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Abstract—The expanding presence in space will place an in-
creased dependency on networked communications – a scal-
able communications infrastructure; that is, the Solar System
Internet (SSI). Upcoming developments towards a SSI include
NASA’s upcoming LunaNet, or lunar Internet, which provides
multi-hop multi-path communications using Delay Tolerant
Networking (DTN). DTN has been an active area of research
and development, particularly in routing, security, and opti-
mization. DTNs are marked by mobility, disconnection, and a
wide variance of latencies (propagation and processing delays).
In this paper, we outline progress towards a theory of time
synchronization across such a network.

An underlying assumption of DTN is that the network is time
synchronized already, rather than synchronization being pro-
vided as a service. While this is necessary for schedule-based
routing, which is necessarily prevalent in DTNs, it is so deeply
ingrained as to be built into the primary unit of data in DTNs
– the bundle. Indeed, a bundle’s creation timestamp and its
time to live (called the lifetime) are based on time, and there
are special recommendations for systems that lack accurate
clocks. The assumption of time synchronization makes sense
when limiting considerations to smaller-scale and more tra-
ditional space communication. However, just as end-to-end
connectivity cannot be guaranteed in DTNs, neither can access
to a reference or authoritative clock. In this more general case,
it might be necessary to synchronize over time-varying meshes,
and perhaps even to consider relativistic effects. Moreover,
by imposing synchronization restrictions in order to sustain a
network, the effectiveness of the network to achieve scalability
will be necessarily muted.

To work towards a time synchronization theory for DTNs, we
build upon past successes in modeling DTNs using time-varying
graphs and sheaves. This includes error and limitation estima-
tion, which allows one to define domains over which schedule-
based routing is possible, up to some threshold sensitivity. De-
spite the theoretical nature of these results, the approaches taken
are also algorithmic, and hence lend themselves to practical
implementations. The paper concludes with comparisons of the
various methods along with suggestions for future work.
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1. INTRODUCTION
Communication is key to the success of most missions,
whether terrestrial or space-based. NASA’s current approach
to the upcoming Solar System Internet (SSI) is to develop
and implement a Delay/Disruption Tolerant Network (DTN),
which is a suite of communication protocols that are not
susceptible to intermittent connectivity, high latency, and
variable delays [1]. DTN is a well-studied topic and there
are at least three directly relevant RFCs—4838, 5050, and
9171—defining necessary specifications and required archi-
tectures. Other RFCs—5326, 6255, and 7242—cover further
implementation details and extensions, as well as security
considerations—RFC 5327, 6257, and 9172. Despite this
body of work, DTN has not yet been fully integrated into
NASA’s Near Space Network (NSN) for human missions
or interplanetary (IPN)1 missions due to several identified
issues, such as scalability and practicality. Another prominent
issue, which is the topic of this paper, is global clock syn-
chronization. In what follows, we introduce and motivate the
problem of clock synchronization, survey existing work, and
then outline several novel fundamental structures to support
time synchronization in DTNs.

Clock synchronization is a long-standing problem in com-
puter networks and distributed systems. Even though it is
not a strict requirement for widely-used network protocols
on Earth, such as TCP/IP, the vast majority of popular or
advanced programs have precise synchronization of clocks
across the network as a necessary condition for their accurate
performance [2]. For instance, clock synchronization errors
could hinder performance of navigation systems [3], data
transmissions and signal modulations [4], and even commu-

1For the sake of simplicity, the term ‘IPN Internet’ may be used interchange-
ably with ‘SSI’ throughout this paper.
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nication programs such as messaging applications in our daily
life. In a general sense, navigation and distributed appli-
cations are limited by the network’s ability to synchronize.
Because the vast majority of space missions are time sensitive
and schedule-driven (prior to and during their execution),
these limitations apply to DTNs as well. Numerous mission-
critical DTN applications such as communication/navigation
(LunaNet) [5], routing [6], [7], congestion control [8], and
network simulation [9] are known to function accurately only
when there is a global clock synchronization achieved across
the entire network.

It is well-known that DTNs, as specified in the above RFCs,
must maintain global time synchronization in order to guaran-
tee its network-wide accurate and efficient performance [1],
[10], [11]. Moreover, time synchronization is assumed to
be provided as an external service rather than as a service
provided by the network [12]. We should note that achieving
time synchronization across a DTN is believed to be tractable,
as demonstrated in [13], [14], and [15], especially in small-
scale settings. However scaling these solutions is believed
to be exponential in the number of nodes in the network,
and is especially vulnerable to non-deterministic events, thus
making synchronization an ongoing challenge [10]. In par-
ticular, asymmetric data rate and delays, invalid or unsuc-
cessful (re)transmission, and radioactive and electromagnetic
interference are all what makes global time synchronization
over SSI consistently problematic [16]. As a final motivating
example, the DTN definition of time to live (TTL) is time
based (as opposed to hop based), yet in RFC 4838 expired
data are not necessarily deleted, in part due to time sync
difficulty.

Organization of the Paper

The primary purpose of this paper is to exhibit potential
mathematical and algorithmic approaches to achieve global
clock synchronization over DTNs that scale well and are
hence suitable for large-scale or time-sensitive missions. The
next section is dedicated to giving an overview of the current
architecture of DTN (RFCs 4838 and 9171) while explain-
ing the reasons that global clock synchronization in DTN
is necessary, yet unresolved. This paper also provides an
introduction to computer clocks and clock synchronizations
for terrestrial internet, as well as a brief summary of previous
works regarding time synchronization on DTNs. Finally,
the heart of this paper is dedicated to introducing several
mathematical concepts and structures, such as dominating
sets and cellular sheaves, that can be used to address clock
synchronization. The paper concludes by discussing future
directions for research.

2. NETWORK ARCHITECTURE
Internet vs. DTN-based Solar System Internet

The (terrestrial) Internet is based on the Internet Protocol
suite, which is systematically modeled as a layer/stack of
protocols and is largely broken down into five layers: Appli-
cation, Transport, Network, Link, and Physical layer. Briefly,
the application layer is responsible for supporting network
applications (e.g. HTTP, SMTP, DNS, etc.), the transport
layer is for process-to-process data transfer and encapsulation
of messages from application layer, the network layer is for
delivering segments from one node to another, the link layer
is for transferring packets from one node to its neighbors, and
the physical layer is for moving bits from one node to another
connected node [17]. One also simply refers to Internet

Protocol suite as TCP/IP, as TCP and IP are the most widely
used principle protocols today for the transport layer and
network layer, respectively. The ability to use TCP is predi-
cated on end-to-end connectivity and “reasonable” round trip
times, among other things. Having these assumptions met
enables time synchronization as we know it: the Network
Time Protocol (NTP).

DTNs are protected against intermittent connectivity, high
latency and delays as they use store-and-forward methods to
move packets from one place to another. This separates (and
really, generalizes) DTNs from the classical Internet. More-
over, just as TCP/IP may rest on top of Ethernet or 802.11,
so too is DTN an overlay, which may rest on a multitude
of underlying protocol stacks connecting space and ground
assets. These links are typically point-to-point scheduled
contacts, and may have multiple characteristics in terms of
latency, variance of latency, asymmetry of rates, and even
protocol stacks. At its core, DTN must aggregate disparate
space links into a network, where neither the individual links
nor their aggregation can be assumed to support NTP.

To aggregate these links, the data structure used in DTNs
is called a bundle, which may be of effectively any size.2
Thus DTN adds a layer called the bundle layer between the
application and transport layers. Currently, the most well-
known protocol that resides in bundle layers is the bundle
protocol (BP), which was initially defined and specified in
RFC 5050. TCP or UDP can be used for the transport layer,
but it is also compatible with Licklider transmission protocol,
or LTP (RFC 5326), which is a convergence layer protocol
specifically developed for space communication networks
that resides in the transport layer; see [18] for examples and
further detail.

Bundles and Their Lifespans

Once an application residing in the application layer of a
DTN node passes a message down to the bundle layer, the
message then gets “encapsulated” in a bundle by getting a
block of information (which we will refer to as the bun-
dle header in this paper) prepended to the message. This
encapsulation can be done in a way similar to how it is
done on the Internet, for example, as how an application-
layer message is passed down and becomes a transport-
layer segment by having a transport-layer header cascaded
in front of the application-layer message. Every bundle
header comes with a creation timestamp (or “timestamp”) and
lifespan, measured in (milli)seconds from a given epoch. The
timestamp denotes the creation time of the bundle and the
lifespan gives the time at which the bundle (message) is no
longer valid and hence needs to be purged. Here, one may
immediately observe that inconsistency of time over nodes
in a DTN could cause misinterpretation of times written in
timestamps and the lifespan fields of bundle headers. There
are additional reasons that accurate timestamps and lifespans
are necessary for every bundle. The timestamp of a bundle
along with endpoint identifiers (EIDs) allows that bundle to
be uniquely identified. This is needed for the assembly of
bundles or bundle fragments, but can be done only when
basic global time synchronization is provided [6]. Also,
time synchronization is required for having accurate sleep
schedule protocols, which can be used to save energy by
setting infrequently used nodes into sleep mode [19], [14].

A simulation conducted by NASA Glenn Research Center

2For bundles to be made compatible with lower-layer protocols, the so-called
convergence layers must be used.
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(GRC) with Surrey Satellite Technology Ltd (SSTL) and Uni-
versal Space Network (USN) at Alaska gives experimental
evidence that global time synchronization is a necessary con-
dition. Bundles were configured and sent from NASA GRC
to Guildford, England, and then sent from Guildford to USN.
Even if all three clocks were synchronized at the beginning,
clock drifts had occurred during the course of the experiment,
which resulted in discrepancies in timestamps, and hence to
unplanned rejection and expiration of bundles. The problems
were resolved after clocks were all synchronized again. This
demonstrates the importance of global time synchronization
for the successful operation of DTNs in practice; see [20] and
[11] for more details about this experiment.

