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Abstract—In Delay Tolerant Networking (DTN), the standard
routing algorithm used to navigate time-varying networks has
been Contact Graph Routing (CGR). In CGR, a globally dis-
tributed list of contacts, periods during which two DTN nodes
may communicate, is used to construct a contact graph, in which
contacts are vertices. A version of Dijkstra’s algorithm can
then be used to find paths through this model of the time-
varying network. However, since contact graphs may be large
compared to the network, potentially growing with the square of
the number of network nodes and linearly with the time interval
represented, the resulting algorithm does not scale well with the
size of the network or time. Any improvement to the routing
algorithm will bring significant returns to scale.

In a previous paper, we briefly introduced an alternative to the
contact graph model for routing. This alternative model is based
on a multigraph (a graph in which there may be multiple edges
between a pair of vertices) where vertices represent network
nodes instead of contacts. A version of Dijkstra’s algorithm in
these multigraph models reduces the time needed to perform the
same routing computations done in the existing CGR algorithm.
Moreover, a modified version of Yen’s algorithm for multigraphs
is included. Our variation of CGR, which we call Contact Multi-
graph Routing (CMR), provides an in-line replacement for the
previously used pathfinding algorithms. This paper describes
an implementation created based on the CMR approach, and
experimental comparisons to traditional CGR are given.

In addition, we explore some additional modifications to the
routing pipeline traditionally assumed in CGR. These modifi-
cations range from the theoretical to the practical in terms of
size and scope. We step forward our understanding of sheaf-
theoretic networking and describe how to model the routing
pipeline using sheaves. We detail some enhanced route selection
criteria that addresses some of the added complexity of DTN-
based systems. We also include a future works section on future
improvements and implementations that would be of service to
the broader DTN community.
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1. INTRODUCTION
As the scale of space communications networks increases,
the ability to make intelligent choices in navigating these
networks becomes harder and harder. For satellite networks
in particular, delays, disconnections, and disruptions are a
natural part of interacting with the greater system. Describing
these networks falls under the purview of Delay Tolerant
Networking (DTN).

At NASA Glenn Research Center, the High-rate Delay Tol-
erant Networking (HDTN) project has been seeking means
of improving the efficiency of its DTN implementation, also
called HDTN. The implementation itself is publicly available
on GitHub at https://github.com/nasa/HDTN. As
part of this effort, we have been examining and evaluating
alternative routing approaches for DTN in general. One of
the preeminent routing algorithms is Contact Graph Routing
(CGR), with its most common implementation appearing in
the Interplanetary Overlay Network (ION) documentation
[1]. Alternative implementations also exist, and prior to the
release of this paper, the HDTN team was using pyCGR
introduced by Juan Fraire [2].

As we continued to develop the HDTN implementation of
DTN, we began to streamline the code to improve efficiency.
Initially, we reimplemented pyCGR in a faster C++ routing li-
brary called libcgr which removes our dependency on Python
and sheds the memory footprint of the Python runtime.

However, the results discussed in [3] encouraged us to pursue
an implementation of Contact Multigraph Routing (CMR) as
well. Now, the routing library on GitHub includes code for
both CGR and CMR, which we will highlight and demon-
strate here.

At their core, both CGR and CMR utilize Dijkstra’s algo-
rithm, but over very different graph structures. The graph for
CMR is called a multigraph, meaning each pair of nodes is
permitted to have multiple edges between them. It turns out
that adapting Dijkstra’s algorithm to a multigraph rather than
a contact graph is enough to see significant improvements.
However, using multigraphs is not entirely novel in its own
right. Jain, Fall, and Patra in [4], which predates CGR,
proposed the use of Dijkstra’s algorithm for a multigraph in
a slightly different setting. Much more recently, an approach
to routing similar to ours has also been suggested in [5] based
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on the same multigraph model of the network. Nevertheless,
our approach is different in key ways, and our implementation
differs in its ability to be compared to CGR.

In this paper, we will expand upon the initial comments on
CMR in [3] as well as present some experimental results
comparing CMR and CGR on simulated space networks.
The interested reader may wish to run their own tests using
our code available on GitHub at https://github.com/
nasa/HDTN.

