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Abstract—With an ever-increasing presence in space, there is
also an increasing burden on existing communications infras-
tructure. We are heading towards an inflection point where the
traditional approach of scheduled, single-path communications
for space will no longer be viable. One answer is Delay Tolerant
Networking (DTN), which takes the once disparate system of
point-to-point links and unifies them in a networked architec-
ture, thereby making communications more scalable. However,
much work remains for discovering and harnessing the under-
lying theory of DTN. For example, in the terrestrial setting the
interplay between routing domains is well-understood, however
this is not the case in DTNs. In this paper, we build up the funda-
mental foundations of DTN, with an emphasis on modeling time-
varying networks and data flows across them, with examples of
cross-domain routing in a DTN.

A lofty goal of DTN is to enable the so-called Solar System
Internet (SSI), which implies a standardized and robust suite of
protocols. These protocols include routing across disconnected
networks using store, carry, and forward mechanisms, which
is necessary due to the disconnections, delays, and mobility
intrinsic to space networks. Due to these factors, each of
which generalize traditional networking, there is a deep and rich
theory of DTNs. Here we build off of past successes to broaden
this theory while striving to keep actionable results a goal for
future implementations and operations.

The approach includes modeling the unicast, broadcast, and
multicast communications using the language of hypergraphs,
which capture the geometric properties of such networked com-
munications algebraically. Also inherent to these networks
is their time-varying nature, particularly given mobility, and
hence we also cultivate modeling techniques that respect this
time dependence. This leads us to develop models using tools
from category theory and algebraic geometry, which provide
a language well-suited to describing synchronization and op-
timization over such networks. We also introduce and study
a novel generalization of curvature applicable to time-evolving
networks, which provides quantitative controls on diffusion
processes on the network.

Because an interplanetary network would feature links with
propagation delays the preclude discovery (feedback) mecha-
nisms, they will always feature a scheduled component. How-
ever, it is beneficial to support discovery where possible. While
DTNs do not yet have strong definitions for their analogues of
autonomous systems or network areas, we show how to join dy-
namic and schedule-based routing domains, using the language
of sheaves, which marks progress towards such definitions. We
conclude with a discussion of the progress made, as well as
suggestions for future work.
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1. INTRODUCTION
The Internet has enabled an unprecedented scalability in
communications, and is developed to support continued scal-
ing. For example, the Internet supports an estimated 10
billion Internet of Things (IoT) devices in 2021, among other
devices, and this is expected to grow to at least 25 billion by
2025 [1]. This immense scale does not exist in space, yet
not only are more satellites deployed than ever before, but
deployment rates are growing quicker than ever. While the
many differences in the space and terrestrial environments
will support different types of communications, this funda-
mental goal of networking – to enable scalability – remains
constant. The purpose of this paper is to develop modeling
tools applicable to the so-called Solar System Internet with a
goal of a positive returns to scale.

The differences between networking terrestrially and net-
working in space can be described as a generalization, that
is, assumptions that the Internet relies upon no longer hold.
These assumptions include end-to-end connectivity between
communicating nodes; indeed in space end-to-end connectiv-
ity might never occur. This precludes routing as is known for
the Internet. The latencies in space are also different; they
can be longer than milliseconds, for example 1.2 seconds
to the moon. The variances can also be long, with a range
from 33 to 54 minutes to Jupiter. Networking often implies
bidirectionality, but more specifically having feedback loops;
instead it may be impossible to be reactive as opposed to
proactive. As suggested in these examples, mobility also
plays a large role – in a word, addressing. The relatively static
Internet employs addressing schema; this key ingredient is
missing in space.
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The space communications community has developed Delay
Tolerant Networking (DTN) as a potential answer to the
networking-in-space question; see e.g. [2], [3]. Whereas a
typical router either forwards or drops incoming message,
DTN is a store, carry, and forward approach. By storing
and forwarding data, known as bundles to DTN, routing
can be enabled over temporally disconnected (and hence
generalized) networks. Any links between, say, the Earth and
the moon and the Earth and Mars will have fundamentally dif-
ferent characteristics (e.g. propagation delays). To unite these
disparate links, DTN operates at a high layer as an overlay
network. The benefit is that DTN supports the heterogeneity
of the underlying space and ground links; this benefit is not
free, and brings several well-known challenges. Among these
is that there is no addressing scheme in DTN, but rather flat
name spaces are used. Previous work has generalized the
mathematical modeling approach to this more general setting;
see see [4]. The goal of this paper is to advance this theory
using tools of mathematics that can both shine some light on
addressing and lend themselves to implementation.

A big restriction in routing is there is no rigorous approach to
cross-domain routing. One of the benefits of the mathemat-
ical approach is that it can define the interfaces between re-
gions while also defining these regions in the first place. The
natural starting point for routing in DTNs is with scheduled
routing, such as Contact Graph Routing (CGR) [5].

As a brief introduction, CGR uses globally distributed contact
schedules to form a graph where the vertices represent con-
tacts and the edges represent storage. Routes are then com-
puted using a shortest-path algorithm, Dijkstra’s algorithm,
on this graph. There are several drawbacks with CGR: one is
that the graph scales with the number of contacts as well as
the number of nodes, and hence it becomes computationally
expensive for even modest networks. Another drawback is
the dependency on global consistency. There are alternatives
that begin to address these, such as Delay Tolerant Link State
Routing (DTLSR) [6].

Discovery-based approaches have also been researched. A
typical link state router will in essence probe a network by
flooding it with messages to determine local connectivity,
and glues these local observations together in a consistent
manner to form a global image of the network. While link
state routers drop links when they go down, DTLSR rather
modifies probabilities that a link will come back. With or
without delay tolerance, the concept of link state routers
helps illustrate the local-to-global action of network; consider
for example how the local phenomenon of connecting to a
network gives rise to the global phenomena of paths (routes)
to other devices on the network. In mathematics, the sheaf
is the formal data structure that takes local observations and
either allows one to glue them into global data or explains
obstructions to doing so. As such, networks are sheafy, and
by constructing various sheaves over the graphs that model
networks and various routing algorithms, including temporal
networks, we can begin to discover their underlying structure.

This paper introduces various temporal graph and graph-
like structures (i.e., hypergraphs) for modeling DTNs. We
then proceed to define and further motivate sheaves in the
context of networks, giving new constructions for routing
across network areas. We conclude with future work enabled
by our contributions.

2. GRAPHS AND HYPERGRAPHS
Traditionally, networks are modelled using graphs, which
are collections of node (vertices) connected by lines (edges);
graphs naturally exhibit connectivity and enable the modeling
of flow, among other things. Examples can be seen in Figures
2 and 3. As suggested by these examples, graphs can be
extended to include extra data over the vertices and edges,
such as color (or any set). A prominent example would be
data rates, say in gigabits per second. This makes sense
in traditional networks, as full-duplex symmetric links are
almost always assumed. In certain applications, such as
space, neither bidirectionality nor symmetry of the links can
be assumed. To build up graphs as a basic modeling tool, we
introduce some of the necessary language used in this section.

Definition 2.1. A graph G = (VG, EG) consists of a
finite vertex set VG and a finite edge set EG, consisting of
unordered pairs of vertices. If a vertex v lies on an edge e,
then we say that v is incident to e.

We can then think of a typical wired network as comput-
ers/switches/routers (vertices) connected by Ethernet cables
(edges). This definition can be generalized to include direc-
tion:

Definition 2.2. A directed graph (or digraph) G = (VG, EG)
consists of a finite vertex set VG and a finite edge set EG,
consisting of ordered pairs of vertices. The edges are then
drawn with arrows to indicate the direction.

Wired networks can always be thought of as digraphs, where
the edges now represent particular directions of flow. In the
case of wireless networks, however, the graph representation
fails to capture all of the information about the network. We
can still consider point-to-point connections as established
at, say, the Network layer, but at the physical layer the con-
nections are better described by a single edge connecting all
antennas within range of each other. This observation gives
rise to a generalization of graphs known as hypergraphs.

Definition 2.3. A hypergraph H = (VH , EH) consists of a
finite vertex set VH and a finite hyperedge set EH , consisting
of non-empty subsets of VH . A hypergraph H is called a
clutter if no hyperedge is contained in any other.

Example 2.4. An example of a hypergraph H is given
in Figure 1. This hypergraph has five vertices and three
hyperedges.

Figure 1. Example hypergraph with five vertices and three
hyperedges.

It has been shown that in wireless networks, transmission
models can be improved by changing from a graph model to a
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hypergraph model [7]; for example, graphs cannot accurately
depict the relationships among users/channels or describe the
(cumulative) interference between two transmitters [8]. This
is evidence that hypergraphs are the right structure; and fol-
lowing suit the goal of this paper is to find the right structures
for DTNs. Moreover we could also consider a broadcast or
multicast domain as single edges in a hypergraph. We hasten
to add that hypergraphs are a deeper generalization of graphs
than they might first appear, and to bound the problem all
hypergraphs in this paper are clutters. In future work, this
assumption will be relaxed.

For any hypergraph, there are many associated graphs.

Definition 2.5. Let H = (VH , EH) be a hypergraph and s a
positive integer. The s-line graph Ls(H) is the graph with
vertex set EH and edge set given by

{{ei, ej} : |ei ∩ ej | ≥ s} .

Figure 2. The line graph L1(H) for the hypergraph in
Figure 1.

Example 2.6. The 1-line graph L1(H) associated to the
hypergraph H in Figure 1 is depicted in Figure 2; note the
correspondence of the colorings.

Another graph associated to hypergraphs is given below:

Definition 2.7. Given a hypergraph H , we define a bipartite
graph B(H) with vertex set VH ∪ EH , with two vertices
connected by an edge if and only if they correspond to an
incident vertex and hyperedge in H .

Example 2.8. The bipartite graph B(H) of the hypergraph
H in Figure 1 is illustrated in Figure 3.

Figure 3. The bipartite graph B(H) associated to the
hypergraph in Figure 1.