Characteristics of DTN

By construction, DTNs are often said to be analogous to the
postal service due to their store-and-forward property [1].
BY comparison, the Internet is considered more akin to an
airline in functionality, as generally described in introductory
computer networking textbooks such as [17]. The TCP/IP-
based Internet fully serves its purposes only when continuous
end-to-end connections and synchronous communications
between nodes are guaranteed. For instance, TCP establishes
a connection between two nodes based on its three-way hand-
shaking process, which is susceptible to latencies and packet
loss by its design. However, DTN’s underlying assumptions
of prevailing delays and disruptions make the nature of their
communications asynchronous or partially synchronous [21].
To be precise, we say communication is asynchronous if there
is no upper bound on message delivery time, and is partially
synchronous if either the upper bound of message delivery
time exists but not known to the nodes or it is known but will
apply only after a certain amount of time that no processes
know (i.e. the message sent from a node will be delivered to
the other node eventually, but no one knows when it is going
to be exactly) [22]. This concept shall be revisited in later
sections of this paper.

Moreover, TCP/IP provides reliable data transfer but does
not always guarantee delivery. It may discard packets for
congestion or flow control purposes, e.g. if no free buffers
are available in the queue of a router, or if another end-point
is unavailable or unreachable. DTNs prevent such packet
losses by utilizing persistent storage along with network-layer
acknowledgments (called custody transfer); instead, DTN
purges expired bundles based on their lifespan and timestamp
to preempt storage overflows or congestion in bundle layers
[10]. Studying methods of managing buffers and storage
for bundle layers efficiently (such as [23]) is another current
topic of research. Consequently, DTNs are more suitable than
TCP/IP-based networks for communications under extreme
settings, such as: military [24], satellite [25], or space (both
near and deep) [26] where disruptions can be present at any
times or occur unexpectedly. See [27] for more examples and
their details.

3. PRELIMINARIES
Computer Clock Model and Time Synchronization

The formal scientific definition of a second is the time it takes
Caesium-133 (133Cs) atom to make 9,192,631,770 cycles of
radiation [28], and a clock made with 133Cs atoms is called an
atomic clock. It is, however, not practical to distribute atomic
clocks to the general public due to their price and size, so the
vast majority of computers today have an embedded oscillator
(circuit) called a hardware clock designed to keep track of ac-

curate time. A software clock then calculates a second based
on the number of oscillations that its hardware clock made.
More specifically, if a hardware clock is supposed to oscillate
F times per second, then its software clock increments the
second by 1 once its hardware clock oscillates F times (or
increments by 1/F if it oscillates 1 time). With this said,
software clocks are totally dependent on the behavior of their
hardware clocks, so a malfunction of a hardware clock could
lead its software clock to return incorrect values; for example,
a temperature increase in a machine could cause the hardware
clock to oscillate faster than it is supposed to, causing a clock
skew.

A software clock can be modeled as a function returning a
numerical value that happens to be (or is supposed to be)
asymptotically close to the real-time [29]. To model this, let
Cp(t) be the value of the software clock and Fp(t) be the
frequency of the hardware clock at time (e.g. UTC) t on
machine p. Let F be the ideal frequency, i.e. Cp(t) = t
for all t if Fp(t) = F for all t. For simplicity, suppose that
the clocks were synchronized when t = 0, i.e. Cp(0) = 0 for
all p. Define clock drift rate as the difference in time from a
perfect clock, and ρ be the maximum clock drift rate (usually
given by manufacturers). Consequently, for all t and p [29],∣∣∣∣Fp(t)− F

F

∣∣∣∣ ≤ ρ ⇐⇒ 1− ρ ≤ Fp(t)

F
≤ 1 + ρ. (1)

Assume for mathematical convenience that Fp : [0, t] → R
is bounded and continuous almost everywhere (a.e.) for
all t ∈ R. Between time 0 and t, the hardware clock with

frequency Fp would have oscillated
∫ t

0

Fp(τ) dτ times. Note

that Fp is integrable due to Lebesgue integrability criterion.
By definition,

Cp(t)− Cp(0) =
1

F

∫ t

0

Fp(τ) dτ .

By the fundamental theorem of calculus, Cp is differentiable
(hence continuous) on (0, t), and

dCp(t)

dt
=

Fp(t)

F
. (2)

Indeed, the ideal scenario would be where Cp(t) = t and
dCp(t)/dt = 1 for all t and p. Combining Equation (1) and
(2) gives us the following [30]

1− ρ ≤ Fp(t)

F
=

dCp(t)

dt
≤ 1 + ρ ∀t, p. (3)

The smaller ρ ∈ (0, 1) is the more accurate clock we have
as it is closer to the most ideal scenario mentioned above.
Since (definite) integration of positive continuous function
preserves inequalities (this can be proven using the mean
value theorem),

(1− ρ)t+ Cp(0) ≤ Cp(t) ≤ (1 + ρ)t+ Cp(0) (4)

Most of the computers today have ρ ≈ 10−6 [31] so, for
the purpose of mathematical modeling, Cp(t) can be approx-
imately computed as a first-order system

Cp(t) = αpt+ βp (5)

for some constants αp and βp.
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Figure 1. Depicts the range of error of a software clock

Even if two clocks were synchronized to the same correct
time (UTC, for example), they can be as much as 2ρ∆t
apart from each other at time ∆t, as described in Figure 2.
Although ρ is considered a small number, 2ρ∆t may still be
larger than the requirement of a system or network. Denote
the time we need to re-synchronize clocks to as tresync. Let π
be a constant that denotes our desired clock precision, i.e. the
maximum time deviation between any two machines at any
time [29] is

|Cp(t)− Cq(t)| ≤ π ∀t, p, q.
Since the maximum possible time deviation between two
clocks at t = tresync is 2ρtresync,

|Cp(t)− Cq(t)| ≤ 2ρtresync ≤ π ⇐⇒ tresync ≤ π/(2ρ),

meaning that we need to synchronize the clocks at least once
in π/(2ρ) unit time to maintain the clock precision π. See
Figure 2 for its plot. The discrete case where Fp and/or Cp are
discrete can be analyzed analogously; for example, a discrete
clock can be modeled as a continuous clock with an error up
to 1/2 [29].

Figure 2. Depicts desired precision, and hence, a
resynchronization window

Network Time Protocol (NTP)

The most natural approach to time synchronization would
be to constantly reach out to the designated time server
(preferably running an atomic clock or equivalent) for the
accurate time, or its approximation. Vendors of mainstream
operating systems typically have their own time server, which
users’ machines synchronize to. For example, Microsoft pro-
vides Windows Time service (w32tm in Command Prompt)
that periodically synchronizes the user’s software clock by
querying the time server time.windows.com.

The Network Time Protocol (NTP) is a time synchronization
protocol developed by Mills [32], [33]; more precisely, it

was first implemented by Mills, Mamakos, and Petry and
formally documented in RFC 958 in 1985, which is called
NTPv0 today. It evolved to NTPv1 (RFC 1059) a few years
later into a form where it is compatible with User Datagram
Protocol (UDP) and the Internet Protocol (IP), and the most
recent version of NTP currently (as of October 14, 2022) is
NTPv4 defined in RFC 5905 and 7822.

At a high level, NTP uses a version of an intersection algo-
rithm by Marzullo [34] that estimates the round-trip network
delay time by comparing the client’s clock to the time server’s
clock [33]. In more detail, suppose a client with computer p
sends a synchronization request message at t1, in the client’s
time, and the message arrives at the server at t2, in the server’s
time. The server then sends a reply message at t3, in the
server’s time, which arrives to the client at t4, in the client’s
time. We can first observe that it took (t3 − t2) seconds for
the server to process the synchronization request. From the
client’s perspective, the round-trip time of the message was
(t4 − t1), as it departed the client at t1 and returned back at
t4; see Figure 3 for a visual representation. Hence, it can be
said that it took approximately δ := (t4 − t1) − (t3 − t2)
seconds for a message to travel across the network.

Figure 3. Depicts message travel times

Assuming there was no major network disruption, we may
assume that the travel time (propagation delay) from client to
server is the same as from server to client. Then, by the time
the reply message from the server at t3 reaches the client,
which was t4 from the client’s perspective, the server’s clock
would be approximately t3 + δ/2. So the clock skew θ is

θ ≈
(
t3 +

δ

2

)
− t4 =

(t2 − t1) + (t3 − t4)

2
,

and the client then can adjust their clock accordingly based
on the θ above and Eq. 5. The client also may make multiple
synchronization requests to enhance the accuracy of their
clock as necessary.

Thanks to its accuracy, fault-tolerance, and scalability, most
of the popular time synchronization services today such as
Windows Time service were all implemented using NTP as
its core functionality [35]. Its variations have also been
used for several space missions such as time and frequency
transfer between satellites or stations [36]. However, NTP
is presumed to be not practical for DTNs in interplanetary
settings. As mentioned, NTP approximates its clock skew δ
based on the assumption that propagation delays will remain
the same for both directions of communications (client to
server and server to client). DTN’s nature of asymmetric data
rates renders such assumptions invalid. Moreover, NTP is
highly dependent on the fact that an end-to-end connection
between a machine and a clock server is continuous and stable
with minimal disruptions, which DTNs cannot guarantee.
When there is a disconnection between a node and the time
server, the node must stand by until the connection is re-
established, which could take more than a conceivable or
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tolerable amount of time. By the time when the node is
able to communicate with the time server, the error may have
already exceeded the acceptable range of error. By the same
reasoning, any NTP-like centralized protocols by themselves
are also speculated to be unsuitable for large-scale DTNs
[13]. There are also architectural reasons; in particular, NTP
is hierarchical in nature, dividing intermediary nodes from the
source to the client into strata, where the error accumulates
with additional strata. These hierarchies might not exist in a
DTN, which features temporal network structures that might
be more mesh-based.