2. BACKGROUND ON CONTACT GRAPH
ROUTING

We begin with a brief overview of Contact Graph Routing
(CGR) and its pathfinding algorithm, following [2]. A contact
between two network nodes is a period of time during which
it is expected that data could be transmitted. A contact is
written as Ct0,t1

A,B , where A is the source node, B is the
destination node, and t0 and t1 are the start and end times of
the contact. In the algorithms, the source and destination of
an arbitrary contact C are written as C.src and C.dst, and the
start and end times are written as C.start and C.end. CGR
depends on a globally distributed and consistent schedule of
contacts between its network constituents, called a contact
plan. A contact plan is simply a list of contacts spanning a
specific range of time, and thus contact plans need to updated
regularly. They are assumed to be computed in advance by
some central source and distributed to the network nodes.
This is appropriate for networks in space, as contacts can
be accurately predicted by orbital mechanics. Additional
information associated to each contact is stored, including the
average data rate and average one-way light time. The one-
way light time of a contact C is written as C.owlt and will
appear in the algorithms below.

The approach to pathfinding in CGR begins with the defi-
nition of a contact graph from a given contact plan, which
provides a static graph model of a time-varying network. In
a contact graph, the vertices are the contacts of the contact
plan – thus, “vertices” are not DTN nodes, but rather contacts
between them. An edge is placed between two contacts if
any amount of data could be sent successively along these
contacts: specifically, there is a directed edge from Ct0,t1

A,B to
Ct2,t3

D,E if B = D and t3 > t0. If a route from A to Z is to be
found starting at time t0, a root contact Ct0,∞

A,A and a terminal
contact CZ,Z are added to the contact graph with appropriate
edges. Then a path from Ct0,∞

A,A to CZ,Z in the contact graph
indicates a sequence of contacts that can be used to send data
from A to Z. Thus, a contact graph turns the problem of
routing through a time-varying network into the problem of
finding a path in a graph. An example of a contact graph is
given in the top of Figure 1.

CGR uses a version of Dijkstra’s algorithm [6], [7] to find
a path from the root contact to the terminal contact in the
contact graph. This version of Dijkstra’s algorithm is called
the Contact Graph Dijkstra Search and is explained in detail
in [2]. The search optimizes for arrival time, the earliest
time the first byte of data can reach the end of a path. The
basic principle behind a Dijkstra search applies here, because
the arrival time along a path cannot decrease as the path is
lengthened.

The driver for complexity in CGR is the size of the contact

plan, since each contact becomes a vertex in the contact
graph. The number of contacts in a contact plan may be
much larger than the number of network nodes, even over
a reasonably small time period. In fact, with 14 nodes deter-
mining line of sight contacts over 24 hours, our simulations
yield 368 contacts. Hence, the algorithm does not scale well
with either the size of the network or the number of contacts,
limiting the size of contact plans that can be effectively used
in a network. Independent of complexity, the requirement of
globally consistent contact plans also imposes restrictions on
the size of the network.

CGR encompasses both this pathfinding algorithm and a
larger strategy for generating lists of routes, choosing a route
from the list for given data, and queuing. In particular, CGR
uses a version of Yen’s algorithm to generate a list of routes
to a given destination. Recall that in a DTN, the primary
unit of data is the bundle, which may be of arbitrary size and
features a time to live (TTL) measured in milliseconds [8].
For a given bundle, a list of candidate routes is selected from
those output by Yen’s algorithm, based on the bundle size,
available volume of routes, and the priority assigned to the
bundle. A route is chosen from this list of candidates based
on the projected arrival time.

In this paper, we focus on improving the main pathfinding
algorithm and the version of Yen’s algorithm. We show that
by using an alternative graph model of a network instead of a
contact graph, the speed of these algorithms can be improved.
Specifically, we provide new versions of the Dijkstra search
and Yen’s algorithm that can be used as replacements for the
existing versions in CGR, leaving the remaining generation
of candidate routes and route selection unchanged. We
demonstrate theoretically and experimentally how this leads
to improved scalability, while assuming the same network
data.