A path in a hypergraph is a sequence

v1, e1, v2, e2, . . . , en−1, vn

of vertices vi and hyperedges ei such that vi is incident to
ei−1 and ei, and vi ̸= vj , ei ̸= ej for i ̸= j. For a
positive integer s, an s-walk in a hypergraph is a sequence
of hyperedges e1, . . . , en such that |ei ∩ ei+1| ≥ s for each

i. An s-walk is an s-path if in addition ei ̸= ej for i ̸= j.
Given a hypergraph H , s-walks correspond to walks in the
line graph Ls(H), and vice-versa. It is important to note that
such graph algorithms as path finding are well-established for
hypergraphs.

Hypergraphs can be directed. Let H be a hypergraph. We
assign a direction to each hyperedge e ∈ EH by partitioning
e into two sets, a tail and a head, denoted by tail(e) and
head(e). We think of e as going “from tail(e) to head(e)”.
If H is a directed hypergraph, then the bipartite graph B(H)
is naturally directed as well. However, the line graphs Ls(H)
are not naturally directed.

Example 2.9. Consider a radio broadcast tower transmitting
to cars; in this case, there is a single hyperedge flowing from
one source to many destinations.

Edges and hyperedges can have more data associated to them
than data rates. An important example is scheduled times of
activity, say, between a satellite and a ground station. Perhaps
an ideal (hyper)graph model of a network would include data
rates, one-way light times, and schedules. From these data
one could compute shortest delivery times from a source to
a destination; this is precisely how the aforementioned CGR
works. Several generalizations of graphs can be employed
to minimize the gap between the model and the network.
One includes multigraphs, where multiple edges are allowed
between any two vertices. This approach has been shown
to improve computational tractability over CGR [9]. In this
paper we consider several approaches to time-varying graphs
to capture the temporal dependence of space networks.

3. SHEAVES I: PREVIOUS WORK
As noted in the introduction, networks exhibit local-to-global
actions. This is formally captured in the mathematical lan-
guage of sheaves, and has been the subject of active research,
see e.g. [4], [10]. In their full generality sheaves can be
intimidating. Fortunately a significantly more approachable
specialization of sheaves known as cellular sheaves are the
objects of study. In this section we provide definitions and
an example of how sheaves can capture familiar path finding
algorithms.

A sheaf F is the assignment of data to the edges and vertices
of a graph along with mappings between incident edges and
vertices. While the definitions are given for graphs, they
extend naturally to digraphs. The extension to hypergraphs
is less clear, and will be discussed later in this paper.

Definition 3.1. Let G = (VG, EG) be a graph. A sheaf F is
an assignment of

• a set or algebraic object (e.g. a vector space) to each vertex
and edge of G, and

• a mapping F(v ⇝ e) : F(v)→ F(e)1 (of sets, vector
spaces, etc.), called a restriction map, for all vertices v
incident to edges e. Additionally,F(h) is referred as the stalk
of F at h where h ∈ VG ∪ EG.

The restriction maps show the relationship between the data
over the vertices and the edges.

1For the sake of simplicity, v ⇝ e may be interchangeably written as v ≤ e
throughout this paper.
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Definition 3.2. Let G = (V,E) be a graph, let H ⊆ V ∪ E,
and let F be a sheaf over G. A section s is a choice of
elements in each vertex and edge of H , and hence consists of
a value in each of the stalks, such that for all incident pairs v
and e, we have F(v ⇝ e)(s(v)) = s(e). If H = V ∪E, then
s is a global section. The space of global section is denoted
as Γ(G;F).

A section is then consistent information across this set H , and
if a global section exists it represents consistency across the
graph. This is best illustrated with examples.

Example 3.3. Let G = (VG, EG) be a finite directed graph.
The path sheaf P over G is a cellular sheaf of sets defined as
follows. We designate a source vertex vS ∈ VG and a target
vertex vT ∈ VG. Then for each vertex v ∈ VG we set

P(v) =

Out(v), if v = vS
In(v), if v = vT
(In(v)× Out(v)) ∪ {⊥}, otherwise.

For each edge e ∈ EG we set

P(e) = {⊥,⊤}.

The restriction maps are defined as follows. At the source
vertex we have

P(vS ≤ e)(e′) =

{
⊤, if e = e′

⊥ otherwise.

At the target vertex we have

P(vT ≤ e)(e′) =

{
⊤, if e = e′

⊥, otherwise.

Finally, for any vertex v ̸= vS , vT , we have

P(v ≤ e)((e′, f ′)) =

{
⊤, if e = e′ or e = f ′

⊥, otherwise.

Each global section of P corresponds to either a path in G
from vS to vT , or the disjoint union of a path in G from vS to
vT with a disjoint collection of cycles in G which are disjoint
from vS and vT [11].

Remark 3.4. The definition that we have just given for the
path sheaf is taken from [4], and requires the graph G to
be directed. The original definition of the path sheaf, given
in [11], is for an undirected graph. The two definitions are
very similar, and for the sake of simplicity in this paper we
will refer to the path sheaf for both directed and undirected
graphs.

Having a direct relationship between a global section of a
sheaf P and a path from vS to vT implies that we can write
routing algorithms in a ‘sheafy’ way, as a form of algorithms
that extend local sections to global sections. However, there
is no guarantee that a global section found this way is nec-
essarily the desired path, where the desired path is often the
shortest path.

Example 3.5. Let G = (VG, EG) be a finite directed graph
with a weight function w : EG → R+ and a designated source
node vS ∈ VG and a target node vT ∈ VG. We define the

distance path sheaf DP as a cellular sheaf on G as follows:
For each v ∈ VG and e ∈ EG,

DP(v) =


Out(v)× {0} if v = vS
In(v)× R+ if v = vT
(In(v)× Out(v)× R+) ∪ {⊥} otherwise

DP(e) = R+ ∪ {⊥}

And the restriction maps for DP is defined as follows:

DP(vS ≤ e)(e′, 0) =

{
w(e) if e = e′

⊥ otherwise

DP(vT ≤ e)(e′, x) =

{
x if e = e′

⊥ otherwise

DP(v ≤ e)(ei, eo, x) =

x if e = ei
x+ w(e) if e = eo
⊥ otherwise

DP(v ≤ e)(⊥) = ⊥

We describe Dijkstra algorithm using a simple example.
Consider the following ‘toy’ example graph G with four
nodes and four edges in Figure 4 below. The graph G in

vS v1

v2

vT
w(e1) = 9

w(e3) = 3 w(e4) = 2

w(e2) = 10

Figure 4. Setup for distance path sheaf example.

Figure 4 has two possible paths from vS to vT , namely
p1 := (vS , e1, e2, vT ) and p2 := (vS , e1, e3, e4, vT ), with p2
being the shortest path. This also implies that there must
exist only two global sections. Let σ be a global section.
First, σ(vS) = (e1, 0) by definition. We have σ(e1) = 9
and so σ(v1) = (e1, ∗ , 9) where ∗ is a placeholder, unless
σ(e1) = ⊥ which is impossible as σ is a global section
and hence must represent a path. This denotes that v1 is
the closest node from vS so far and the (shortest) distance
between vS and v1 found so far is 9. From v1, there are
two choices: v2 via e3 or vT via e2. One global section
would have (σ(e2), σ(e3)) = (10,⊥) and the other would
have (σ(e2), σ(e3)) = (⊥, 3). Denote each of them as σ1
and σ2, i.e.

(σ1(e2), σ1(e3)) = (10,⊥)
(σ2(e2), σ2(e3)) = (⊥, 3)

We first follow σ1. It results in σ1(v1) = (e1, e2, 9) because
it takes e2 and marks e3 as inactive (i.e. σ1(e3) = ⊥), and
as a result σ1(vT ) = (e2, 9 + w(e2)) = (e2, 19). This
denotes that the shortest distance from vS to vT found so
far is 9 + 10 = 19, and the path is (vT , e2, e1, vS) written
in the reversed direction. Note that the edges saved in each
σ(v)’s serve as the array of previous nodes in the traditional
Dijkstra’s algorithm. σ1 is indeed a global section as it
represents a path, but it is unknown yet whether it exactly
corresponds to the shortest path as v2 has not been visited
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yet (recall that Dijkstra algorithm runs until every node is
visited).

By the same reasoning, σ2 gives us σ2(v1) = (e1, e3, 9), and
consequently σ2(e4) = 2, σ2(v2) = (e3, e4, 9 + w(e3)) =
(e3, e4, 12), and then σ2(vT ) = (e4, 12 +w(e4)) = (e4, 14).
The total distance in σ2(vT ) is clearly less than the distance
in σ1(vT ). From this, we conclude that both σ1 and σ2 are
global sections of DP over G, yet σ2 is the one that gives the
shortest path of distance 12 represented as (vT , e4, e3, e1, vS)
in the reverse order. See Figure 5 for the pictorial description
of these results.

(e1, 0) (e1, e2, 9)

⊥

(e2, 19)
9

⊥ ⊥

10

(e1, 0) (e1, e3, 9)

(e3, e4, 12)

(e4, 14)
9

3 2

⊥

Figure 5. Paths represented as (global) sections σ1 (top)
and σ2 (bottom) of DP over G in Figure 4 found using

Dijkstra algorithm.

Note that in our example (Figure 4), Dijkstra’s algorithm was
able to find all possible paths from vS to vT as shown in
Figure 5. However, in general, Dijkstra is neither required to
find all possible paths nor all shortest paths. But the algorithm
can be slightly modified to find all possible shortest paths by
keeping track of all paths. For finding all possible paths,
breadth first search (BFS) or depth first search (DFS) are
usually used.

Similar to Dijkstra algorithm, one can write other routing
methods using the language of sheaves, such as Bellman-
Ford algorithm and Floyd-Warshall algorithm by allowing the
weight function to have negative edge values (w : EG → R),
and A∗ search by augmenting a heuristic function h in the
weight function (w(e)← w(e) + h(e)).

4. SHEAVES II: SHEAF PULLBACKS
We wish to expand upon section 5 of Sheaves for Routing
in DTN [4], where they investigate the gluability of data
structures. The language of sheaves motivates us to further
study local path finding and how we can stitch together such
data via fiber products of sheaves. This is the first step to-
wards using past successes in sheaves to enable routing across
network areas by defining these network area interfaces.