Fault Tolerant Consensus: Byzantine General Problem

Recall that a set of computers is referred to as a distributed
system when it operates cooperatively as one coherent entity.
To successfully accomplish this, there must be a high level
of coordination occurring between devices, and an obvious
prerequisite for this condition is ensuring that every device
is ‘on the same page’ by achieving consensus on certain
values and data structures at times, as necessary. Consensus
algorithms are fault-tolerant in the sense that the system
must be able to reach consensus even in the presence of a
certain number of faulty nodes. There are numerous different
ways a node can fail and cause an error. Paxos [37], one
of the most commonly used consensus algorithms today, is
said to be crash fault-tolerant as it is capable of solving
consensus problems as long as more than half of the nodes
are responsive on time; more specifically, it is crash f -fault
tolerant as long as there are 2f + 1 or more nodes in the
system. However, Paxos can be ineffective if a system is not
fully synchronous, in an environment where connections are
frequently intermittent, or when processes/nodes can exhibit
Byzantine faults. A process or node is said to have Byzan-
tine fault if it behaves in an arbitrary or malicious manner.
There are other types of fault models: crash faults, described
above); omission faults, where messages are being lost; and
timing faults, where response time is not within an acceptable
range. By definition, the Byzantine fault model includes
omission faults and crash faults. Consequently, Paxos or
Paxos-like consensus protocols may not be sufficient for DTN
for SSI, as nodes can act arbitrarily and even unreliably. We
remark that by studying consensus proofs, we believe that
initial expectations and limitations of time synchronization
of DTNs can be more carefully formed.

A few Byzantine faulty nodes in a system, even if they take
less than 50% of the system, can cause catastrophic outcomes.
Consider a fictional scenario where three generals are seizing
a city with their armies, waiting to establish a common plan of
action – attack or retreat – which is crucial for them as they
must all attack the city simultaneously to win the battle. If
one general is a traitor who delivers contradicting messages
to the other generals (e.g. sending ‘attack’ to one general
and ‘retreat’ to another), then a general may receive two
conflicting messages and be unable to identify which is from
the traitor, and thus fail to reach consensus.

The preceding scenario is called the Byzantine General Prob-
lem. It was first resolved with mathematical proof by Lam-
port, Shostak, and Pease in [38] and [39]. In general, they
proved that a system must have more than 3f nodes to be up
to f Byzantine fault sufficient. To see that 3f + 1 is indeed
enough, let N be some sufficient number of nodes that allows
the system to tolerate f Byzantine faulty nodes. There would
be at least N − f non-faulty nodes and the system must be
designed to be able to reach consensus with N − f nodes,
i.e. N − f messages, for the liveness of the protocol. In
the worst case scenario, since there are f faulty nodes, f

out of N − f messages might have originated from faulty
nodes, making only (N − f) − f = N − 2f messages
being reliable at minimum. Since reliable messages must
outnumber unreliable messages,

f ≤ (N − 2f) + 1 =⇒ N ≥ 3f + 1,

and hence 3f+1 is a sufficient and minimum requirement. A
similar proof with the same logic can be found in [40] as well.
One can also directly prove that a system with N ≤ 3f nodes
will always fail. Figure 4 describes the case where N = 3
and f = 1, but this argument can be extended to N = 3f
case for all f .

Figure 4. A toy example demonstrating that the Byzantine
General Problem is unsolvable when N ≤ 3f . Note that

General 3 for both cases cannot make a final decision as to
who is the bad actor, i.e. in the top scenario, General 2 is

faulty, but in the bottom one, General 1 is faulty.

Lamport et al [38] also constructed a consensus algorithm
called Byzantine fault tolerance (BFT) algorithm for reaching
agreement with the presence of f Byzantine nodes. Once
a node acting as the leader sends out its message to every
other node, then every node that just received the message
broadcasts its received message to every other node as if it
has become a new leader of the system. However, such a
recursive (flooding) method would not scale well. It would
end up creating

(N − 1)(N − 2) · · · (N − (f + 1)) = O(Nf+1)

messages in total. This communication complexity can be too
high to deal with for networks with low-end devices or ones
with small throughput/bandwidth. Notice that this protocol
must be running over a synchronous (or at least partially
synchronous) system [41], as its consistency and correctness
are only guaranteed with an underlying assumption that every
message will be delivered from one node to another before
timeout. If nodes crash or messages get lost in transit, an
asynchronous system will be unable to detect this, thus this
protocol is unsuitable for DTNs.
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Byzantine Fault Tolerance over Asynchronous Settings

The main downsides of Lamport et al’s original solution
to the Byzantine General Problem in [38] was its com-
putational expense and incompatibility with asynchronous
settings. Liskov and Castro in [40] introduced Practical
Byzantine Fault Tolerance (PBFT) protocol which achieves
consensus in a distributed system with Byzantine failures and
asynchronous communication. Similar to the original results,
it could tolerate up to f faulty nodes given 3f + 1 nodes
in total. PBFT is often regarded as a combination of BFT
and Paxos due to its construction, though PBFT is not as
decentralized as Paxos and may not work well in a completely
asynchronous system.

The main idea of PBFT is state machine replication, which is
a commonly used method for building fault tolerant protocols
(see [42] for introduction). The PBFT protocol divides the
nodes in a system into three groups: client, primary, and
backups. In order to tolerate up to f faulty nodes, similar
to Lamport et al’s original protocol, PBFT requires (at least)
3f + 1 replica nodes – one node being the primary (leader)
and 3f nodes being the backups. The PBFT protocol is
then divided into five stages: request, pre-prepare, prepare,
commit, and reply. Each phase does roughly the following
(for more technical details, such as regarding how those
packets are constructed, see the original paper [40]):

(1) Request: Client sends a message m to a replica node re-
questing a change of a value/state. The replica node receiving
the message will now be the leader of this consensus process,
which we call the primary node.
(2) Pre-Prepare: Primary generates a sequence number
(often referred to as timestamp) N for the request m, then
broadcasts pre-prepare messages to all the backups (remain-
ing replicas). A pre-prepare message is a digitally signed
packet (signed by the primary with the signature σp) that
consists of the current view of the message m, sequence
number, and the digest (summary) of m.
(3) Prepare: Once a backup i receives a pre-prepare mes-
sage from the primary, it verifies the signature, makes sure
that the sequence number N has not been used before (or
is larger than other sequence numbers used before), then
confirms that they are in the same view as the primary for
m and the digest of m matches with the primary’s. Then
each backup broadcasts prepare messages signed with their
own digital signature σi to every other replicas. Each prepare
message from i contains i and the same information as the
pre-prepare message as what i received and verified.
(4) Commit: If a replica receives 2f + 1 pre-prepare mes-
sages and > 2f prepare messages, then that replica is said
to be in the status of ‘prepared certificate’ and broadcasts the
commit message to every other replica. The content/format
of commit messages is the same as prepare messages.
(5) Reply: Once a node receives more than 2f + 1 commit
messages, it goes into status of ‘commit certificate’ if it was
also in the ‘prepared certificate’ status. It then replies back to
the client with the result that they agreed upon.

Digital signatures can be replaced with message authenti-
cation codes (MACs). Liskov and Castro [40] claim that
using a MAC might be more practical than using a digital
signature because MACs can be computed and verified faster
than digital signatures. They compared a digital signature
scheme based on RSA-1024 (with MD5 used for computing
the message digest) with a MAC scheme using MD53. How-

3The authors did not specifically state it in their paper ([40]), but it appears
to be an HMAC.

Figure 5. A visual description of the five stages of PBFT
consensus protocol over four backups with one faulty node.

ever, given that we commonly use SHA-256 or SHA-512 for
hashing messages and RSA-2048 for digital signatures today,
we expect that this comparison may not be as accurate as
it used to be, not to mention that MD5 has been proven to
be insecure. This topic will be discussed in detail in a later
section, but, until then, we shall assume that this protocol was
implemented using MACs instead of digital signatures.

We now calculate the communication complexity of PBFT
with respect to the number of nodes n. The request stage uses
only one message, the pre-prepare stage up to n−1 messages,
prepare goes up to (n− 1)2, and commit and reply use up to
n(n − 1) and n messages respectively if verification results
are true. Hence, PBFT in total requires

1 + (n− 1) + (n− 1)2 + n(n− 1) + n = O(n2)

messages, which is a vast improvement over the previous or
original BFT consensus algorithms. Also, notice that every
node in the system replies back to the client. This makes the
PBFT a decentralized protocol despite the existence of the
primary node (leader) and also immune to Byzantine failure
of the leader node, yet it only creates O(n) messages and does
not contribute much negatively to the overall performance.
Another benefit of PBFT is the round complexity. Recall
that Lamport et al’s original solution required f + 1 rounds
of communications, but PBFT requires only three rounds of
communications (among replicas). PBFT is considered to
provide low latency and be energy efficient [43], making it
attractive to apply in various settings that are not tolerant to
long delays such as blockchain technologies [44].