3. THE MULTIGRAPH-BASED ALGORITHM
Our improved algorithm will be based on an alternate graph
model of a time-varying network, replacing the contact graph
and also constructed from the same data of a contact plan.
The model is based on a multigraph, a graph-like structure
that allows for multiple edges between a given pair of ver-
tices. Each edge will be directed, and we will not allow loops
– that is, an edge cannot start and end at the same vertex.
We get an equivalent description of such directed multigraphs
by assigning a multiplicity to each edge of a simple directed
graph, and we will use this description later. Given a contact
plan, we define a multigraph model of a network by letting
the vertices be network nodes and letting each contact Ct0,t1

A,B

be an edge from vertex A to vertex B (thus, there may be mul-
tiple edges between a pair of vertices). We call the resulting
multigraph a contact multigraph. The time intervals and any
other attributes of the contacts may be thought of as labels
on the edges, making the this a labeled, directed multigraph.
Note that vertices once again represent the network nodes,
making this model more similar to traditional graph-based
models of networks than the contact graph. An example of
a contact multigraph is given in the bottom of Figure 1.

Routing using this model becomes a question of finding a
path through the contact multigraph such that consecutive
contacts in the path have compatible time intervals. That is,
we will search for paths such that if Ct2,t3

B,D follows Ct0,t1
A,B

in the path, then t3 > t0 (this is the same requirement
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3on time intervals imposed by edges in a contact graph). A
modified version of Dijkstra’s algorithm can be used to find
paths meeting this requirement, again optimizing for delivery
time. This algorithm follows the classic version of Dijkstra’s
algorithm but only explores through edges (contacts) that are
available after the arrival time to the current vertex. This
algorithm was introduced in [3] by many of the same authors,
and this paper expands on that introduction by providing a
more complete and detailed analysis of the algorithm, as well
as experimental results.

A motivating example

Before going over the formalities, we provide an example,
which was also given in [3]. Consider a network with three
nodes, A, B, and D, and a contact plan (C0,1

A,B , C2,3
A,B , C4,5

B,D,
C6,7

B,D). The goal will be to send a message from A to D
starting at time 0. Figure 1 shows a contact graph (top) and a
contact multigraph (bottom), both built from the same contact
plan. The contact graph has been given the appropriate root
and terminal contacts.

Figure 1. A contact graph (top) and a contact multigraph
(bottom) modeling the same network.

We outline the steps of the respective algorithms on these two
graphs, beginning with the traditional Contact Graph Dijkstra
Search (see [2]). We begin at C0,∞

A,A and explore out each
edge, finding arrival times of 0 to C0,1

A,B and 2 to C2,3
A,B . Next,

C0,1
A,B is chosen as the current contact as it has the earliest

arrival time of the unvisited contacts, and we explore its
outgoing edges, finding an arrival time of 4 to C4,5

B,D and 6

to C6,7
B,D. Next, C2,3

A,B is chosen as the current contact since
it has the next smallest arrival time of 2, and we explore its
outgoing edges, finding that we cannot improve the arrival
time to either C4,5

B,D or C6,7
B,D. The next current contact would

be C4,5
B,D, and since its destination is D, we have found an

optimal path with destination D, which has a best delivery
time of 4.

Next we consider the corresponding Dijkstra search in the
multigraph (pseudocode is given in Algorithm 1). We begin at
A at time 0, and see that both outgoing contacts are available
after time 0. We explore through both outgoing contacts,
finding an arrival time of 0 to B, resulting from the contact
C0,1

A,B . Then B becomes the current vertex, and both contacts

leaving B are available after the arrival time of 0 to B. We
thus explore through both of these outgoing contacts, finding
an arrival time of 4 to D through the contact C4,5

B,D. Since D
becomes the next current vertex, we have found an optimal
path with a best delivery time of 4.

These algorithms have both found the same path with the
same best delivery time, but the search in the contact graph
included a redundant step by using C2,3

A,B as the current
contact. This step was not able to improve the arrival time
to either C4,5

B,D or C6,7
B,D because they were already reached

from C0,1
A,B , which had an earlier arrival time than C2,3

A,B . If
we remove this step from the search, the contacts explored in
the two algorithms are in one-to-one correspondence. This
suggests the search through the multigraph will generally be
faster. In fact, it can be shown that the two algorithms exhibit
similar behavior on any given contact plan, thus showing that
the number of steps required by the search in the multigraph
will always be less than or equal to the number of steps
required by the search in the contact graph. This provides
strong evidence that the search in the multigraph will be
faster, and in Section 4, we elaborate on this observation by
comparing the time complexities of the algorithms.