In particular, we investigate situations in which the global
structure of our network G is not known. This takes the
sheaf approach closer to reality, and also represents a depar-
ture from CGR which depends on globally distributed and
consistent contact times. Suppose, for example, there were
networks centered at Mars and around the Earth. Locally,
these networks could feature discovery. However, the con-

nections between these networks must be scheduled due to
the propagation delays. It is not reasonable to require routers
at the Earth to be absolutely aware of the the network state at
Mars, but rather the routers should be able to get the message
to Mars for local routers to figure out the “last mile” delivery.

Path sheaves

In what follows, we restrict our attention to networks that
have a sequential nature, as Figure 6 depicts. While we
have investigated sheaf-theoretic constructions that can be
used in more general networks, those generalizations appear
to lose the refinedness of the data captured by their global
sections. We hope that our constructions here can help pave
the way toward a full understanding of the utility of sheaves
in modeling the transfer of data across arbitrary networks.
Definition 4.1. A sequential network is a directed graph G,
with designated source node vs and target node vt, that admits
a cover by subnetworks G1, . . . , Gn such that

1. for all i, we have Gi ∩Gi+1 a set of nodes (no edges)

2. for i, j non-sequential, we have that Gi ∩Gj is empty

3. the source node vs is in G1 \ (G1 ∩G2)

4. the target node vt is in Gn \ (Gn−1 ∩Gn)

5. for all i, there are no edges with tail in Gi∩Gi+1 and head
in Gi

6. for all i, there are no edges with tail in Gi+1 and head in
Gi ∩Gi+1

Example 4.2. An example sequential network is given in
Figure 6. There are three subnetworks given by G1, G2, and
G3, with the source and target in G1 and G3 respectively. For
emphasis, the nodes in the overlapping regions are colored in
green whereas the other nodes are in blue.

G1 G2 G3

vs vt

Figure 6. Example sequential network

The intuition here is that n different network areas could
perform path finding on their local regions, to then find global
paths from vs to vt.

But how can we keep track of when our path crosses between
the various subnetworks? For this, we modify the definitions
of the path sheaf, in order to obtain path sheaves with multiple
sources and multiple targets, that can be defined on each
subnetwork.

We start by assuming we have some directed graph H , a
source set of nodes S ⊂ V (H), each of which has no
incoming edges, and a target set of nodes T ⊂ V (H), each
of which has no outgoing edges. Assume further that S and
T are disjoint.
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Definition 4.3. A generalized path sheaf GP on H is
defined on stalks as follows

GP(v) =

Out(v) ∪ {⊥} if v ∈ S
In(v) ∪ {⊥} if v ∈ T
(In(v)× Out(v)) ∪ {⊥} otherwise

GP(e) = {⊥,⊤}

Restriction maps are defined exactly as for the path sheaf.

Remark 4.4. As with the original path sheaf, this sheaf has
global sections that represent paths from source to target
(with possibly disjoint cycles). However, there is now the
additional possibility of global sections corresponding to a
disjoint union of paths from the source set to the target set.
Note that this disjoint union may be empty.

Lemma 4.5. If a global section of a generalized path sheaf
has only a single source node vs that is not assigned ⊥, then
there is only a single target node that is not assigned ⊥.

Proof. Assume we have a global section σ such that for all
v ∈ T , we have σ(v) =⊥. Then the path starting at vs
associated to σ would never terminate. But the graph is finite,
so this is impossible. Hence there must be some w ∈ T where
σ is not valued as the off symbol. Now assume there was
some other w′ ∈ T that was not off. Then there is some node
u at which our path from vs to T splits into two branches,
contradicting the well-definedness of σ at u.

Remark 4.6. The same is true if we swap the roles of source
and target in the above lemma.

In order to glue together these generalized path sheaves across
various subnetworks, we define an overlap sheaf on overlaps
of subnetworks. For this, assume H is a graph consisting
solely of a set of nodes.

Definition 4.7. The overlap sheaf O on H is given by

O(v) = {⊥,⊤}

We now take a sequential network and equip it with copies of
the above sheaves to obtain what we call a routable network.

Definition 4.8. A routable network consists of the follow-
ing data:

1. A sequential network G = G1 ∪ · · · ∪ Gn, with global
source vs, and target vt

2. A generalized path sheaf GP1 on G1 with source vs and
target set G1 ∩G2

3. A generalized path sheaf GPn on Gn with target vt and
source set Gn−1 ∩Gn

4. For all 1 < i < n, a generalized path sheaf GPi with
source set Gi−1 ∩Gi and target set Gi ∩Gi+1

5. For all 1 ≤ i < n, an overlap sheaf Oi,i+1 on Gi ∩Gi+1

Given a routable network, the sheaves GPi and GPi+1 can
be glued together to obtain a sheaf on Gi ∪Gi+1, namely the
fiber product sheaf GPi ×Oi,i+1

GPi+1.

Remark 4.9. In order to take a fiber product here, we really
need sheaves that are defined on the same underlying net-
work. This can be done explicitly by pushing forward our
sheaves to G via the inclusions of the respective subnetworks.
These push forwards are defined as off everywhere outside of
the subnetworks, so we supress the push forward notation for
ease of reading.
Remark 4.10. We also need to specify morphisms that this
fiber product is taken with respect to.

We first construct the morphism

GPi Oi,i+1
ϕi

It must be trivial away from Gi∩Gi+1, sinceOi,i+1 is valued
by ⊥ on such vertices and edges. For v ∈ Gi ∩ Gi+1, we
define the map in the stalk of v by

ϕi(e) = ⊤
ϕi(⊥) =⊥

Similarly, we define the morphism

GPi+1 Oi,i+1
ϕi+1

in the stalk of v ∈ Gi ∩Gi+1 to be

ϕi+1(e) = ⊤
ϕi+1(⊥) =⊥

Theorem 4.11. Let G be a routable network. Then the sheaf

L := GP1 ×O1,2
· · · ×On−1,n

GPn

has global sections in one to one correspondence with the set
of paths from vs to vt (that have possibly disjoint cycles). In
other words, L is the path sheaf for G.

Proof. For a node v ∈ Gi, that is not contained in Gi−1 or
Gi+1 we have that

L(v) =⊥ ×⊥ · · · ⊥ ×⊥GPi(v)×⊥ ⊥ · · ·×⊥ ⊥

which we identify with GPi(v). Similarly, for edges e ∈ Gi,
we have that

L(e) = GPi(e)

For a node in a pairwise overlap v ∈ Gi ∩Gi+1, we have that

L(v) =⊥ ×⊥ · · · ⊥ ×⊥GPi(v)×Oi,i+1 GPi+1(v)

×⊥ ⊥ · · ·×⊥ ⊥

which we identify with GPi(v) ×Oi,i+1(v) GPi+1(v). This
tells us that a global section σ of L is a global section σi of
each GPi, such that for nodes in the overlaps Gi ∩Gi+1, we
have that ϕi(σi) = ϕi+1(σi+1). In other words, σi and σi+1
are in agreement about which nodes in Gi ∩Gi+1 are on and
off.

Now, let’s focus on G1. As was discussed previously, σ1
must represent a path from vs to a node of G1 ∩ G2 (with
possibly disjoint cycles). Call the path γ1. On the other hand
σ2 could be a disjoint union of paths from G1∩G2 to G2∩G3.
However, agreement of GP1 and GP2 on G1 ∩ G2 forces
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there to only be a single node of the overlap turned on, and
hence σ2 is a single path (with possibly disjoint cycles). Call
the path γ2. We have that γ1 and γ2 connect. Recursively
continuing this process, we obtain a path from vs to vt (with
possibly disjoint cycles).

On the other hand, take a path γ (with possibly disjoint
cycles). Restricting to each Gi, we have a datum that fits
the bill to be a global section of GPi, which we call σi.
Agreement of σi and σi+1 in Oi,i+1 under the maps ϕi and
ϕi+1 comes from the fact that the path was connected to begin
with, and hence we get a global section of L.

Distance path sheaves

We now consider weighted sequential networks.

Definition 4.12. A weighted sequential network is a se-
quential network such that all edges are weighted.

These weights can be thought of as some cost of traversing
each edge.

We wish to define generalized distance path sheaves on each
subnetwork that can be glued together. We start by assuming
we have some weighted directed graph H , a source set of
nodes S ⊂ V (H), each of which has no incoming edges,
and a target set of nodes T ⊂ V (H), each of which has no
outgoing edges. Further, assume S and T are disjoint. We
emphasize that this construction allows for multiple sources
and multiple targets.

Definition 4.13. A generalized distance path sheaf GDP
on H is defined on stalks as follows

GDP(v) =


(
Out(v)× R×) ∪ {⊥} if v ∈ S(
In(v)× R×) ∪ {⊥} if v ∈ T(
In(v)× Out(v)× R×) ∪ {⊥} otherwise

GDP(e) = R×∪ ⊥

Restriction maps are defined exactly as for the distance path
sheaf.

Remark 4.14. For the generalized distance path sheaf, the
issue of disjoint cycles is resolved. (See Sheaves for Routing
in DTN [4] for why this is the case.)

As in the previous section, we need a notion of overlap sheaf
in order to glue such sheaves together. Let H be a graph
consisting solely of a set of nodes.

Definition 4.15. The distance overlap sheaf DO on H is
given by

DO(v) = {⊥,R×}

Definition 4.16. A weighted routable network is a routable
network, where the network is weighted, and all path sheaves
are replaced by distance path sheaves, and overlap sheaves
are replaced by distance overlap sheaves.

In order to glue our sheaves together, we again need to
construct morphisms to the overlap sheaves

GDPi DOi,i+1
ϕi

Now, this map must be trivial away from Gi ∩ Gi+1, since
DOi,i+1 is valued by ⊥ on such vertices and edges. For
v ∈ Gi ∩Gi+1, we define the map in the stalk of v by

ϕi((e, a)) = a

ϕi(⊥) =⊥

Similarly, we define the morphism

GDPi+1 DOi,i+1
ϕi+1

in the stalk of v ∈ Gi ∩Gi+1 to be

ϕi+1((e, a)) = a

ϕi+1(⊥) =⊥

Theorem 4.17. Let G be a weighted routable network. Then
the sheaf

DL := GDP1 ×DO1,2
· · · ×DOn−1,n

GDPn

has global sections in one to one correspondence with the set
of paths from vs to vt that record total distance traveled at the
target node. In other words,DL is the distance path sheaf for
G.