To discuss the correctness of PBFT in-depth, we need to
look at the formal definition of correctness first. We largely
separate the correctness condition into two criteria: safety and
liveness, where safety is informally treated as ‘nothing bad
will happen’ and liveness is treated as ‘something good will
happen eventually’ [45]. More precisely, safety is when every
pair of non-faulty nodes agree upon the same value or order of
messages, and liveness is the guarantee that the protocol will
always terminate with a correct output given a correct input.
Formal definitions of safety and liveness from a mathematical
logic perspective can be found in [46]. From the consensus
viewpoint, one can interpret the safety property as partial
correctness and the liveness property as the total correctness
(correct for every input) [47]; thus, strictly requiring both
safety and liveness properties to hold could be an unnecessary
requirement in practice.

Combining safety, liveness, and practicality (or scalability)
altogether into one protocol is not an easy problem to solve.
In fact, Fischer, Lynch, and Paterson [48] proved that reach-
ing consensus over an asynchronous system is not possible
even in the case where only one node is faulty, Byzantine or
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not. This theorem is commonly referred as the FLP (Fischer-
Lynch-Paterson) impossibility theorem. This result may seem
to contradict the existence of asynchronous consensus proto-
cols. However, the FLP impossibility theorem only gives a
negative result to the existence of a deterministic consensus
protocol where both safety (correctness) and liveness (ter-
mination) hold for any input. For example, Byzantine fault
tolerance is unachievable in an asynchronous system as the
deterministic termination property cannot hold. However, for
the cases where the termination property is defined weakly
(i.e., the case where a faulty transmitter can result in a non-
termination), Byzantine fault tolerance can be achieved with
3f + 1 or more nodes [49].

Both Paxos and PBFT sacrificed liveness for safety, but
PBFT can also satisfy the liveness property in a partially
synchronous system. It is important to note that safety is
always guaranteed in PBFT protocol thanks to the two-step
verification system—prepared certificate and commit certifi-
cate. However, PBFT may not guarantee forward progress
without eventual synchrony. This means that an algorithm
must either have a timeout function or have synchronous
communication after a certain time period [50].

4. RELATED WORKS
Double-Pairwise Time Protocol

The Double-Pairwise Time Protocol (DTP), constructed by
Ye and Cheng in [13], is an extended version of NTP modified
to serve its purpose for networks with intermittent connec-
tions and asymmetric transmission rates. As mentioned, NTP
requires the end-to-end connections between a client and
the time server to be established continuously, and any link
disruption could halt the entire process, and such disruption
could continue for a long period of time. DTP is designed to
combat this issue by sending a pair of requests instead of a
single request at a time.

Ye and Cheng [13] make an analogy of describing the NTP
as a process of consecutive ping-pong between two ends (e.g.
see Figure 3), where the client sends a request message (ping)
and the server replies with its current time (pong). Then DTP
can be metaphorically described as a sequence of pingping-
pongpong’s. The client sends a synchronization request
message and then sends another one after a certain amount
of time (pingping). By doing so, we increase the chance
of both request messages being closely located in the buffer
of the time server. This makes both messages more likely
to undergo the same queuing delay, hence makes it easier
for us to approximate the network propagation delay. Once
the client receives replies to both requests from the server
(pongpong), it repeats the same process again multiple times.
The protocol then chooses the process with the minimum
difference between the two time differences – the difference
between two requests and between two replies – and use that
as a reference for estimating clock skews. Instead of fitting
the client’s clock closely to the reference clock as NTP does
(fixing the slope of the linear clock model (Eq. (5)) to be
αp = 1), DTP makes a linear approximation between the
reference clock and the client’s current clock.

As authors demonstrated [13], DTP is proven to be more
accurate than NTP on both types of networks: one with
intermittent connections and asymmetric transmissions (e.g.
DTNs) and the other without them (e.g. terrestrial internet).
However, DTP is still a NTP-like protocol assuming the
existence of the central time server or a reference node(s),

which SSI may not have or may be too distant to reach as
needed. Also, experiments were allegedly conducted under
the assumption where the time server (reference node) replies
almost immediately upon its recipient of the request message.
Although this is a reasonable assumption that does not inval-
idate the correctness of the protocol, this may not be able
to accurately capture the case of SSI where there might be
multiple decentralized time servers working collaboratively
to keep accurate clocks. Further details will follow shortly.

Consensus-based Clock Synchronization Protocols

Clock synchronization problem over a network can be re-
formulated as the problem of reaching consensus on time or
its approximation in the presence of faulty nodes. Such ap-
proaches have been popular for studying clock synchroniza-
tions on unstable decentralized networks such as mobile ad
hoc networks (MANETs). MANETs are distributed wireless
networks characterized with random movements of nodes
and dynamic network topology, and use multihop routing
techniques for routing between two nodes [51]. MANETs
are considered unreliable as nodes can only communicate
with their neighbors within a certain distance, and hence an
end-to-end connection between two arbitrarily chosen nodes
may not be possible. As a result, MANETs are subject to
difficulties ranging from routing to packet losses, especially
when nodes are highly mobile and suffer limited bandwidth,
buffer, and computational power [51]. DTN can be viewed
as a variation of MANET that improves the reliability of
packet transfer under non-real-time traffic by using store-and-
forward technique [52]. MANETs are often studied under the
assumption that every pair of nodes is strongly connected, but
such an assumption can be unrealistic for DTNs.

Byzantine fault is the most general failure model, and hence
is the most popular (yet the most difficult) approach of
modeling and solving the consensus problems. Lamport and
Melliar-Smith [53] extend the solution to the Byzantine Gen-
eral problem in [38] to fit the frame of clock synchronization
problem. In their protocols, a node sends a copy of its clock
function (Eq. 5) to the other nodes instead of its clock
values as static numbers. Among three protocols in [53],
two of them can achieve f -fault tolerance with 3f +1 nodes,
whereas the third protocol, which involves the use of digital
signature as the second algorithm in [38], can with 2f + 1
nodes. Lamport and Melliar-Smith conjectured that a system
without authentication would require at least 3f +1 nodes to
achieve clock synchronization in the presence of f Byzantine
nodes. This conjecture was then proven to be true by Dolev,
Halpern, and Strong in [54]. More precisely, [54] proves that
without authentication, the network must have 3f+1 or more
nodes and its connectivity must be 2f + 1 or greater. With
authentication, the 3f + 1 condition can be relaxed, but the
network must be (f + 1)-connected.

All three protocols in [53] are created with underlying as-
sumptions that every non-faulty node is capable of accu-
rately computing the difference between its clock and another
non-faulty node’s clock on its own, which may not be a
realistic assumption for DTNs. Moreover, besides the high
computational and communication complexity that is already
entailed, and beyond the statistical evidence that they will
reach consensus and converge to a certain value, there is
no guarantee that the time they agree upon is actually the
accurate time [32]. However, the emphasis must be put on
the fact that a system requires a time that every node agrees
upon. With an absence of reliable connection to the central
time server, or the absence of connection itself, a system is
more or less ‘isolated’ from the ‘outside world’ because it
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does not have access to a clock that it can use as a reference.

Fault Tolerant Average Algorithm

The simplest way to reach consensus on a certain data would
be to have all nodes reset their values to the average of
everyone’s value. This method has been used since 19th cen-
tury, then theoretically formulated by Poincare and Einstein
as a form of Einstein synchronization in relativity theory.
Sasabe and Takine [55] adopted this logic as an asynchronous
clock synchronization protocol where two nodes exchange
their clock values with each other upon contact/connection
and adjust their clock as the average of two values. It was
anticipated that such a protocol would be efficient in terms
of time complexity and energy consumption yet inaccurate,
but the experimental results showed that it could achieve the
accuracy at the level of NTP for small-scale DTNs. However,
its accuracy varies heavily by the number of connections
established during the course of operation, and this gets even
worse when it comes to large-scale DTNs. For DTNs where
connections are rather dynamic or uncertain and limited
in terms of the number of neighbors a node can contact
with and the frequency of connection establishments, such
asynchronously averaging protocols can be highly inaccurate,
especially at the presence of multiple faulty clocks.

For the case of synchronized networks, a fault-tolerant ver-
sion of such protocols can be constructed fairly easily, as was
done by Welch and Lynch in [30]. Suppose that there are
N nodes in the network and f of them are expected to be
faulty. Each node receives the clock value from all the other
nodes in the system. After this step, every node should have
a list of N clock values that consists of its own clock value
and the values received from N − 1 nodes. Then, every node
computes the list of relative clock offsets by subtracting every
element in its list with its clock value. For fault-tolerance,
each node discards the smallest f elements and the largest
f elements from the list, then takes the average of N − 2f
remaining elements in the list and uses that as a reference for
adjusting its clock.

We believe that there could be a way to apply this approach
that Welch and Lynch proposed [30] to the protocol by
Sasabe and Takine [55]. However, the protocol by Welch
and Lynch makes an underlying assumption that faulty nodes
are considered ‘faulty’ because their clock will be either
faster or slower by a conceivable amount of time. Such
assumptions are indeed plausible and practical. However,
networks under harsh conditions such as in SSIs can make
even non-faulty nodes’ clocks deviated from each other by
a large amount, and nodes demonstrating Byzantine failure
can broadcast different clock values to each node to prevent
the non-faulty nodes’ clocks from being synchronized; for
example, a Byzantine faulty node could adaptively broadcast
a clock value to a node close to that node’s clock value; by
doing so, each node would believe that the Byzantine faulty
node is not faulty yet other non-faulty nodes are faulty. More-
over, this still requires every node to communicate with each
other directly and synchronously, which is not a desirable
requirement for large-scale DTNs.

Distributed Asynchronous Clock Synchronization

Distributed asynchronous clock synchronization (DCS) pro-
tocol was first introduced by Choi et al. in [14] and [15] as
a method of achieving clock synchronization asynchronously
over a (terrestrial) DTN. The overall logic behind DCS is that
for networks with intermittent connectivity where end-to-end
connection between two nodes are not always guaranteed,

it is more efficient and more accurate to exchange tables
with relative clock offset/skew values. By doing so, we
can obtain information about the clocks of other nodes even
without getting in a direct communication with all them
synchronously.

