wide range of intensities, thus

temperatures. This can represent an engineering challenge for many missions; for

example, the Solar Probe is only at close approach to the Sun for a duration on the order

of 10 h. The proposal to operate a thermal conversion system, incorporating a radiator

with pumped cooling to achieve the cold-side temperature, brings up the possibility of

using a similar cooling loop to keep a solar array within operating temperature limits,

thus reducing the requirement for high-temperature operation. This approach was

adopted for the Parker Solar Probe (Section 14.8).

14.7 Earlier near-Sun missions

Early missions to operate in a near-Sun environment include the Soviet Venera

missions and the USMariner 10 mission to Venus andMercury. More recently, the solar-

powered Mercury Surface, Space Environment, Geochemistry and Ranging

(MESSENGER) mission successfully reached and orbited Mercury, and the ESA

BepiColumbo mission is on its way to Mercury. Due to the high temperatures to be

experienced, starting with spacecraft Venera 2 and Venera 3, launched in November

1965, the Soviet Venus missions utilized gallium arsenide solar cells [23], despite the fact

that GaAs-based cells were at a lower state of development in the 1960s and would not

supplant silicon cells for conventional space missions until the very end of the 1980s.

Figure 14.5 Thermal conversion energy flow block diagram. Courtesy NASA.
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The reason for their choice was that the wider bandgap of GaAs (1.4 eV, compared to

silicon at 1.1) gave it a significantly lower temperature coefficient, so better performance

at Venus. The Mariner series took a different approach. The Mariner 10 spacecraft kept

the (at the time) industry-standard silicon cell technology, but it employed the technique

of gimbaling the solar arrays away from the Sun-pointing direction to minimize the

temperature [1]. This reduces the incident solar flux by a factor of cos(ø), where ø is the

off-pointing angle, so it reduces the temperature by a factor of cos(1/4) (ø).

As an example of a mission with solar panels designed to operate at high solar flux

using both limiting the incident flux to the array and modifying solar absorption (a), the
MESSENGER mission to orbit Mercury [24,25] had designed an array with mirrored

panels (Fig. 14.6) to reflect two-thirds of the incident solar energy to limit operating

temperature. The mirrors incorporate a high-emissivity silica coating, allowing efficient

thermal radiation [26]. In addition to the reflectors, the MESSENGER arrays also used

off-pointing to fold the solar arrays back along the spacecraft body to reduce the incident

flux. These panels were successfully operated during the full 10.5 year mission, including

the cruise to Mercury and for over 4 years in Mercury orbit. The mission reached a

minimum distance of 0.3 AU from the Sun, and the arrays had been qualified in thermal

vacuum testing to be capable of operating as close as 0.25 AU from the Sun, at an in-

tensity of 16 times the intensity at Earth orbit. Likewise, the BepiColumbo spacecraft

utilizes a strategy to tilt its solar arrays off the Sun-pointing axis to reduce the incident

solar flux to keep the temperature within limits, up to an angle of over 70 degrees at a

distance of 0.3 AU [27].

14.8 Parker Solar Probe

The highest solar intensity encountered by a mission flown to date is that seen by

the Parker Solar Probe. The mission concept for the Solar Probe mission incorporated

Figure 14.6 Solar panel for the MESSENGER mission, showing that two-thirds of the array area is
covered with mirrors, and only one-third of the area (dark stripes in the image) has solar cells. Courtesy
NASA.
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multiple Venus flybys to drop the probe into a low-perihelion orbit. The primary

mission uses seven Venus flybys to bring its orbit incrementally closer to the Sun, making

24 near-Sun passes over a period of 6.9 years, with a final objective of reaching a

perihelion distance of roughly 9.6 solar radii, or 0.044 AU, significantly inside the orbit

of Mercury. This will be about eight times closer than any spacecraft has previously

approached the Sun.

An enabling technology for the mission was to design a power system that could not

only operate at the highest intensity portion of the mission, at and near the perihelion

pass close to the Sun, but also provide power during the cruise and multiple Venus flybys.