Proof. The argument is nearly identical to the theorem from
the previous section, so we only provide a sketch here. We
find that a global section σ of DL is a global section σi of
each GDPi, such that for nodes in the overlaps Gi ∩ Gi+1,
we have that ϕi(σi) = ϕi+1(σi+1). In other words, σi and
σi+1 are in agreement about which nodes in Gi ∩ Gi+1 are
not off, and what real values are stored at them.

As before, we start by looking at G1, for which σ1 must
represent a path from vs to a node of G1 ∩G2. Agreement of
GDP1 and GDP2 on G1∩G2 forces there to only be a single
node of the overlap turned on, and so σ2 must be a single
path from source to target in G2, valued by the same real
number at the node where it meets the path coming from σ1.
Recursively continuing this process, we obtain a path from vs
to vt.

The argument that a path gives rise to a global section follows
as in the proof of the theorem in the previous section.

Carry-over Sheaf

In this section, we consider a special kind of weighted se-
quential network.

Definition 4.18. A weighted traceable sequential network
is a weighted sequential network where each node v in
a subnetwork Gi can only backtrack to a single node of
Gi−1 ∩Gi.

Restricting our attention to such networks allows us to define
new sheaves with more refined data in their global sections.
More specifically, we construct a sheaf on such a network
whose global sections keep track of the costs of traversing
each subnetwork separately.

For a weighted traceable sequential network

G = G1 ∪ · · · ∪Gn,
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we will define a carry-over sheaf associated to each sub-
network. However, the i-th carry-over sheaf will be defined
on Hi = Gi ∪ · · · ∪ Gn (instead of just on Gi). As with
the previously defined sheaves, it will have source set S =
Gi−1 ∩Gi and target set T = Gi ∩Gi+1. But now, since Hi
extends beyond the target set, we will have information that
is passed further into the network.
Remark 4.19. For G1, we take S = {vs}. For Gn, we take T
to be the specified global target set.
Remark 4.20. The construction here will be so that the i-
th carry-over sheaf only has information about weights from
Gi despite being defined on all of Hi. We are modeling a
situation where weights are local, even if unweighted graph
information is known more widely across G.

Definition 4.21. A carry-over sheaf Ci on Hi is defined on
stalks as follows

Ci(v) =


(Out(v)× R×) ∪ {⊥} if v ∈ S
(In(v)× R×) ∪ {⊥} if v ∈ T
(In(v)× Out(v)× R×) ∪ {⊥} if v ∈ Gi \ (S ∪ T )
R× ∪ {⊥} otherwise

Ci(e) = R× ∪ {⊥}

Within Gi, restriction maps are defined exactly as for the
generalized distance path sheaf. Outside of Gi, all restriction
maps are the identity maps. When restricting from a node of
T to an edge outside of Gi, we define

Ci(v < e)((f, a)) = a

Ci(v < e)(⊥) =⊥

Often data are organized into tuples, which are ordered se-
quences of data. The carry-over sheaf enables a construction
where sheaf-gluing produces these tuples. These tuples then
represent organized information about the hops through the
network areas, that is, they can produce insight into address-
ing.

Definition 4.22. A tuply routable network consists of the
following data

1. A weighted traceable sequential network

G = G1 ∪ · · · ∪Gn,

with source vs ∈ G1, and target set T ∈ Gn

2. For each Gi, a carry-over sheaf Ci defined on Hi

3. For all 1 ≤ i < n, an overlap sheafDOi,i+1 on Gi∩Gi+1

Again in order to glue our sheaves together, we need to
construct morphisms to the distance overlap sheaves

Ci DOi,i+1
ϕi

As before, this map is trivial away from Gi ∩ Gi+1, since
DOi,i+1 is value by ⊥ on such vertices and edges. On
Gi ∩Gi+1 we define the map exactly as in the previous
section.

Theorem 4.23. Let G be a tuply routable network. Then the
sheaf

L := C1 ×DO1,2 · · · ×DOn−1,n Cn

has global sections in one to one correspondence with the
set of paths from vs to T . Such global sections are val-
ued on exactly one target node vt ∈ T with the data
(a1, a2, . . . , an−1, (e, an)) of an incoming edge e, and the
distances ai travelled on each Gi separately.

Remark 4.24. A proof of this follows in the same vein as the
previous two theorems, albeit with some less clean-looking
fiber products. For this reason, we find it more instructive to
go through an example here rather than a proof.

In figure 7 below, we see an example of a weighted traceable
sequential network with three subnetworks highlighted in
green, blue, and red respectively.

Just beneath that is an example of a global section of the pull-
back sheaf L. The purple highlighting indicates the portion of
the network that is not off with respect to this global section.
The path associated to this global section is (e1, f1, f4, g2).
The target node vt2 is valued with information about distances
travelled in each subnetwork.
Remark 4.25. There are also additional nodes and edges
turned on throughout the network that are not on the path. The
information stored at these edges and nodes is only keeping
track of distances traveled in previous subnetworks. We can
think of this information as accesible to anyone within reach.

vs e1

e2

1

2

v1

v2

f1

f2

f3

4

1

2

f4

f5

f6

2

3

4

w1

w2

g1

g2

g3

1

2

3

vt1

vt2

vt3

⊥

⊥

⊥

⊥

⊥

⊥ ⊥ ⊥

(e1, 0)

1

((e1, 1), (f1, 0))

(1, 4)

1

(1, (f1, f4, 4))

1

1

(1, 6)

(1, (f4, 6), (g2, 0))

(1, 6)

(1, 6, 2)

(1, 6)

(1, 6, (g2, 2))

Figure 7. Network with multiple global targets

In figure 8 below, we have another example of a weighted
traceable sequential network, this time with only a single
global target node. Beneath that is an example of a global
section of the pullback sheaf L, with associated path given
by (e1, e3, e5, f1, f4). At the target node, we have the infor-
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mation of total distance traveled on G1, and total distance
traveled on G2, recorded separately.

vs
e1

e2

3

2

e3 4

e4

e5

1

1

f1

f2

f3

2

2

4

f4

f5

5

2

vt

vs

(e1, 0)

3

7

8

(e1, e3, 3)

(e3, e5, 7)

((e5, 8), (f1, 0))

(8, (f1, f4, 2))

(8, 2)

8

8

8

(8, 7)

8 (8, (f4, 7))

Figure 8. Network with a single global target

We emphasize that in these final examples, the data tracked
by the sections could distill structure, such as addresses, with
further research.

5. SHEAVES III: HIGHER MACHINERY
In this section we investigate further applications of cellular
sheaves to graphs and hypergraphs. First we explore sheaf
constructions for hypergraphs and their associated graphs.
In particular, we show how to encode s-walks and paths
in a hypergraph as global sections of certain sheaves on
the s-line graph and bipartite graph, respectively. Then we
explore sheaf cohomology and sheaf Laplacians for sheaves
on graphs, with applications to the path sheaf.

Sheaves and Hypergraphs

One way to construct sheaves on a hypergraph H is to
instead construct sheaves on its associated graphs Ls(H) and
B(H). Recall the definition of the path sheaf P from before.
Choose source and target vertices vS , vT ∈ VLs(H). Then
global sections of the path sheaf P correspond to paths and
unions of paths with cycles in Ls(H). Now, each vertex of
Ls(H) corresponds to a hyperedge in H . Let eS and eT be
hyperedges in H corresponding to vS and vT , respectively.
Since paths in Ls(H) correspond to sequences of hyperedges
in H , we see that global sections of P over Ls(H) can be
interpreted as s-paths in H from eS to eT , or unions of such
with s-cycles of hyperedges which are disjoint from eS and
eT .

Suppose H is a directed hypergraph. Then the bipartite graph
B(H) is a directed graph. Choose source and target vertices
vS , vT ∈ VB(H). Then the path sheaf P over B(H) records
paths in B(H) from vS to vT , and unions of such with cycles
disjoint from vS and vT . A path in B(H) is specified by
a sequence of distinct vertices v1 = vS , v2, . . . , vn = vT ,
with vi adjacent to vi+1 for each i. Since B(H) is bipartite,
the vertices in this sequence alternate between corresponding
to a vertex in H and corresponding to a hyperedge in H .

vS

v1

v2

v3

v4

v5

v6

vT

a b c

d

e

f

Figure 9. The hypergraph H , referred to in Example 5.1.

a∗ b∗

c∗

d∗

e∗

f∗

Figure 10. The line graph L1(H) associated to the
hypergraph H in Figure 9.

Therefore a path in B(H) corresponds precisely to a path in
H , which is given by an alternating sequence of vertices and
hyperedges. So global sections of P over B(H) correspond
to paths in H from vS to vT , and unions of such with disjoint
cycles.

Example 5.1. Consider the hypergraph H in Figure 9. Sup-
pose we want to encode all s-walks from the hyperedge a to
the hyperedge e. We will apply the path sheaf to the s-line
graph for H . In Figure 10 the 1-line graph of H is shown.
Note that we take vS = a∗ and vT = e∗. Then the path sheaf
on the line graph encodes all paths in the line graph from a∗

to e∗, and each of these corresponds to a 1-walk in H from a
to e.

Now suppose we want to encode paths in H from the vertex
v1 to the vertex v8. In this case, we apply the path sheaf to
the bipartite graph B(H), which is shown in Figure 11.

Global sections of the path sheaf on B(H) correspond to
paths in B(H) from vS = v1 to vT = v8. Such a path

vS a∗

v1

v2

b∗

v3

v4

c∗

d∗

vT

f∗

v5

v6

e∗

Figure 11. The bipartite graph B(H) associated to the
hypergraph H in Figure 9.
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can be uniquely specified by a list of distinct vertices, such
that successive vertices in the list are adjacent in B(H). For
example, consider the path in B(H) given by the sequence
v1, a

∗, v2, b
∗, v4, c

∗, v6, e
∗, v7. This corresponds to the se-

quence v1, a, v2, b, v4, c, v6, e, v7 in the original hypergraph
H , and this sequence uniquely determines a path from v1 to
v8.