We summarize the version of DCS protocol introduced in [14]
briefly below. As we did before, we represent the clock value
of node p at time t as Cp(t). Denote the clock offset between
node p and q as Cpq; for all node p, there is a clock table in
node p that stores every Cpq value for all q. Upon contact,
node p and q exchanges the values Cp(t) and Cq(t) with each
other. Then p computes the observed relative clock offset as

Co
pq = Cq(t)− Cp(t)

and q computes Co
qp on its own as well. Then node p updates

its clock table by setting

Cpk = Co
pq + Cqk

for all k, unless the information about k that p just re-
ceived from q is outdated compared to the information p
had already. Then p finally computes its own clock offset
C̃p as the weighted average of all Cpr’s with weights wpr
corresponding to the age of information (which [14] models
it as wpr(τ) = λτ where λ ∈ (0, 1] and τ represents the
time since the last update). Finally, p adjusts its clock as
Cp ← Cp + C̃p. The node q that was in contact with q also
adjusts its clock following the same process.

However, as authors mentioned, DCS was initially designed
for terrestrial DTNs, which are far smaller than the SSI. DCS
updates a clock based on the clock information gathered from
all other nodes. This may be inefficient or inaccurate if direct
end-to-end connections between some nodes are rarely estab-
lished, and this was proven during one of the experiments
in [15]. More formally speaking, it is difficult for a node
to gather global information about the (entire) network both
accurately and timely at all instances. This will be discussed
further in later sections. Requiring a node to remember and
update the clock table storing information of every other
nodes may cause inefficient use of data storage and create
huge additional data traffics globally across the network tak-
ing up the network capacity. In spite of these probable down-
sides, its capability as a practical synchronization protocol
has been well-established by the authors through a series of
mathematical proofs and numerical experiments. DCS still is
a promising protocol for clock synchronization in a relatively
small scaled network or a local area network of a large-scaled
networks.

5. LOCAL SYNCHRONIZATION
Our proposed approach to studying clock synchronization
over a DTN-based SSI is analogous to the history of the
Internet. The expansion of the Internet started off as a
development of ARPANET, by connecting computers within
a close proximity as a form of local area networks, which later
got interconnected with each other. A similar direction of
development is recurring to the SSI. A DTN also consists of
(local) regions called DTN regions interconnected with each
other via gateways and each region with a unique region ID
[56]. Every clock synchronization protocol, distributed and
centralized, has clear advantages and disadvantages of their
own. SSI may be large enough compared to the Internet
today to have disadvantages accumulated up to the point
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where it can be easily compensated. We hence suggest
an adaptation of the cluster-based synchronization method
where a cluster corresponds to a DTN region and a gateway
is a DTN gateway.

In cluster-based synchronization protocols, gateways are ac-
tively communicating with each other and function as a de
facto time server for the nodes in their respective clusters.
See [57] for one of the recent developments of cluster-based
clock synchronization technique. For SSI, however, gateways
can also be incomparably distant from each other just as a pair
of two nodes can be. A piece of information delivered from
one node/gateway to another may not be arriving on time or
be inaccurate by the time it gets delivered, making a node
only able to accurately represent or store ‘local’ information
gathered within a close proximity than the ‘global picture’
of the network. See [58] for more details and mathematical
treatments. This suggests that clock synchronization over
local network is not the same problem as achieving global
clock synchronization across the entire network. This section
will focus on the local clock synchronization problem, and
global clock synchronization will be discussed in the next two
sections.

Throughout this paper, we shall assume that propagation
delays are always known. That is, prior to transmission, a
node can accurately calculate the amount of travel time of a
packet to reach its immediate destination. We consider this
as a fair assumption to have, as it be done fairly accurately
using (relativistic) Doppler effects. For example, see [59].
Suppose that a node A wants to send its time CA(t) to its
neighbor B. As soon as a connection between the two nodes
gets established, A transmits CA(t) + DA→B to B where
DA→B is the propagation delay from A to B computed by A
using Doppler effect.

Our construction of a clock synchronization protocol over
a DTN region involves both a centralized/hierarchical ap-
proach and a consensus-based approach. The purpose of
such an intercession is to maintain all desirable features of
time synchronization—fault-tolerance, efficiency, accuracy,
scalability, etc.—at certain levels, yet not sacrificing any of
them. To be specific, having every node run a fault-tolerant
consensus protocol such as PBFT as a time synchronization
process may result in excessively high message complexity
and delay. More notably, it can be difficult for a node to
identify which clock values are from faulty nodes (and hence
needs to be discarded), purely based on the numerical clock
values it received. Recall from the previous section that
discarding received clock values based on the magnitude of
time difference can be unhelpful.

This implies that having some ‘reference’ that gives informa-
tion about within what range a correct clock would approxi-
mately be in can alleviate the difficulty of this problem. To do
this, we create a set of nodes entitled the time synchronization
hub, or hub, that serves as a de facto distributed time server
within a region. Nodes in the hub constantly synchronize
their clocks and maintain them consistent. Since a hub plays
a significant role, it has to be reachable from every node in the
region within a reasonable time and distance. We hence select
a hub as a k-hop connected dominating set of the region,
where every node in the region is within distance k from a
hub and every node in the hub is connected. A hub would
be a connected subgraph of a region, we hence anticipate that
it would be relatively compact enough to operate time syn-
chronization protocols designed for small-scaled or terrestrial
networks (for practical purposes, if needed, a region can be

divided into subregions and have each subregion elect their
own hub). Due to the absence of global time server, we use
a distributed protocol that can function asynchronously, such
as DCS protocol proposed by Choi et al. [15], which has a
benefit of having a fast convergence speed and being energy
efficient compared to the other protocols with similar size or
purpose.

Assuming the implementation of DCS was done correctly,
the clock values across the hub should be ‘fairly’ consistent.
The asynchronous (or partially synchronous) nature of DTN
leaves a room for uncertainties. To combat this potential
inconsistency and Byzantine failure of nodes, nodes in a hub
do not simply diffuse or broadcast its value to the nodes
outside the hub requesting a time synchronization. A node
in the hub, upon a recipient of time synchronization request,
assumes the position as the acting leader and starts a PBFT
process across the hub (see Figure 5 and the previous section).
By the end of the Commit stage, every node in the hub should
have received clock values of other nodes in the hub. The hub
can use this as a chance to run DCS again within themselves,
then broadcast (enter the Reply stage) their results back to the
client. In other words, DCS is used as an additional layer of
consensus.

A disadvantage of forming a time synchronization hub con-
stantly running DCS internally to keep their clocks consistent
with each other would be the fact that DCS is not fault-
tolerant at all. Even one single Byzantine faulty node in a hub
can tamper the clock value that the nodes in the hub converges
to. However, for any time synchronization protocols, syn-
chronization error tends to increase the energy consumption
significantly, and this applies to DCS as well. Hence, if the
amount of energy spent in a hub is unprecedentedly higher
than the normal amount, there is a node within the hub that
is faulty. Moreover, during the course of processing the
time synchronization request, if multiple DCS iterations have
taken place in the hub already, the clocks in the hub must
be fairly consistent with each other and a clock value that is
significantly off can be assumed to be from a faulty node.
Therefore, together with the PBFT-based synchronization
processes that come after every synchronization request, we
expect that faulty node tracing can be done easily for many
cases. As another layer of fault-tolerance and practicality,
it is recommended to use PBFT that operates under harsh
environment, such as [60].

6. NETWORK MODELING
Traditionally, computer networks have been mathematically
modeled as a graph G = (V,E) where V represents the
set of nodes (end hosts, gateways, routers, etc.) and E the
set of edges connecting two vertices. However, the static
nature of graph as a data structure often makes it insufficient
to model the networks used in modern days which are rather
ad hoc and dynamic up to the level where the entire network
topology can be changed rapidly and continually. This has
motivated lots of researchers to search for new mathematical
(data) structures to model computer networks. See also [61].

Hypergraph

The typical approach to modeling networks, graphs, does
not naturally capture all types of connectivity. Broadcast
and multicast, in particular, benefit from a model where a
single edge can connect more than two vertices. This is
formalized by the concept of a hypergraph. A hypergraph
H = (VH , EH) consists of a set of vertices VH and a
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set of hyperedges EH , where a hyperedge is a non-empty
subset of VH . In particular, a hyperedge may connect an
arbitrary number of vertices. See Figure 6 for an example
of a hypergraph. Traditional graphs are also hypergraphs. In
a graph, each hyperedge contains two vertices.

Figure 6. An example of a hypergraph.

Temporal Graph

The temporal realities of DTNs, particularly for space deploy-
ment, pushes the need for temporal graphs (and temporal hy-
pergraphs). Representations of temporal graphs over discrete
time include sequences of static graphs and time-extended
graphs. Over continuous time, representations of temporal
graphs include contact graphs as well as edge and vertex
labelled graphs, where the edges and vertices are labelled
with sets corresponding to the times when they are available.

Cellular Sheaves

One way of rephrasing the time synchronization problem is in
terms of local data (times) that may not be globally consistent.
The formal structure in mathematics known as the sheaf
makes precise the notion of either turning local observations
into global observations, or providing formal measurements
of obstructions to doing so. We use a specialization of
sheaves called cellular sheaves, which were first described
in Shepard’s thesis [62] and expanded to include posets and
applications in Curry’s thesis [63]. Broadly, in the setting of
graphs or hypergraphs, cellular sheaves are assignments to
the poset of elements (vertex less than edge, or containment
of hyperedges) to values in some data category. Each element
is assigned a data object and each comparison relation in the
(hyper)graph is sent to a corresponding operation on these
data structures. Applications of cellular sheaves on posets
have found applications in topological data analysis (TDA)
[64], sensor networks [65], path optimization problems [66],
and neural networks [67].