Contact Multigraph Dijkstra Search – Version for Implemen-
tation

Pseudocode for the search in the multigraph, which we
call the Contact Multigraph Dijkstra Search, was introduced
in [3], in a format that allowed for easy comparison to the
Contact Graph Dijkstra Search of [2]. Here we provide more
practical pseudocode meant for implementation. Efficient
implementations of Dijkstra’s algorithm typically store the
collection of unvisited vertices in a min-priority queue, sorted
by lengths of the current best paths to the vertices [7] (in
our context, the lengths of the paths are replaced with arrival
times). Queue operations can then be used to update vertices’
values and positions in the queue and choose the next current
vertex. An effective queue will allow these operations to be
performed quickly and with known time complexities.

Algorithms 1 and 2 give an efficient version of the Contact
Multigraph Dijkstra Search, based on a priority queue of the
unvisited vertices. The priority queue V is ordered by the
arrival times to the vertices, which are updated throughout
the algorithm. The queue operations used are written as
V.decrease priority(u, arr time), which changes the value
of vertex u in the queue to arr time, and V.extract min(),
which returns the vertex in the queue with minimal arrival
time and removes it from the queue. Implicitly, the construc-
tion of the queue also uses an operation that adds vertices to
the queue.

The while loop beginning on line 5 of Algorithm 1 is the main
loop of the Dijkstra search. It repeatedly explores outward
from the current vertex vcurr, then chooses the next current
vertex to be the vertex remaining in the queue with minimal
arrival time. The Multigraph Review Procedure (MRP) is
called in this loop on line 6 and is described in Algorithm 2: it
performs the search outward from vcurr. For each unvisited
neighbor u of vcurr, line 5 of Algorithm 2 sets C to be the
contact from vcurr to u that is available earliest after the
arrival time to vcurr (we discuss how to find this contact in
Section 4, where we find the complexity of the algorithm). If
C provides an improvement to the arrival time to u, then the
queue is updated and the predecessor of u is set to C. After
all unvisited neighbors of vcurr are explored, vcurr is marked



Algorithm 1 Contact Multigraph Dijkstra Search
Data: Contact multigraph CM , root vertex vr, destination

vertex vd, initial time
Result: Path P from vr to vd with best delivery time P.BDT

1: for all vertices v in CM , set v.arr time = ∞,
v.visited = False, v.pred = {}

2: vr.arr time = initial time
3: construct min-priority queue V from vertices of CM ,

ordered by arr time
4: vcurr = V.extract min()
5: while true do
6: V = MRP(CM,V, vcurr)
7: vnext = V.extract min()
8: if vnext == vd then
9: break
10: else
11: vcurr = vnext
12: end if
13: end while
14: route reconstruction using predecessors to find path P
15: P.BDT = vd.arr time

Algorithm 2 Multigraph Review Procedure (MRP)
Data: CM , V , vcurr
Result: Revised V
1: for neighbor u of vcurr do
2: if u.visited then
3: skip u
4: end if
5: C = contact from vcurr to u with smallest C.start such

that C.end ≥ vcurr.arr time
6: arr time = max(C.start, vcurr.arr time)+C.owlt+

owltmgn
7: if arr time < u.arr time then
8: u.arr time = arr time
9: V.decrease priority(u, arr time)
10: u.pred = C
11: end if
12: end for
13: vcurr.visited = True

as visited and we return to the main loop of Algorithm 1.
The loop ends when the next current vertex is the destination
vertex vd, at which point an optimal path has been found. The
path can be reconstructed from the recorded predecessors of
the vertices, where in this case a path consists not only of
the data of a sequence of vertices, but also a sequence of
compatible contacts between them. We have not written the
reconstruction explicitly, but recorded the step at line 14 of
Algorithm 1.

As a practical note, the algorithm may perform better in
practice if vertices are not all added to the queue at the
beginning of the algorithm, but rather are only added once
discovered during the search (as neighbors during the for loop
of Algorithm 2). Depending on the input to the algorithm, this
can lead to a smaller queue, speeding up the queue operations.

4. COMPLEXITY OF THE CONTACT
MULTIGRAPH DIJKSTRA SEARCH

Here we determine the complexity of Algorithm 1. We will
view a multigraph as an underlying (directed) simple graph

Figure 2. A contact multigraph can be viewed as a simple
directed graph with a set of contacts associated to each edge.
This example describes the same multigraph as in Figure 1.

with multiplicities stored for each edge. In our case, we in
fact store over each edge a list of contacts with source and
destination equal to the source and destination of the edge;
the multiplicity of the edge is then the number of contacts
associated to the edge. An example corresponding to Figure
1 is shown in Figure 2. Let |V | be the number of vertices
and let |E| be the number of edges in the underlying simple
graph. For any arbitrary ordering of the edges, let mi be
the multiplicity associated to the ith edge. Let |CP | be
the total number of the contacts in the contact plan, so that
|E|∑
i=1

mi = |CP |.