The array design therefore had to provide power at all distances from 1 AU down to

0.044 AU [9]. A solar array strategy was designed to meet these criteria [10]. The strategy

adopted was to use two solar arrays:

1. Conventional solar array: The primary array is used from Earth to slightly inside the

Mercury orbit. Since the MESSENGER array is already demonstrated in flight, the

engineering assessment concluded that only a small amount of cell and materials

development is needed. The array can be off-pointed from the Sun by progressively

folding them back along the spacecraft body, to allow operation in to approximately

0.25 AU, an intensity of 16 suns. At this distance the main solar array is folded in

behind the shadow shield, where it is not exposed to high temperatures, and a second

power supply is used.

2. High-intensity solar array: A secondary solar array (Fig. 14.7) was then incorporated to

power the mission at the high-intensity portion of the mission, operating inside 0.25

AU. Since at this distance the intensity was high, the secondary solar array could be

much smaller. This power supply used high-efficiency triple-junction solar cells

Figure 14.7 The early concept for the secondary (high-intensity) solar array for the Solar Pro-
beþmission, designed to be retracted behind a knife-edge shadow shield as the spacecraft ap-
proaches the closest distance from the Sun. Courtesy NASA.
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designed for high solar concentrations. To keep the solar cells within the nominal

temperature limits as the solar intensity increased, a liquid cooling loop was incor-

porated to pump coolants through thermal radiators mounted behind the solar shade

on the outside of the spacecraft.

At the closest approach to the Sun, the secondary array was progressively slid behind a

knife-edge shadow shield, moving the array into a partial shadow (penumbra). This was

done both to keep the array power constant as the solar intensity increased and also as a

way to reduce the thermal load that needed to be sent to the radiators. Details of the solar

array design process are provided by Landis et al. [10]. This power system design solved

the spacecraft’s problems; it was presented to the review board, who approved the

mission to go forward.

The final spacecraft design, now renamed Parker Solar Probe, differed from the initial

design in several ways, although keeping the concept of a main solar array for operation

near aphelion and a smaller high-intensity array for operation near perihelion. The

secondary high-intensity solar arrays were relocated from their original position to put

them at the end of the primary solar arrays, although set at an angle to the primary arrays.

In this new position, the sliding mechanism was now unnecessary, and the rotation that

angled the primary arrays back now also served as the mechanism to move the secondary

arrays. At close distances to the Sun, the primary arrays are folded back behind the

shadow shield, leaving only the secondary arrays, at the tip, exposed. As the spacecraft

approaches yet closer to the Sun, additional angling slides (and rotates) the secondary

arrays behind the knife-edge that progressively puts them in partial shadow from the full

Figure 14.8 Artist’s conception of Parker Solar Probe approaching the Sun, with main solar arrays
feathered back. This spacecraft is designed to be operated on photovoltaic power as close as 0.044 AU
from the Sun. The flat solar shield protects the instrument package from the thermal environment
near the Sun. Courtesy: NASA/Johns Hopkins APL/Steve Gribben.
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intensity of the solar flux. The net result incorporates the functionality but is mechan-

ically much simpler than the initial concept.

An artist’s conception of the revised design can be seen in Fig. 14.8, where the

conventional arrays are shown feathered backward behind the shadow shield, protecting

them from the peak solar intensity, and the secondary arrays, located at the tips of the

primary arrays, are angled slightly to view the Sun. A second improvement to the design

was in the coolant loop. In the revised design, the coolant loop is not just circulated

behind the high-intensity panel, but it is also circulates behind the main solar array. This

serves three functions: during the perihelion approach to the Sun, the area of the main

array serves as additional radiator area; during the solar approach portion of the mission,

before (and after) the nearest passage, the cooling reduces the load on the solar array; and

during the portion far from the Sun, the solar input to the main array actually serves to

keep the cooling liquid from freezing.