Network Flows

Consider a diffusion process along a smooth surface (a man-
ifold), for instance, the flow of heat. It is a well-known fact
that properties of this diffusion is governed by the surface’s
curvature [68]. It turns out that there is a method for comput-
ing curvature of discrete structures, such as graphs, that anal-
ogously captures the behavior of diffusions. Furthermore,
this notion of curvature is extendable to temporal graphs. The
so-called temporal curvature is readily computable, and can
be used to both explore dissemination of information across
the network as well as to provide a performance measure
that can be employed by a routing algorithm4 In addition,
utilization of paths on the network will perturb the curvature,
making curvature a useful diagnostic tool.

4For example, consider the Enhanced Interior Gateway Routing Protocol
(EIGRP) [69], [RFC 7868].

To be explicit, temporal curvature in a time-evolving network
is a quantity that can be computed between any pair of nodes
x, y at a fixed time t ∈ R. This curvature can be negative,
zero, or positive-the sign of the curvature gives qualitative
information as to the relationship between x and y at this time
in the network. Negative curvature indicates that x and y are,
on average, “more connected” to each other than “nearby”
vertices in the network are. Equivalently, routing information
from x to y (at a fixed reference time) is more efficient than
routing information from vertices nearby x to vertices nearby
y. Conversely, positive curvature indicates that vertices local
to x and to y are more connected than x and y are. This
is particularly evidenced by the following (informally stated
result):

Theorem 6.1. Suppose the curvature between all points
x and y at all times t ∈ R in a temporal network are
positively curved. Then diffusion processes on the network
reach equilibrium exponentially quickly in time.

An alternative characterization (which requires particular as-
sumptions on the temporal network in question) states the
following: Suppose one means to transmit information from
x to y at time t, in a way that minimizes the average time a
“bit” of information originating at x spends en route before
reaching y. If the curvature between x and y at time t is
positive, it is more beneficial to send the message by splitting
it uniformly among all neighbors of x, and if the curvature
is negative, it is more beneficial to keep the packet in one
component and proceed by single-cast routing. Thus we see
that in this case, evaluating curvature provides information
as to how well multi-cast versus single-cast routing performs
over a temporal network.

An up-coming paper will detail these results and more, but
here we give a discussion using a data mule example illus-
trated in Figure 7. Here there are two small mesh networks
on the left and the right, and there are never end-to-end paths
between them. Instead, a data mule, shown in blue, periodi-
cally moves between them as in the figure. The actual com-
putation of curvature in this system requires choosing several
hyperparameters, including the length of time spent in each
configuration, but we will avoid this technicality by giving
informal estimates: Between vertices in a single cluster, the
curvature is constant and always positive. Between vertices in
different clusters, the curvature is slightly positive and close
to zero. The curvature of the blue node however goes through
various changes as the system progresses. Taking a time-
average of this curvature over a single period shows that the
curvature between the blue node and any of the green nodes
is negative. The reason for this is that the blue node acts as a
spatio-temporal bottleneck for information passing between
the two clusters, and this is detected by the curvature. One
checks that this interpretation aligns with the intuitions for
curvature provided in the previous paragraph. This example
shows that curvature can detect important structural features
of temporal networks, including the presence of clusters (via
positive curvature) and bottlenecks (with negative curvature).
Indeed, this aligns with recent applications of (static) curva-
ture in the network theory literature [70].

If time synchronization is considered as a particular infor-
mation diffusion process, then the network curvature dictates
how this process works. Moreover, different nodes might
serve different purposes. For example, some nodes might be
a gateway between adjacent network areas, and other nodes
might be more authoritative as time sources. Depending on
a node’s relationship to other nodes, particularly as measured
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Figure 7. Example data mule network.

by curvature, role assignment can be optimized. We note that
this information is also applicable to routing; for example,
consider link state advertisements.

7. GLOBAL SYNCHRONIZATION
In this section we present the synchronization problem in
the language of algebraic topology and sheaf theory. The
first formulation in terms of sheaf theory that we present
was already described by Ghrist and Hansen [71], following
Bandeira [72]. Later formulations in this section will get at
some of the more novel contributions that we have to offer,
which sit at varying levels of development.

An Algebraic Topology Take on Clock Synchronization

For a first pass at the general framework, consider the two
different network topologies depicted in Figure 8.

Figure 8. Two Different Network Topologies

In Scenario 1 of Figure 8, we have a network with the “string
of pearls” or “daisy chain” topology. In Scenario 2, we
have a network with a ring topology, which topologically
is equivalent to a circle. Algebraic topology provides us
with means to discriminate these two scenarios using linear
algebra. To start, we can write down two vector spaces to
either scenario: C0(X) = RV(X), the space of 0-cochains,
which is the vector space generated by the vertices in the
network X, and C1(X) = RE(X), the space of 1-cochains,
which is the vector space generated by the edges in the
network X. The interpretation of these vector spaces for time
synchonrization is that a vector v ∈ C0(X) describes the
set of times being recorded at each node, whereas a vector
w ∈ C1(X) encodes the possible time differences between
each pair of nodes. Purely using the local topology of each
network one can then write down the coboundary matrix
δ : C0(X)→ C1(X), which records the pairwise differences
of times, subject to some choice of orientation. Following
the scenarios depicted in Figure 8 we have two different
coboundary matrices. These are, respectively,

δ1 =

[
−1 1 0
0 −1 1

]
and δ2 =

[−1 1 0
0 −1 1
−1 0 1

]
.

Notice that the presence of an extra edge in Scenario 2
presents itself as an extra row in the corresponding cobound-
ary matrix. In either case, the kernel of the coboundary matrix
is generated by the set of times where

x(t) = y(t) = z(t).

In the language of algebraic topology, this provides an inter-
pretation of the zeroth cohomology group:

H0(X) = ker δ

A standard fact in algebraic topology is that H0(X) is
generated by the connected components in a space. Be-
cause both Scenario 1 and 2 involve connected networks, the
corresponding zeroth cohomology group is 1-dimensional,
i.e. there is only one consistent notion of time. However, vis
a vis our introduction, networks that become disconnected
are capable of having multiple internally consistent notions
of time, and this is perfectly captured in the language of
algebraic topology. Methods for finding elements of H0(X)
using diffusion are discussed shortly, but first we consider the
somewhat more mysterious higher cohomology groups.

What distinguishes the ring topology from the linear / daisy
chain topology, is another quantity connected to the cobound-
ary matrix δ, namely its cokernel. For a graph, this is
equivalent to the definition of its first cohomology group

H1(X) = coker δ = C1(X)/im δ.

By the rank-nullity theorem, the two scenarios are distin-
guished by H1(X1) = 0 versus H1(X2) ∼= R, which is
generated by the left null space of δ, e.g.

H1(X2) ∼=
〈
[1, 1,−1]t

〉
.

To provide a concrete interpretation of this vector, recall that
these are supposed to be time-differences between nodes, so
this vector, if it were in the image of our coboundary operator,
would yield the system of equations

y(t)− x(t) = 1

z(t)− y(t) = 1

z(t)− x(t) = −1

which obviously has no solution. The physical scenario this
would describe is that y is one hour ahead of x and z is one
hour ahead of y, but, somehow, z is actually one hour behind
x, where by the transitive property be the case that x is actu-
ally two hours behind z. However, because 1-cohomology is
defined via a quotient space construction, there are actually
lots of time offsets that generate 1-cohomology; see Figure
9 for another example. In effect, as long as the time-delays
don’t satisfy the equation a+ b = c, then this corresponds to
an irreconcilable time synchronization scenario.

As a final point of reflection, one should compare the generat-
ing vector for H1(X2) with the conflicting instructions given
in the Byzantine General Problem, which also had a circular
structure as well. The connection between algebraic topology
and distributed computing is well established; see [73] for a
modern textbook-length treatment.
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Figure 9. An impossible sequence of temporal offsets is
captured via 1-cohomology.

A Sheaf-Theoretic Take on Clock Synchronization

In this section we move beyond algebraic topology and into
cellular sheaves, where one can generalize 0-cochains and
1-cochains considerably. Most importantly, with a cellular
sheaf, one can instead work with 0-cochains and 1-cochains
valued in the sheaf F . For the graphs depicted in Figure 8,
this means that we can have an arbitrary (potentially infinite
dimensional) vector space for each node in the network and
each edge in the network. The sheaf restriction maps dictate
how to move from, say, ρx,a : F(x) → F(a). The definition
of cellular cochains is almost identical:

C0(X;F) =
⊕
v∈V

F(v) C1(X;F) =
⊕
e∈E

F(e)

The coboundary map δF is essentially the same as the
coboundary defined over the base graph, except instead of
simply having {0,±1} as entries, one takes that as a co-
efficient that scales the correspond restriction matrix ρv,e :
F(v) → F(e), which is now a block matrix inside of δF .
Definitions of the sheaf cohomology groups are identical—
H0(X;F) := ker δF and H1(X;F) := coker δF—but
sometimes different language is used. In particular, one tends
to call H0(X;F) = {global sections of F}.

To understand why one might consider a cellular sheaf,
consider the setting where instead of having a single time,
one has a whole sequence (i.e. a vector) of times over each
node. This could be the the time-stamps of the most recent
few packets/bundles or even an entire clock history, viewed
as a non-decreasing sequence of integers, which count local
(milli)seconds in an epoch. Perfect synchronization would
correspond then to finding a constant section of this so called
time sheaf.