The sheafy constructions for hypergraphs that we have just
described involves graphs associated to a hypergraph. The
reader may wonder if it is possible to construct sheaves on
hypergraphs directly. This is a deep question which lacks a
singular answer. One issue is that cellular sheaf constructions
depend on the topology of the underlying space. For a
hypergraph, there is no canonical choice of topology.

Given a hypergraph H , it is possible to topologize the set
VH ∪ EH such that we can effectively port the path sheaf
constructions on Ls(H) or B(H) to H itself. There are
potentially many ways to topologize VH ∪ EH , and an
interesting research direction is to explore sheaf constructions
for different topologies.

On the other hand, it is possible that there is a natural
choice of topology and sheaf over a hypergraph, in some
suitable sense. Graphs and hypergraphs can be viewed as
algebraic varieties [12]. Hence we can view hypergraphs
more generally as schemes. A scheme comes equipped with a
structure sheaf, so we can get our hands on a sheaf associated
to the hypergraph. This sheaf may not have immediate use
for routing problems, but it is a first step towards finding such
a sheaf.

Sheaf Cohomology and Laplacian

Sheaf Cohomology—Consider a finite directed graph G. Let
F be a sheaf of vector spaces over G. That is, F is a cellular
sheaf on G whose stalks are finite-dimensional vector spaces
and whose restriction maps are linear maps. We will assume
that all of our vector spaces real.

Given a vertex v ∈ VG and edge e ∈ EG which is incident to
v, we define the index [v : e] of v with respect to e by

[v : e] =

{
1 if h(e) = v,
−1 if t(e) = v.

Denote by C0(G;F) the vector space

C0(G;F) =
⊕
v∈VG

F(v)

and by C1(G;F) the vector space

C1(G;F) =
⊕
e∈EG

F(e).

We refer to Ci(G;F) as the space of i-cochains. Define a
linear map d : C0(G;F)→ C1(G;F) by

d|F(v) =
∑
e∋v

[v : e]F(v ≤ e).

Definition 5.2. The sheaf cohomology groups are defined to
be

H0(G;F) = ker(d), H1(G;F) = coker(d).

It is a basic fact that H0(G;F) is equal to the set of global
sections of F .

Sheaf Laplacians—For sheaves on graphs, sheaf cohomology
on its own does not provide much insight. For example,
H1(G;F) is determined by H0(G;F) by the Rank-Nullity
Theorem from linear algebra. Hence H1(G;F) does not
provide any new information. However, we can use the
coboundary operator d : C0(G;F) → C1(G;F) to define
the sheaf Laplacian, which is a generalization of the well-
studied graph Laplacian.

Definition 5.3. Let G be a directed graph and F a sheaf
of vector spaces over G. The sheaf Laplacian ∆F :
C0(G;F) → C0(G;F) is a linear operator given by the
formula ∆F = dT d, where dT denotes the transpose of d.
If the sheaf F is clear from context, we will simply write ∆
for the sheaf Laplacian.

The sheaf Laplacian has the property that ker(∆F ) =
H0(G;F), so that the kernel of ∆F is equal to the set of
global sections of F .

Vector Space-ifying a Sheaf of Sets—Let F : Set→ R−Vect
denote the functor which takes each set X to the free R-vector
space consisting of formal linear combinations of elements of
X . The functor F sends each map of sets f : X → Y to the
linear map F(f) : F(X)→ F(Y ) given by∑

x∈X

cxe⃗x 7→
∑
x∈X

cxe⃗f(x).

We can apply F to a cellular sheaf of sets to obtain a cellular
sheaf of vector spaces.

Proposition 5.4. Let G be a finite directed graph, and let
F : VG ∪ EG → Set be a cellular sheaf of sets over G. Let
F(G) be the equalizer of the diagram∏

v∈VG

F(v)⇒
∏

e∈EG

F(e)

and let K be the equalizer of the diagram

F

(∏
v∈V

F(v)

)
⇒ F

(∏
e∈E

F(e)

)

that we get by applying the free functor. Then F(F(G)) ⊆ K.
We note that K can be interpreted as the kernel of the linear
map F(h)− F(t).

Every linear combination of sections of F is an element of
K. However, there may be elements of K which do not
arise as linear combinations of sections of F . For example,
we can consider the vector path sheaf F(P), defined in the
next section, for the graph in Figure 13. See Example 5.6 for
details.

Path Sheaf

We apply the free functor to the path sheaf, obtaining a
cellular sheaf of vector spaces which we denote by F(P). To
simplify computations, we make a slight modification to the
definition of F(P). Namely, we will replace the symbol “⊥”
with the zero vector in each stalk of F(P).
Example 5.5. Consider the graph G in Figure 12. A choice
of source vertex vS and target vertex vT has been made, and
the corresponding vector path sheaf F(P) is shown below.
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e

g

f

(1 0)

(1)

(1) (0 1)

(0 1)

(1 0)

v

vS

vT

G

F(P)

R⟨e, f⟩

R⟨(e, g)⟩ R⟨f, g⟩

R⟨⊤⟩

R⟨⊤⟩

R⟨⊤⟩

Figure 12. A directed graph G with source vS and target
vT , along with the corresponding vector path sheaf F(P).

Each restriction map is a linear map, and is labeled by the
corresponding matrix.

We compute the sheaf cohomology of F(P) for the graph G
as follows. The differential d is a linear map

d : R⟨e, f⟩ ⊕ R⟨(e, g)⟩ ⊕ R⟨f, g⟩ → R⟨⊤⟩3

and is given by

d =

( −1 0 1 0 0
0 −1 0 1 0
0 0 −1 0 1

)
.

This is a rank 3 matrix with 2-dimensional kernel. Hence
H0(G;F(P)) ∼= R2 and H1(G;F(P)) = 0. A basis for the
kernel of d is 


0
1
0
1
0

 ,


1
0
1
0
1


 .

Each of these basis vectors corresponds to a path in G from
vS to vT . The first basis vector corresponds to the path which
goes through f , while the second basis vector corresponds to
the path through e and g. Note that these are the only two
paths between vS and vT , so that in this case the dimension
of H0(G;F(P)) counts the number of paths in G from source
to target.

The sheaf Laplacian in this example is given by

∆ = dT d =


1 0 −1 0 0
0 1 0 −1 0
−1 0 2 0 −1
0 −1 0 1 0
0 0 −1 0 1

 .

vS v1 v2 v3 v4 vT

e1

e2

e3 f3
f1

f2

Figure 13. The path sheaf P over G has no global sections,
even though the vector space path sheaf F(P) admits

non-zero global sections.

Example 5.6. The graph G in Figure 13 has two connected
components. The source vS and target vT are in separate
connected components. Furthermore, there are no cycles in
G which are disjoint from vS and vT . Therefore the path
sheaf P has no global sections at all. The differential d on the
vector path sheaf F(P) is given by

d =


−1 0 1 0 0 0 0 0
0 −1 0 1 0 0 0 0
0 0 −1 −1 0 0 0 0
0 0 0 0 −1 0 1 0
0 0 0 0 0 −1 0 1
0 0 0 0 1 1 0 0

 .

This matrix has a 2-dimensional kernel, with basis



−1
1
−1
1
0
0
0
0


,



0
0
0
0
−1
1
−1
1




.

Thus H0(G;F(P)) ∼= R2. Since H0(G;R(P)) is equal to
the set of global sections of F(P), this shows that F(P))
admits non-zero global sections, even though P has no global
sections at all. This shows that when we convert a sheaf of
sets into a sheaf of vector spaces, we may introduce “extra”
global sections.

Sheaf Diffusion

The vector space C0(G;F(P)) of 0-cochains of the vector
path sheaf over a graph G is isomorphic to some finite-
dimensional real vector space. As such, we may endow
C0(G;F(P)) with the usual inner product and its induced
metric. Thus we have a notion of distance between two 0-
cochains.

The diffusion equation is the linear ordinary differential
equation

ẋ = −∆x (1)

where x is an element of C0(G;F(P)). The diffusion equa-
tion models C0(G;F(P)) as a continuous-time dynamical
system. This dynamical system is local in the sense that the
value of ẋ over a vertex v is only influenced by the values of
x over vertices adjacent to v. The following proposition is
proved in [13]; see also [14].

Proposition 5.7. Let G be a digraph and F be a sheaf
of vector spaces on G. The dynamical system modeled by
Equation 1 has H0(G;F) as its space of equilibria. Further-
more, the trajectory of the dynamical system, initialized at
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x0 ∈ C0(G;F), converges to the global section of F which
is nearest to x0.

When F = F(P), Proposition 5.7 gives us a method for
finding paths in a digraph G: given any selection x0 ∈
C0(G;F(P)), we solve Equation 1 with initial condition x0.
The solution is guaranteed to be a global section of F(P)
by Proposition 5.7. One issue with this approach is that, as
we have already shown, F(P) may admit non-trivial global
sections which do not correspond to paths. Later we will
see that this issue can be circumvented in the context of
distributed optimization by introducing constraints. Another
method for finding true global sections, utilizing gradient
descent, is outlined in [4].

Example 5.8. Consider the graph G and its vector path sheaf
shown in Figure 12. Let x0 be the 0-cochain such that
(x0)vS = e, (x0)v = 0 and (x0)vT = g. If we solve
Equation 1 with initial condition x0, we obtain the 0-cochain
x given by xvS = e, xv = (e, g), and xvT = g. Then x
corresponds to the vector (1, 0, 1, 0, 1), which is an element
of ker(∆) = H0(G;F(P)). Hence x uniquely determines a
global section of F(P). By Proposition 5.7, x minimizes the
distance to x0.

Sheaf diffusion can also be used to extend local cochains to
global cochains. Let U ⊂ VG be a collection of vertices. The
restricted diffusion equation, relative to U , is given by

dx

dt

∣∣∣
v
=

{
−∆x, if v ̸∈ U
0, else . (2)

Solutions to Equation 2, with initial condition x0 ∈
C0(U ;F), are called harmonic extensions of x0. Note that
a harmonic extensions need not be global sections, and they
need not be unique. Indeed, there exists a unique harmonic
extension of x0 if and only if H1(G,U ;F) = 0 [14].