Gaddy et al. provide details of the Solar Probe mission arrays [28]; solar power output

calculations are described in a subsequent publication [29]. The mission, now renamed

Parker Solar Probe in honor of physicist Eugene Parker (1927e2022), who predicted the

existence of the solar wind, launched in 2018. As of early 2022, it has successfully made

five Venus flybys and 11 perihelion passes close to the Sun, with the power system

operating perfectly.

14.9 Photovoltaic power at Venus

The surface of Venus is a target of great interest to science, but it is the most hostile

operating environment of any of the solid-surface planets in the solar system [30]. The

surface of Venus has been explored by a number of missions from Earth, including the

Russian Venera missions that landed probes on the surface and the American Pioneer

missions that flew both orbiters and atmospheric probes to Venus, but the longest sur-

vival time of any mission to the surface of Venus, to date, has been only 2 hours on the

surface of Venus [11]. Four effects make the surface of Venus a challenging environment

when considering solar power [12]:

(1) temperature

(2) solar intensity

(3) solar spectrum

(4) corrosive environment

The greatest difficulty is the surface temperature of Venus, averaging 452$C, with little

difference between daytime and nighttime. As on Earth, temperature decreases with

elevation, and the tops of Venus’ mountains are slightly cooler: at the top of Maxwell

Montes (10.4 km above mean elevation), the temperature is “only” 390$C. Secondarily,
Venus is continually covered with a thick layer of clouds. The surface does not ever get a

direct view of the Sun, and the solar intensity at the surface is about 2% of the intensity

above the atmosphere. The light level is equivalent to the light level during a rainy day on

Earth. The thick atmosphere also filters the sunlight, with the surface solar spectrum
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depleted in blue wavelengths due to Rayleigh scattering. The surface pressure is 92 bars,

equivalent to pressure a kilometer under the ocean, and the atmosphere is primarily of

carbon dioxide. The atmosphere at the surface also contains significant amounts of

anhydrous sulfur compounds, such as SO3, which are corrosive. At the temperatures and

pressures of the surface, stability against chemical attack is a significant concern.

These factors combine to multiply the challenges of power on the surface. The low

light intensity alone reduces power availability, and the reduction of performance of solar

cells due to temperature exacerbates this difficulty. This puts the solar cell operation into

the low-intensity, high-temperature (LIHT) regime [31], a somewhat different regime

from the HIHT region discussed previously.

For high-temperature operation, as discussed before, a high-bandgap solar cell ma-

terial would be preferred, but the blue-deficient spectrum puts a limit on the availability

of short-wavelength photons. Nevertheless, an analysis by Landis and Haag [12] showed

that photovoltaic power systems, although limited in power, could produce power on the

surface. Further work by Grandidier et al. [20,31] extended this work and tested cells to

verify performance at Venus temperatures. Their lifetime testing showed degradation

beginning at about 7 weeks of exposure at 465$C [31].

The problem of encapsulation of cells to protect against the corrosive effects of the

Venus atmosphere, however, has yet to be addressed. While the glass used for solar cell

covers is unaffected by the atmosphere or the temperature, preliminary testing under

Venus conditions has shown that conventional silicone adhesives used to adhere cover

glass to solar cells will blacken under Venus conditions. A possible solution would be

direct bonding of a thermal expansion coefficient-matched glass to the cell, taking care

that the bonding must be completely sealed, since even small amounts of leakage would

be likely to corrode the cell, the metallization, and the electrical interconnects.

14.10 Conclusions

Operation of photovoltaic arrays at the high solar intensity conditions of near-Sun

missions presents unique challenges to solar cell technology. If the temperature of an

array is allowed to vary with the thermal radiation limit, the power produced by an array

will increase as the incident flux increases up to some limit determined by the tem-

perature coefficient and thermal properties of the solar cell, and above that output, power

will decrease as incident intensity increases. A number of approaches have been devel-

oped to mitigate the effects of high-temperature operation. Several of these have been

successfully demonstrated to enable solar-powered spacecraft to explore the near-Sun

planets such as Mercury and Venus as well as the Sun itself.
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