Before addressing the impracticalities of perfect synchroniza-
tion, let us review one efficient method for learning global
sections from an arbitrary starting 0-cochain, e.g. a collection
of local times, or even whole clock histories.

Laplacians, Sheaf Laplacians and Heat Flows

Given a coboundary map δ : C0 → C1, that is either the
ordinary one or the one enriched in a cellular cosheaf, one can
naively define the associated Hodge-* or Laplace-Beltrami
operator as

∆ = δtδ : C0 → C0.

It is a classical fact H0 ∼= ker∆. This identification actually
suggests an algorithm: after choosing an appropriate inner
product structure on the corresponding cochain spaces, one
can define the normalized Laplacian to be the appropriate
self-adjoint operator. Under this scaling one can consider the
heat equation

∂tu = ∆u.

Picking an arbitrary co-chain and using this as an initial
condition for the above PDE is equivalent to picking arbitrary

initial times/clocks for each node in the network. By running
a simulation of this heat flow long enough, one eventually
diffuses into a steady state u∞ where

∂tu∞ = 0 =⇒ ∆u∞ = 0,

i.e. one reaches a 0-cochain that is harmonic, which by Hodge
theory coincides with elements in the zeroth cohomology
group. One can effectively summarize many of the consensus
algorithms described earlier as message-passing alforithms,
which are in effect carrying out some simulated heat flow of
information.

Group Synchronization and Non-Abelian Sheaf Cohomology

We now describe an ideal synchronization scenario, which
operates on the entire, idealized clock function, and phrase
this as a group synchronization problem. Following [72],
[71], the group synchronization problem asks, given a group
G, a graph X , and functions fij : G → R for each (possibly
directed) edge (i, j) of X, find a function g : V (X) → G
minimizing

cost(g) :=
∑

(i,j)∈E

fij(g(i)g(j)
−1).

In the context of angular synchronization, one can imagine
that this problem is asking the following: Suppose we’re
given a collection of pictures of an object, but we don’t know
what the “true” orientation of each picture is. Instead, all one
can do is take each pair of pictures and compute the angular
difference between them, written g12 in Figure 105.

Figure 10. An example of group synchronization on SO(2).

If we could discover the “true” orientations of each photo,
as determined by a rotation from some god-given reference
frame, we’d know the actual values of the group elements g1
and g2 and these would satisfy the equation:

g12 = g−1
2 g1

In this case the functions would be

fij(•) := dist(id, g12 · •)

where we have implicitly used the fact that angular rotations,
like any rotation group, forms a Lie group, which is metriz-
able. Secretly the functions fij are just penalty functions
measuring deviation from a (equivariant) global section.

For our ideal clock synchronization application, now one
wants to assume we have characteristics for how to reparam-
eterize time to go from clock i to clock j. This is encoded

5SO(2) is defined to be the group of square orthogonal matrices, i.e. the set
of square matrices M such that M⊤ = M−1, with determinant 1. It can be
seen as the set of all two-dimensional rotation matrices.
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as a function σij : R → R, which is a non-decreasing repa-
rameterization of R that could take a signal si(t) measured
using node i’s internal clock to sj(t)—a signal taken at node
j using its internal clock. This is clearly expressible as a
cellular sheaf—the signal alignment sheaf —which assigns
the Hilbert space of L2 integrable functions to each node
and edge, but the restriction morphisms take a signal si(t)
to si(σij(t)). A global section would then correspond to a
collection of compatible signals, observed faithfully by all
nodes.

8. CONCLUSION
Establishing clock synchronization over large-scale networks
under harsh environment is consistently a major challenges
in distributed systems and computer networks society. In this
paper, we introduced a new perspective of studying global
time synchronization over DTN-based SSI. Our proposed
approach was analogous to the historical expansion of the
Internet we use today, in the way that local development was
completed first then global connections were established by
interconnecting multiple local area networks via gateways,
routers, and bridges. This was not only a natural/canonical
approach but also rather inevitable due to the nature of large-
scaled DTNs where accurate global ‘snapshots’ of the entire
network if often unobtainable, implying that a novel approach
is needed to address this problem. Time synchronization is
necessary for routing, behavioral expectations (e.g. deleting
expired bundles), and for networked approaches to navigation
and distributed science.

The local synchronization protocol we presented involves
combination of previously developed approaches and proto-
cols. To summarize, a DTN region first computes a k-hop
connected dominating set and designate that set as the time
synchronization hub that functions as a distributed ‘pseudo’
time server. The nodes in the time synchronization hub con-
stantly work together to keep their clocks consistent. When a
client (a node outside the hub) sends a time synchronization
request to one of the nodes in the hub, the hub will run a
fault-tolerant consensus process and return the result(s) back
to the client. In this way, we can keep both scalability (com-
plexity) and fault-tolerance while not sacrificing anything
significantly. This protocol might be theoretically viable;
however, it has not yet been implemented nor experimentally
verified.

For global synchronization, we used a data structure derived
from algebraic geometry and algebraic topology called a
(cellular) sheaf, which is used to ‘glue’ local data on subsets
to construct global information across the entire space. To
do this, we introduced an object so-called time sheaf, and
reduced the global synchronization problem into the problem
of approximating global section of the time sheaf. The
definition of the time sheaf remains elusive, but the starting
point is to determine what mathematical structure should
correspond to time at the vertices, formalizing the local data
of local clocks. We present two main candidates here. The
first is all real numbers, R, which implies that time extends
from negative to positive infinity. We can also consider non-
negative real numbers, R≥0, corresponding to seconds since
some epoch.

The value of this is not just the rigor of the sheaf structure,
but that sheaves give rise to algorithms [66]; indeed on top
of these sheaf data structures further algorithms and mathe-
matical machinery can be applied and also deduced. In [66],

the active algorithm of path finding was recast into a passive
data structure – a particular sheaf where the global sections
of this sheaf represent shortest paths. We expect that finding
a rigorous definition of time sheaf could allow us to begin the
implementation of our protocol. As the intention of this paper
was to found a theoretical ground, implementation details are
omitted, but will (and need to) be studied as it gets more well-
established in both theoretical and algorithmic perspectives.

9. FUTURE WORKS
The following are proposed research topics that we believe
are closely related to the problems we discussed throughout
this paper. Addressing them can create a significant advance-
ment on the current state of this research.

Reliable Message Delivery

Most of the networks an d distributed systems actively used
today assume the processes behave synchronously. However,
asynchronous phenomenons, such as unbounded message
delay, can be present at any time. If the messages are sent or
delivered unordered, reaching consensus over such systems
can be very difficult compared to the cases where messages
are ordered. Fortunately, TCP provides reliable message
delivery service which ensures not only the messages are not
lost or duplicated but also they are not delivered out of order.
However, not every node in SSI is expected to have TCP for
their transport layer; some nodes (e.g., nodes in space) can
use LTP on top of UDP, which do not have packet reordering
mechanisms that exist in TCP as mentioned above. Given
that LTP is designed to be an additional reliable convergence
layer for BP (and UDP), an upgraded version of LTP with
reliable data transfer protocol can immensely improve the
development and integration of SSI.

Secure Protocols

Security of DTN or SSI may not be a topic highly relevant to
this paper, but there are evident trade-offs between security
and computational efficiency, especially when constructing
Byzantine fault-tolerant protocols. Our current understanding
of decentralized consensus algorithms is that one cannot im-
prove performance without the expense of security [74]. To
support this, numerous consensus and clock synchronization
schemes appear to be not only more secure but also more
efficient when a digital signature protocol is added. As
discussed, the initial PBFT protocol in [40] requires the use
of a digital signature, but it can be computationally optimized
by using MAC instead of a digital signature. This is a valid
approach; however, MAC does not satisfy message secrecy
and assumes the users utilize a private-key encryption scheme
where key exchanges can be more difficult than public-key
encryptions and should be only done amongst trusted users.
Moreover, BP and BPSec specifications [RFC 9171, 9172]
state that every bundle must have a bundle header with an
entry (extension block) called Block Integrity Block (BIB)
specifically allocated for the signature of the source node’s
application signed using its private key, which is used to ver-
ify the integrity of the plaintext. This implies that PKI more
or less is a strict requirement. However, as demonstrated
in [75], PKI for the purpose of authentication may not be
necessary.

There also seem to be canonical trade-offs among security,
efficiency, and fault tolerance. As mentioned, one of the BFT
clock synchronization schemes in [53] manages to tolerate
f Byzantine faulty nodes only with 2f + 1 nodes when
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using a digital signature. This can be easily implemented
and executed today; for instance, any end hosts connected
to the Internet can generate and exchange a pair of keys
(public and private) with TLS/SSL protocol that uses the
Diffie-Hellman key exchange scheme. However, just as our
current understanding of the DTN-based SSI still remains
purely at the theoretical level, it is a challenge to even begin
thinking of the security of SSI, let alone the construction
of a viable public key infrastructure (PKI) – if it is even
viable. Per BPSec specification [RFC 6257, 9172], key
management and distribution are currently being assumed to
be provided as a part of external services from the network
management or centralized key server (certificate authority),
which can be impractical for some instances, such as where
the end-to-end connection between a client and the server
cannot be established on time. For example, this might be
before the expiration of the request or the key. See [76] for
further details regarding recent progress in key management
in DTNs.