Example 5.9. In the context of vector path sheaves, the
restricted diffusion equation can be used to extend a path. For
example, we once again consider the graph G in Figure 12.
Let U = {vS} and x0 ∈ C0(U ;F(P) given by (x0)vS = e.
We may view x0 as a partial path from vS to vT , consisting of
the edge e. In this case H1(G,U ;F(P)) = 0, so that there is a
unique harmonic extension x of x0 to all of VG. The harmonic
extension x is given by xvS = (x0)S = e, xv = (e, g), and
xvT = g. In this case, x is also a global section.

On the other hand, suppose U = {v} and x0 = (e, g). Now
we have H1(G,U ;F(P)) ̸= 0, and in fact there are infinitely
many harmonic extensions of x0. The set of harmonic
extensions of x0 is given by{ xvS = e+ rf

xv = (e, g)
xvT = g + rf

where r ∈ R is arbitrary.

Laplacians and Optimization

Optimization problems over graphs written in terms of graph
Laplacian has been an active field of research. Sheaf Lapla-
cians have a benefit over traditional graph Laplacians of
allowing an optimization problem to be written in ‘sheafy’
way. Its potential of being useful for formulating and solv-
ing distributed optimization problems has been discussed in

papers by Hansen and Ghrist such as [15]. In particular,
[15] converts a problem of constrained minimization of an
objective function over global sections into a problem of
finding saddle points of the Lagrangian function, then find
its saddle point using Karush-Kuhn-Tucker (KKT) optimality
condition.

Shortest path problem over a graph G = (V,E) can be
written as a form of optimization problem. For example, in
a dynamic programming form, the problem can be written as
solving the following recurrence equation when i = n = |V |
and v = vT :

OPT(v, i)

= min

OPT(v, i− 1),min
v′ s.t.

e=(v,v′)

OPT(v′, i− 1) + w(e)

 (3)

where OPT(v, i) represents the minimum cost of a path from
vS to v using (going through) at most i edges. In fact, this is
the motivating building block of the celebrated Bellman-Ford
algorithm. This optimization problem then can be translated
into a simple linear programming problem

minimize
∑
e∈E

w(e)xe

subject to xe ≥ 0 ∀e ∈ E∑
u s.t. (v,u)∈E

x(v,u) ≤ 1 ∀v ∈ V

∑
u s.t.

(v,u)∈E

x(v,u) −
∑
u s.t.

(u,v)∈E

x(u,v) =

1 if v = vS
−1 if v = vT
0 otherwise

∀v ∈ V

where xe ∈ {0, 1} is a boolean indicator variable denoting
whether it was chosen (xe = 1) as a part of path or not (xe =
0). The first constraint is clear, the second is about the out-
degree of every node on the path being one, and the third is
for ensuring that the flow is conserved, and also prevents a
creation of loops.

The shortest path problem can be reformulated using the
sheaf Laplacian as follows. Consider the vector path sheaf
F(P) over G. For each vertex v ∈ VG, we compute a
local objective function fv by summing the weights on the
outgoing edges incident to v. That is, if v = vS , then

fvS

 ∑
e∈Out(vS)

αee

 =
∑

e∈Out(vS)

αew(e).

If v ̸= vS and v ̸= vT , then we set

fv

 ∑
(e,f)∈In(v)×Out(v)

α(e,f)(e, f)


=

∑
(e,f)∈In(v)×Out(v)

α(e,f)w(f).

We set f =
∑
v∈VG

fv , thereby obtaining a global objective

function from the local objective functions.
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Our plan is to minimize f over the space of 0-cochains
C0(G;F(P)). To ensure that we are optimizing over global
sections of F(P), we introduce the constraint ∆x = 0, since
ker(∆) is the space of global sections. In addition, since we
want to minimize f for paths in G, we need to exclude global
sections of F(P) which do not correspond to paths. This is
taken care of by adding appropriate constraints. We claim that
solutions to the following optimization problem are shortest
paths between vS and vT . We consider x ∈ C0(G;F(P)),
and denote by xv the value of x over the vertex v.

minimize f(x)

subject to ∆(x) = 0

xv ≥ 0 ∀v ∈ V

x ∈ Zdim(C0(G;F(P)))

||xv||2 ≤ 1 ∀v ∈ V

||xvS
||2 = 1

||xvT
||2 = 1

When we write xv ≥ 0, we mean that each entry of xv is non-
negative (recall that xv is a vector). The statement ||xv||2 ≤ 1
can be interpreted as requiring that each component of the
vector xv is at most 1. This, along with the requirement that
x is an integer vector, implies that each xv has exactly one
non-zero entry, which must be 1. In addition, we require
that xvS and vvT must have a non-zero entry, which is also
equal to 1. These constraints eliminate all “extra” sections
that may have been introduced by the free functor. This
is because all such sections contain negative entries. Our
constraints are designed to single out sections of P . Recall
that these include disjoint unions of paths and cycles. The
linear optimization problem will avoid sections containing
cycles. This is because the problem is to minimize f(x), and
f(x) sums the weights of the edges that are “turned on” by
x. A global section which is the union of a path and a cycle
will never minimize f : if we throw out the cycle, then f only
sums edge weights along the path, and thus we get a smaller
value for f .

We have shown that the shortest path problem can be stated
as an optimization problem using sheaf Laplacians. Other
problems can also be rephrased using sheaf Laplacians. We
briefly discuss this point in the Future Work section.

6. TEMPORAL NETWORKS
The time dependency of any solar system network drives
much of the need for the generalizations are given in this
and related papers. Essentially, the familiar structures and
constructs placed on top of static graphs (and hence static
networks) do not cover the temporal case. The approach
taken here, however, does; in this section, we formalize a
particular path toward modeling temporal networks.

Models of temporal networks in discrete time include se-
quences of static graphs and time-expanded graphs. Continu-
ous time models of temporal networks include contact graphs
as well as edge and vertex-labelled graphs.

Definition 6.1. A temporal, or time-varying, (un)directed
graph T = (VT , ET , f, g) consists of a vertex set VT , an
edge multiset ET , an edge labelling f : ET → 2R≥0 , and a
vertex labelling g : VT → 2R≥0 , where 2R≥0 is the power set
of R≥0.

For every edge e ∈ ET , the edge label f(e) specifies the
times when the edge e is active or available. For every vertex
v ∈ VT , the vertex label g(v) specifies the times when the
vertex v is available.

We will first consider a directed temporal graph T for which
the vertices are available at all times, and only the edges vary.
That is, ∀v ∈ VT , g(v) = R≥0. We may use a temporal graph
of this kind to model a temporal network for which the set of
nodes is fixed and the links are time-varying. Let vs ∈ VT be
a specified source vertex and vt ∈ VT \ {vs} be a specified
target vertex. We define a path sheaf F over T stalk-wise as
follows

F(v) =


{⊥} × Out(v)× Z≥0 × {0} × {0} if v = vs
In(v)× {⊥} × {0} × Z≥0 × Z+ if v = vt(
In(v)× Out(v)× Z≥0 × Z≥0 × Z+

)
∪{⊥} otherwise

F(e) =
(
Z≥0 × Z+

)
∪ {⊥}

Let x = (ei, eo, w, t, d) or ⊥. Then the restriction maps are
defined as follows

F(v ≤ e)(x) =



(w, 1) if ei =⊥, e = eo,
and w ∈ f(e)

(t, d) if e = ei and t ∈ f(e)
(t+ w, d+ 1) if ei ̸=⊥, e = eo,

and t+ w ∈ f(e)
⊥ otherwise

The global sections of F correspond to temporal paths from
the source vertex vs to the target vertex vt over the temporal
graph T . These in turn correspond to non-self intersecting
routes across the temporal network from the source node vs
to the target node vt.
Remark 6.2. F is analogous to the distance path sheaf over a
static graph. For a given global section ofF , if v is vertex that
lies on the path that corresponds to the global section, then the
data assigned to v, F(v), includes the number of hops from
vs to v along the path and the time elapsed to arrive at v.
Tracking the number of hops ensures that global sections of
F do not include the disjoint union of temporal cycles in T .
As with distance path sheaves over static graphs, we expect
that F can be used in sheaf-theoretic path finding algorithms,
optimizing for hop distance, elapsed time, or some weighted
combination of the two.

The prior model assumed instantaneous transmission across
any available link in the temporal network. We now model a
temporal network, where the nodes are fixed and the links are
time-varying, with non-zero transmission time across links.
Let m ∈ Z+ be the fixed transmission time for all edges e ∈
ET at any time. The edge labelling f is given by

f : ET →
{
{Iα}α∈A⊆N : a, b ∈ Z≥0, a < b, Iα = [a, b];

∀α ̸= β, Iα ∩ Iβ = ∅
}
.
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For vs, vt as before, we define a sheaf F2 over T stalk-wise
as follows

F2(v)

=


{⊥} × Out(v)× Z≥0 × {0} × {0} if v = vs
In(v)× {⊥} × {0} × Z+ × Z+ if v = vt(
In(v)× Out(v)× Z≥0 × Z+ × Z+

)
∪{⊥} otherwise

F2(e) =
(
Z≥0 × Z+

)
∪ {⊥}

Let x = (ei, eo, w, t, d) or ⊥. Then the restriction maps are
defined as follows

F2(v ≤ e)(x)

=



(w +m, 1) if ei =⊥, e = eo,
[w,w +m] ⊆ Iα ∈ f(e)

(t, d) if e = ei,
[t−m, t] ⊆ Iα ∈ f(e)

(t+ w +m, d+ 1) if ei ̸=⊥, e = eo,
[t+ w, t+ w +m]
⊆ Iα ∈ f(e)

⊥ otherwise

The global sections of F2 correspond to temporal paths from
vs to vt over T that are viable for transmission.
Remark 6.3. In this model, we assume that transmissions
across a link must be uninterrupted. If the availability of
a link has measure zero, then the link is not represented
in the model temporal graph. Furthermore, in this model
we prune the availability of temporal network links in their

model temporal graph edges as follows: Let l be a link in the
temporal network whose availability does not have measure
zero and let el be the edge in the model temporal graph that
represents the link l. If l is available at t and ∄a ∈ R such
that l is available for the entire interval [t− a, t+ a], then el
is not available at t.

Transmission time across links in a temporal network need
not be uniform. We construct a new model that allows for
nodes and links to be time varying, and entails a functions
m : ET → Z+ that assigns transmission times to each edge.
We will restrict to the cases where for all e ∈ ET and v ∈ VT ,
f(e) and g(v) are the unions of collection of non-negative
integral endpoint intervals, given by

f : ET →
{
{Iα∈A⊆N} : a, b ∈ Z≥0, a < b, Iα = [a, b];

∀α ̸= γ, Iα ∩ Iγ = ∅
}

g : VT →
{
{Iβ∈B⊆N} : a, b ∈ Z≥0, a < b, Iβ = [a, b];

∀β ̸= γ, Iβ ∩ Iγ = ∅
}
.

For vs and vt as before, we define a sheaf F3 over T stalk-
wise as follows

F3(v) =


{⊥} × Out(v)× Z≥0 × {0} if v = vs
In(v)× {⊥} × {0} × Z+ if v = vt(
In(v)× Out(v)× Z≥0 × Z+

)
∪{⊥} otherwise

F3(e) = Z+ ∪ {⊥}.

Let x = (ei, eo, w, t) or ⊥, then the restriction maps are
defined as in Equation 4.

F3(v ≤ e)(x) =



w +m(e) if ei =⊥, e = eo, [0, w] ⊆ Iβ ∈ g(v), [w,w +m(e)] ⊆ Iα ∈ f(e),
w +m(e) ∈ Iγ ∈ g(Head(e))

t if e = ei, t ∈ Iβ ∈ g(v), [t−m(e), t] ⊆ Iα ∈ f(e), t−m(e) ∈ Iγ ∈ g(Tail(e))
t+ w +m(e) if ei ̸=⊥, e = eo, [t, t+ w] ⊆ Iβ ∈ g(v), [t+ w, t+ w +m(e)] ⊆ Iα ∈ f(e),

t+ w +m(e) ∈ Iγ ∈ g(Head(e))
⊥ otherwise

(4)

The global sections F3 correspond to temporal paths from vs
to vt over T , where vertices and edges are time-varying, that
are viable for transmission.

Remark 6.4. Just as with the model associated to the sheaf
F2, this model assumes that transmissions across a link must
be uninterrupted and prunes link availability in their model
edge representation in the same way.

The time-varying capacities of links in a temporal network
can be modelled by assigning functions, that take in the time
as input and output the link’s capacity, to the edges of a
temporal graph. Let f : ET → {step functions over R} and
m ∈ Z+ be the message size. Let vs be a specified source

vertex and vt a specified target vertex. A temporal path
sheaf T PS on T is defined stalk-wise as follows

T PS(v) =


{⊥} × Out(v)× Z≥0 × {0} × {0} if v = vs
In(v)× {⊥} × {0} × Z+ × Z+ if v = vt(
In(v)× Out(v)× Z≥0 × Z+ × Z+

)
∪{⊥} otherwise

T PS(e) =
(
{[a, b] : a, b ∈ Z≥0 and a < b} × Z+

)
∪ {⊥}

Let x = (ei, eo, w, t, d) or ⊥. Then the restriction maps are
defined as in Equation 5.
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T PS(v ≤ e)(x) =



([w,w + a], 1) if ei =⊥, e = eo and ∃a = min
r∈Z+

{
m ≤

∫ w+a

w

f(e)dµ

}
([t− a, t], d) if e = ei and ∃a = min

r∈Z+

{
m ≤

∫ t

t−a

f(e)dµ

}
([t+ w, t+ w + a], d+ 1) if ei ̸=⊥, e = eo, and ∃a = min

r∈Z+

{
m ≤

∫ t+w+a

t+w

f(e)dµ

}
⊥ otherwise

(5)

The global sections of a temporal path sheaf T PS correspond
to temporal paths from vs to vt in T that are viable for
transmission.
Remark 6.5. This model allows for interruptions in transmis-
sion across a link.

Let S ⊂ VT be a non-empty source set and T ⊆ VT \ S be
a non-empty target set. A generalized temporal path sheaf
GT P on T is defined stalk-wise as in Equation 6.

GT P(v) =

({⊥} × Out(v)× Z≥0 × {0} × {0}) ∪
(
In(v)× Out(v)× Z≥0 × Z+ × Z+

)
∪ {⊥} if v ∈ S(

In(v)× {⊥} × {0} × Z+ × Z+
)
∪
(
In(v)× Out(v)× Z≥0 × Z+ × Z+

)
∪ {⊥} if v ∈ T(

In(v)× Out(v)× Z≥0 × Z+ × Z+
)
∪ {⊥} otherwise

GT P(e) = ({[a, b] : a, b ∈ Z≥0 and a < b}) ∪ {⊥}

(6)

Let x = (ei, eo, w, t, d) or ⊥. Then the restriction maps are defined as in Equation 7.

GT P(v ≤ e)(x) =



([w,w + a], 1) if ei =⊥, e = eo, and ∃a = min
r∈Z+

{
m ≤

∫ w+a

w

f(e)dµ

}
([t− a, t], d) if e = ei, and ∃a = min

r∈Z+

{
m ≤

∫ t

t−a

f(e)dµ

}
([t+ w, t+ w + a], d+ 1) if ei ̸=⊥, e = eo, and ∃a = min

r∈Z+

{
m ≤

∫ t+w+a

t+w

f(e)dµ

}
⊥ otherwise

(7)

Global sections of a generalized temporal path sheaf GT P
correspond to the disjoint union of temporal paths from
vertices in the source set to vertices in the target set in T .
Remark 6.6. The generalized temporal path sheaf construc-
tion is analogous to the generalized distance path sheaf con-
struction over a static graph. If the source set or the target
set consist of exactly one vertex, then the global sections of
GT P correspond to temporal paths from the source vertex to

vertices in the target set or from vertices in the source set to
the target vertex, respectively.

Let vs ∈ VT be a specified source vertex and let T ⊆ VT \
{vs} be a non-empty target set. A temporal multi-target
path sheaf TMP on T is defined stalk-wise as in Equation
8

TMP(v) =


{⊥} × Out(v)× Z≥0 × {0} × {0} if v = vs(
In(v)× {⊥} × {0} × Z+ × Z+

)
∪
(
In(v)× Out(v)× Z≥0 × Z+ × Z+

)
if v ∈ T(

In(v)× Out(v)× Z≥0 × Z+ × Z+
)
∪ {⊥} otherwise

TMP(e) = ({[a, b] : a, b ∈ Z≥0 and a < b}) ∪ {⊥}

(8)

The restriction maps are defined as for GT P . Global section
of a temporal multi-target path sheaf TMP are temporal
paths in T that begin at the source vertex, contain every vertex
in the target set, and end at a vertex in the target set.

Temporal Hypergraphs

For networks with broadcast, multicast or anycast capabil-
ities, it may be useful to model them using hypergraphs.
When such such networks are time-varying, then they can be
modelled using temporal hypergraphs.

Definition 6.7. A temporal, or time-varying, (un)directed
hypergraph H = (VH , EH , f, g) consists of a vertex set VH ,
a hyperedge multiset EH , a function f : EH → 2R≥0 , and a
function g : VH → 2R≥0 . The functions f and g specify,
respectively, at what times the hyperedges and vertices are
available.

We can extend some of the sheaf constructions over temporal
graphs to temporal hypergraphs. We will restrict to the cases
where the intervals on which the hyperedges and vertices
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are active have non-negative integer endpoints, defined in a
similar manner as for temporal graphs. We will also define a
function m : EH → Z+, that specifies the transmission time
across a hyperedge. Let T (H) = (VT (H), ET (H), ĝ, m̂) be
the bipartite graph associated with the hypergraph H , where

ĝ(v) =

{
g(v) if v ∈ VH ⊆ VT (H)

f(v) if v ∈ EH ⊂ VG(H)

and m̂(e) = m(v) where e is incident to v and v ∈ EH ⊂
VT (H).

Let vs ∈ VH be a specified source vertex and vt ∈ VH be a
specified target vertex. A temporal hypergraph path sheaf
T HS on T (H) is defined stalk-wise as in Equation 9.

T HS(v) =


{⊥} × Out(v)× Z≥0 × {0} if v = vs
In(v)× {⊥} × {0} × Z+ if v = vt(
In(v)× Out(v)× Z≥0 × Z+

)
∪ {⊥} if v ∈ VH ⊆ VT (H)(

In(v)× Out(v)× {0} × Z+
)
∪ {⊥} if v ∈ EH ⊂ VT (H)

T HS(e) = Z+ ∪ {⊥}

(9)

Let x = (ei, eo, w, t) or ⊥. Then the restriction maps are defined as in Equation 10.

T HS(v ≤ e)(x) =



w + m̂(e) if v = vs, e = eo, [0, w] ⊆ Iβ ∈ ĝ(v), [w,w + m̂(e)] ⊆ Iγ ∈ ĝ(Head(e))
t if v ∈ VH ⊆ VT (H), e = ei, t ∈ Iα ∈ ĝ(v), [t− m̂(e), t] ⊆ Iα ∈ ĝ(Tail(e))
t+ w + m̂(e) if v ∈ VH ⊆ VT (H), e = eo, [t, t+ w] ⊆ Iα ∈ ĝ(v),

[t+ w, t+ w + m̂(e)] ⊆ Iα ∈ ĝ(Head(e))
t if v ∈ EH ⊂ VT (H), e = ei, [t− m̂(e), t] ⊆ Iα ∈ ĝ(v), t− m̂(e) ∈ ĝ(Tail(e))
t if v ∈ EH ⊂ VT (H), e = eo, [t− m̂(e), t] ⊆ Iα ∈ ĝ(v), t ∈ ĝ(Head(e))
⊥ otherwise

(10)

Global sections of a temporal hypergraph path sheaf corre-
spond to paths in H from vs to vt.

7. WEIGHTED DOWKER COMPLEXES
Weighted Dowker Complexes are abstract simplicial com-
plexes that are formed according to a specific binary relation
between two sets [16]. Essentially, this creates a “geometric”
object out of formal relationships between sets; for example,
it can create sets of edges and vertices. Past work with
weighted Dowker complexes has been centred around their
usage as topological constructions and their topological prop-
erties. The topological constructions of weighted Dowker
complexes also allow statistical methods to be applied.