Byzantine failure is the most general type of fault model that
encompasses any class of faults, including the case where
a node is arbitrarily malicious. Byzantine adversaries can
be fatal to any kind of network or protocol. They can even
be adapted to interfere with a consensus process specifically
directing the system to reach consensus incorrectly as they
desire [77]. This can be directly applied to our or previous
constructions, as a form of an adversary intentionally broad-
casting incorrect clock values while disguising itself as a non-
faulty node. This suggests that more intensive studies re-
garding (Byzantine) adversary detection and prevention, not
only in theoretical levels but also for application and practical
settings specifically for DTNs, must be further conducted as
done in [78] and [79].

Complexity and Scalability

Although PBFT requires O(n2) messages only, it still can be
intensive to handle for low-performance devices if n grows
significantly or on networks with infrequent data exchanges.
Recall that we must have n ≥ 3f + 1 in order to tolerate
f faulty nodes. This does not scale well as it requires triple
or more nodes to defend the system against one more faulty
node. Also, it is challenging to correctly predict the supre-
mum of the number of faulty nodes of a system beforehand; in
fact, the supremum may not even exist or be finite. It is clearly
cost-ineffective to add multiple nodes simply to prevent faulty
nodes from dominating the system based on their numbers
that we do not even have a good estimation of.

Continuing the discussion from the previous subsection, we
expect that the assumption of Byzantine failure is overly
general and can be relaxed or reduced to different types of
failure models. That is, under the premise that our system
is free of adversaries and is robust enough, it is unlikely to
demonstrate any Byzantine failure symptoms. As mentioned,
it was already proven in [49] that 3f+1 is the minimum num-
ber of nodes that can tolerate up to f Byzantine faulty nodes
in an asynchronized system (even with a digital signature),
and the same result holds regarding clock synchronization in
the presence of Byzantine faults. However, indeed, this does
not imply that one can be completely oblivious or disregard
Byzantine failures. Byzantine failures are more common in
practice than they are generally believed to be [80]. Byzantine
failures are not ‘isolated’ from other types of failures; in many
occasions, they occur as a form of a developed version of a
non-Byzantine failure that was existing in the system already.
See [80] for more details regarding Byzantine general prob-

lems in practice.

The nature of BP canonically makes DTNs closer to partially
synchronous than asynchronous, because every bundle comes
with a timestamp and its lifespan [RFC 9171]. There clearly
is an advantage of choosing synchronized models over asyn-
chronized one. Katz and Koo in [81] presented a Byzantine
consensus algorithm that tolerates f faulty nodes with only
2f + 1 nodes with 24 expected rounds. Then Abraham et al.
in [82] constructed an algorithm with a better lower-bound of
8 expected rounds. Partially synchronous models, however,
has not been studied actively.

Self-Stabilization

Another promising perspective of studying fault-tolerant
clock synchronization is to model it as a self-stabilizing
distributed system. Self-Stabilization, first introduced by
Dijkstra in [83], is defined to be the characteristic of a
distributed system that is always guaranteed to (1) end up in a
legitimate state starting from any state within a finite amount
of time, and (2) remain in a legitimate state if started from a
legitimate state and no failure occurring during the process.
The first property is often referred to as convergence and the
second is as closure. Basically, a distributed system is called
self-stabilizing if it is capable of automatically recovering
from transient faults and their effects.

For clock synchronization, it is an unfair requirement for a
system to have its clocks never fail, especially if it is asyn-
chronous or partially synchronous. The works of Lamport
and Melliar-Smith [53] were revisited by Dolev and Welch
in [84] as a form of probabilistic self-stabilizing Byzantine
fault-tolerant clock synchronization protocol, which is later
revisited by Malekpour in [85] as a form of a deterministic
protocol with self-stabilization property, which, however, is
still computationally extensive for low-end devices.

Approximation Algorithm

Recall from our construction that the nodes responsible for
local clock synchronization were chosen as the nodes forming
a k-hop connected dominating (CDS) set of a DTN region.
We currently expect that the gateway is the one that is respon-
sible for computing a k-hop CDS and designating them as the
time synchronization hub. However, dominating set problem
is computationally difficult problem. The decisional domi-
nating set problem that takes a graph G and a number n as
inputs and returns whether there exists a dominating set with
n or fewer vertices is NP-Complete, and the computational
version of the problem that returns the smallest dominating
set given a graph G is NP-Hard. Finding the minimum
connected dominating set (MinCDS) problem is also NP-
Hard. Hence, in practice, approximation and distributed
algorithms are used for those problems.

Moreover, DTNs are characterized by a constant change of
network topology, hence are more accurately captured when
modeled as temporal graphs. There are multiple types of
dominating sets that can be defined on a temporal graph.
One of them is a permanent dominating set, which is the set
of nodes that is a dominating set of that graph at all times.
It can be shown that the permanent dominating set (PDS)
problem is also NP-Complete by reducing the traditional
dominating set problem to the PDS problem. There are many
other types of dominating sets of temporal graphs available.
However, it has not yet been fully understood what type
fits our purpose the most and how they can be computed
or approximated efficiently (i.e. algorithmic lower/upper
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bounds and hardnesses). Resolving these problems will be
beneficial to not only the time synchronization problem but
also to the theoretical computer science community overall.

Synchronization Error

It is not always possible to have every machine’s software
clock perfectly synchronized without any prior knowledge
about the network connections. Its accuracy can also be
negatively affected by propagation delay, especially if it is
asymmetric [36]. Synchronization error is rather inevitable.
If two nodes are far apart from each other yet do not establish
direct communication between the two, their clocks would
be loosely synchronized with a high probability, and the
situation would indeed be worse for DTNs.

Fan and Lynch in [86] introduced a concept of gradient
clock synchronization (GCS), where the term ‘gradient’ here
denotes the property where the time difference between two
nodes must be bounded above by a non-decreasing function
of the distance between the two. Assuming that the com-
munication is reliable and message delay and clock drift are
bounded, it can be shown that the clock offset between any
two nodes is Ω (d+ logD/ log logD) where d is the distance
between two nodes and D is the diameter of the network.
It is yet unknown whether this bound is the tightest upper
bound or not. This bound indeed does not hold exactly at the
presence of Byzantine faults, but fault-tolerant GCS protocols
can still exist; for example, see [87].

In many occasions, time skew or offset occurs by the soft-
ware clock miscounting or the hardware clock misproducing
oscillations. This leads to the conclusion that, just as [15]
does, it is always beneficial to synchronize clock frequencies
as well, not just the clock values. However, clock frequencies
are computed as f(t) = dC(t)/dt, so a clock computing its
own clock frequency would not result in a correct frequency,
because a node would have C(t) but there is no t that it can
reference from. A more precise way of computing relative
frequency in an accurate way must be studied.

Relativistic Effects

The SSI can be large-scaled enough to experience the effects
of relativity, such as time dilation and redshift. In fact, there
have been multiple papers reporting the effects of relativity
that occurred during the process of satellite-based clock syn-
chronizations, such as [88]. For a theoretical treatment of
this, we suggest that a mathematical formulation of clock
synchronization in terms of coordinate time with relativistic
transformation should be done first.

DTN Local Area Network

While it is true that the concept of local area networks and
regional networks exist in DTN [56], [RFC 4838, 5050], they
still remain as rather non-well-defined terms as pointed out in,
for example, [89]. It sometimes is defined in terms of the ge-
ographical locations of the nodes or even defined in persistent
homological ways. We have also noticed that the term ‘DTN
Region’ has only appeared seldomly in recent publications
studying DTN architectures, whereas it frequently appeared
in publications before the early 2010s. We speculate that this
could be another part of the scaling issue of DTNs, and fur-
ther research studying the most efficient method of ‘dividing
up’ the DTNs into multiple local regions must be conducted,
especially as our construction of local synchronization relies
on it.

Other Mathematical Approaches

As discussed, the formal definition and construction of the
so-called time sheaf are still not formally well-defined. We
concluded the paper by suggesting two candidates, namely
R and R≥0. Another more abstract possibility comes from
torsors, which correspond to relative measurements (among
other things); see [90] for a quick introduction. Then the
structures – perhaps vector spaces – sitting above the edges
must be determined, along with the restriction maps [91].

While this sheaf-based approach seems promising, we do not
exclude the potential of other directions or methods being
useful for our problem. Readers unfamiliar with recent
progress in the development of mathematical tools for mod-
eling DTNs can use [61] as a reference. We suggest a new
possible approach here. For global synchronization, we may
represent the SSI as a graph where each node is a gateway.
Assuming the SSI is for IPN Internet connecting two planets
(e.g., Earth and Mars), the topology of this network would
be close to a ring. This network then can be translated
into a closed two-dimensional polygon where the (discrete)
curvature [92] at each node is κ = 1/τ such that τ is the
current time of each node. Then this polygon can be evolved
to a constant-mean-curvature surface, which would be a circle
in the two-dimensional case, by ‘flowing’ mean curvature
flow (or curve-shortening flow) across the network. One
issue with such an approach is the singularities that appear
in non-convex regions. Kazhdan, Solomon, and Ben-Chen in
[93] constructs a working modified formulation of discrete
mean curvature flow that removes or ignores singularities
with experimental evidence, but the paper lacks mathematical
proofs.

Analysis and Simulations

This paper aimed to build—and suggest the necessity of—
a theoretical foundation for the global time synchronization
of large-scale DTNs. The implementation and testing were
not conducted during the course of this research. However,
the practicality of our method indeed needs to be tested to
be considered fully valid. Our construction is built using
algebraic topology, in particular the sheaf theory, where prac-
tical software implementations and simulations are possible
by using PySheaf [94], [65].

A method that one can endeavor is to find a topological analog
of dynamic time warping using techniques from topological
data analysis, and design a loss function that numerically
measures closeness to a (global) section using persistence
homological methods such as the one introduced in [95].
Once that is accomplished, another future direction would be
to compare our method with other methods serving similar
purposes such as [15], [96].
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