We wish to use these tools in order to allow for greater
specificity within solar system internet structures. Specifi-
cally, we wish to use weighted Dowker complexes to call
particular structures within the theoretical models of delay
tolerant networks.

In a graph, an edge must have either one or two vertices (one
if it is a loop), and these vertices must be members of the
graph. Worded differently, a graph is a set of sets which are
closed under subsets. While this sounds pedantic, it illustrates
the more general notion of an abstract simplicial complex.
Definition 7.1. An abstract simplicial complex, or ASC, is
a collection of finite nonempty sets T such that if N ∈ T ,
then so is every nonempty subset of N .

Typically in an ASC, sets of size 3 are represented as faces,
sets of size 2 are represented as edges, and sets of size 1 are
represented as vertices.

Example 7.2. The first example of an ASC is given below,
and illustrated in Figure 14.

T ={{A,C,D},
{A,C}, {A,D}, {B,C}, {C,D},
{A}, {B}, {C}, {D}}.

Notice that T is closed under taking subsets.

A

B

C

D

Figure 14. Example abstract simplicial complex

Remark 7.3. If we declare that

T ′ ={{A,C,D},
{A,C}, {A,D}, {B,C}, {C,D}}

is an ASC, then we can assume that the ASC is generated by
T ′ as given. That is, there is a minimal ASC that contains T ′,
which is T as in the example.
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Definition 7.4. Let X and Y be sets, and let Z be any relation
on X and Y (formally, Z ⊆ X×Y . Then a Dowker complex
N(X,Y, Z) is an abstract simplicial complex constructed
according to the rules of a binary relation between two sets.
It is given by the following definition [17]:

N(X,Y, Z) ={[xi0 , . . . , xik ] | ∃y ∈ Y such that
(xij , y) ∈ Z for all j = 0, ....k}

Example 7.5. Let

X1 =[A,B,C,D] and
Y1 =[1, 2, 3, 4, 5, 6, 7, 8].

A relation between X1 and Y1 is defined by R1, as shown by
the following matrix:

R1 =

1 2 3 4 5 6 7 8 A 1 0 1 0 1 1 1 1
B 0 1 0 0 0 0 0 0
C 0 1 0 1 1 1 1 1
D 1 0 1 1 1 1 1 1

This R1 matrix can then be interpreted as a Dowker complex,
in which the matrix rows (X1) are represented as vertices and
the matrix columns (Y1) denote which vertices are connected.
In fact, R1 gives rise to the same ASC as in Figure 14. To see
this, the first column corresponds to the segment joining A
and D, and the fifth column corresponds to the face joining
A, B, and D. While the edge joining A and C does not appear
in the relation explicitly, it must be added for this relation to
generate a valid ASC.

Note that in the example, the face ACD has multiplicity 4,
namely from columns 5 through 8. A Dowker complex can
be extended to retain this information.

Definition 7.6. A weighted Dowker complex is a Dowker
complex that records the number of times a matrix column is
repeated. This number is placed next to the corresponding
vertex or edge. If multiple columns form a face on the
weighted Dowker complex, the number is placed onto the
corresponding face.

Example 7.7. Using the matrix from the previous example,
we can begin to note which matrix columns (Y1) repeat.

We note that where Y1 = [1, 3], the columns have identical
values. They are indicated in bold.

R1 =

 1 0 1 0 1 1 1 1
0 1 0 0 0 0 0 0
0 1 0 1 1 1 1 1
1 0 1 1 1 1 1 1


We note that where Y1 = [5, 6, 7, 8], the columns also repeat.
They are indicated in italics.

R1 =

 1 0 1 0 1 1 1 1
0 1 0 0 0 0 0 0
0 1 0 1 1 1 1 1
1 0 1 1 1 1 1 1


This gives rise to the weighted Dowker complex in Figure 15.

A

B

C

D

2 1

1

4

Figure 15. Example weighted abstract simplicial complex

Formally, the total weight is a function t, t: N(X,Y,Z) → N,
given by [17]

t(σ) = #(y ∈ Y : (x, y) ∈ N for all x ∈ σ).

Definition 7.8. A dominating set for a graph G = (V,E) is a
subset C of V such that all vertices not in C are adjacent to at
least one member of C. The number of vertices in a smallest
dominating set for G is known as the dominating number.

Example 7.9. Let G be the graph on vertices {1, 2, 3, 4, 5, 6}
as shown in Figure 16. A possible dominating set is shown
in blue highlighted vertices; the dominating set on the right
of the graph shows how considering a dominating set can
simplify the graph at hand. In this case, the original graph
has three connected components, so the dominating set must
have three connected components as well.

1
2

3

4

5

6
2 5 6⇒

Figure 16. Example dominating set.

Example 7.10. Dominating sets can give rise to weighted
Dowker complexes. Firstly, we must convert the dom-
inating set to a binary matrix. To continue the previ-
ous example, assume that X1 = [2, 5, 6] and Y1 =
[1, 2, 3, 4, 5, 6, (1, 2), (2, 3), (4, 5)]. Here the ordered pairs
represent edges.

R1 =

1 2 3 4 5 6 (1, 2) (2, 3) (4, 5)[ ]2 1 1 1 0 0 0 1 1 0
5 0 0 0 1 1 0 0 0 1
6 0 0 0 0 0 1 0 0 0

We then can use the resulting R2 matrix to form a weighted
Dowker complex, as shown in Figure 17.

2 5 6

5 3 1

Figure 17. Example weighted Dowker of a dominating set.

Remark 7.11. Weighted Dowker Complexes have the ability
to be placed on time-varying graphs and can choose new
dominating sets even as the underlying graph changes.
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Example 7.12. Figure 18 illustrates a time-varying network
with a choice of time-varying dominating sets below the
graphs. This shows how the dominating sets can simplify the
network dynamics in terms of local connections.

1

2

3

T0

⇒

3

1

2 3

4 5

T1

⇒

2 4

1

2

3

4

5

T2

2 3

Figure 18. Example time-varying graph with associated
time-varying dominating sets shown below.

In a sense, sheaves are for restricting the domains of func-
tions. Their dual, cosheaves, are for gluing objects together
[18]. Dowker complexes in particular have been used to form
cosheaf constructions [17].

Definition 7.13. Let G = (VG, EG) be a graph. A cosheaf
F̂ is an assignment of

• a set or algebraic object (e.g. a vector space) to each vertex
and edge of G, and

• a mapping (of sets, linear, etc.) F̂(v ⇝ e) : F̂(e)→ F̂(v),
called an extension map, for all vertices v incident to edges
e. Additionally, F̂(h) is referred as the costalk of F at h
where h ∈ VG ∪ EG.

8. CONCLUSION AND FUTURE WORK
In this paper we made several contributions to the modeling
of space networks with scalability in mind. This includes the
ability to attach network areas together, such as scheduled and
non-scheduled domains. As such, we can begin to seriously
consider the SSI versions of such concepts as routing domains
or network areas or autonomous systems. We also considered
better tools to cover broadcast and multicast scenarios, using
hypergraphs, which for example will better capture routing
and discovery-style messages. The underlying nature of
these time-varying networks was also considered. It was
shown that the relationships between nodes and connections
in a network can be made geometric via Dowker complexes,
enabling the tools of e.g. algebraic topology to be applied.
As such, our advances enable research into addressing as
well as multi-domain routing for the Solar System Internet.
They also open the doors to future research and development
projects:

1. We assumed that hypergraphs are clutters. This is not
necessarily the case; one can see that a network that features
broadcast and multicast as having hyperedges contained in
other hyperedges. This generalization requires some results
to be recast.
2. Network coding has proven to be beneficial for reducing
energy and transmission bandwidth consumption of wire-
less (ad hoc) networks. One of the most notable result
would be a random linear coding (RLC) based broadcast
scheme constructed by Fragouli, Widmer, and Le Boudec in

[19]. However, such results are often not directly applicable
to DTNs due to their peculiar features. We suggest that
network coding can be further studied through the lens of
sheaf cohomology, pioneered by Ghrist and Hiraoka in [20].
Ghrist and Hiraoka developed a concept of network coding
(NC) sheaf, and discovered that the information flows on the
network is equivalent to the zeroth cohomology of NC sheaf.
Further research studying multi-source/target/cast NC sheaf
is required.
3. The types of problems Hansen and Ghrist addressed in
their paper [15] did not involve any constraints with inequal-
ities. Hence, we expect that the method suggested by Hansen
and Ghrist in can be simplified using Lagrange multipliers
instead of KKT optimality condition for some cases. Indeed,
if a problem involves inequality constraints, then KKT con-
dition must be used. We also anticipate the study of gradient
descent can open a door for lots of other novel optimization
methods to join in for sheaf settings, such as the method by
Nesterov [21] of approximating a non-smooth functions into
smooth functions.
In this paper, we suggested a formulation of shortest path and
max-flow-min-cut problem into optimization problems with
sheaf Laplacian, as Hansen and Ghrist in [15] did for signal
recovery and predictive control problem. We expect that
more graph optimization problems (dominating set, graph
partitioning, spanning tree, etc.), as well as distributed con-
sensus and synchronization problem can be studied from this
direction of approach.
4. With regard to the sheaf pullbacks that were explored in
this paper, we hope to further generalize path sheaves beyond
sequential networks. Doing so requires care in ensuring that
global sections of such a sheaf do not grow in number to a
point where they lose their significance to routing problems.
5. While the carry-over sheaf explored in the sheaf pullback
section is primitive, we hope to build more robust sheaves
that differentiate between data retrieved from each layer of
the network.
6. Algebraic Geometry has played a large part in our framing
of routing problems. As such, we have some ideas for how
routing problems can be re-framed as moduli problems. In
particular, we have looked into varieties associated to graphs
that arise from LSS ideals [22]. It is our speculation that we
could model the loss of edge connectives between vertices, by
piecing together the associated LSS varieties in a consistent
way. If so, we speculate that there may be such a way to do
so for hypergraphs as well.
7. A Python-based sheaf package, PySheaf, can be used
to start bridging these results and network simulations to
demonstrate the new capability of multi-domain routing in
DTNs.
8. Using the tools developed and extended in this paper, the
structure (e.g. topology of and nature of continuous maps
between) temporal graphs can be determined or even induced.
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