Algorithm 1 follows an implementation of Dijkstra’s algo-
rithm using a priority queue, with an additional step of finding
the optimal contact associated to a given simple edge (line 5
of Algorithm 2). Each simple edge is explored at most once
over the course of Dijkstra’s algorithm, and thus the time
complexity of Algorithm 1 is equal to that of the implementa-
tion of Dijkstra’s algorithm plus the time required to find the
optimal contact associated to each edge. A straightforward
implementation could use a linear search through the list of
contacts associated to the ith edge. It requires a time of
O(mi) for the ith edge, and thus contributes a total time of

O(

|E|∑
i=1

mi) = O(|CP |).

We can improve this time complexity if we assume there
are no overlapping contacts for each edge, that is, the time
intervals for the contacts over a given edge are disjoint2.
Then we may assume the contacts for each edge are stored
sorted by end time, and in this case a binary search takes
O(log(mi)) for the ith edge. Again, this is performed at most
once for each edge, so the total time required by these steps

is O

 |E|∑
i=1

log(mi)

. Since a mean of logarithms is less than

or equal to the logarithm of the mean, we can bound the time
as follows:

2Non-overlapping contacts can always be achieved by splitting and com-
bining contacts in a contact plan. However, overlapping contacts might
realistically be used to model cases of multiple channels of communication
between a given pair of nodes. A similar complexity calculation could also
be done allowing for multiple channels of communication between any pair
of nodes, but assuming no overlapping contacts for a given channel.



5

|E|∑
i=1

log(mi) ≤ |E| log

 1

|E|

|E|∑
i=1

mi


= |E| log

(
|CP |
|E|

)
.

Therefore the time required to determine the optimal contact
for every edge is O(|E| log(|CP |/|E|)). Note that the term
|CP |/|E| is the average multiplicity of an edge. Adding
this to the time required by Dijkstra’s algorithm gives the
total time complexity of Algorithm 1. The best known time
complexity for Dijkstra’s algorithm is O

(
|E| + |V | log |V |

)
(see [9]), giving an implementation of Algorithm 1 with a
time complexity of O

(
|E| log(|CP |/|E|) + |V | log |V |

)
.

Realistically, we should expect that |CP | is the largest vari-
able, possibly many times larger than |V | and |E|. This
is because |CP | grows with both the size of the network
and the time covered by the contact plan. The complexity
given above shows that Algorithm 1 scales better with the
size of the contact plan than the Contact Graph Dijkstra
Search. Indeed, since the contact graph has |CP | vertices,
the corresponding Dijkstra search has a time complexity of
(at least3) O(|CP | log |CP |), as noted in [2].

Practically speaking, the improvement in complexity, and
especially the logarithmic dependence on |CP |, will allow
Algorithm 1 to run successfully with larger contact plans.
This amounts to a more scalable version of CGR, and in par-
ticular allows for the flexibility of scheduling longer periods
of time in contact plans.

In addition to complexity calculations, it is insightful to
see how the algorithms directly compare. However, such
analysis is somewhat beyond the scope of this paper. A
further discussion on comparing the algorithms as well as
proofs demonstrating the improved efficiency in general will
be provided in an upcoming paper.

5. CONTACT MULTIGRAPH YEN’S
ALGORITHM

In addition to using a version of Dijkstra’s algorithm to find
paths, CGR also uses a version of Yen’s algorithm [10] to
find lists of the K best paths, for a given K [2]. This
version of Yen’s algorithm runs the Dijkstra search iteratively
to find the list of best paths. Here we give a version of Yen’s
algorithm for contact multigraphs, further enabling contact
multigraphs to serve as the fundamental network model in the
routing strategy of CGR. As with our version of the Dijkstra
Search, our version of Yen’s algorithm gives improved time
complexity.

Algorithm 3 describes Yen’s algorithm in the multigraph,
incorporating Lawler’s modification [11]. In the pseudocode,
slicing of lists excludes the ending index. This algorithm and
the original Yen’s algorithm consider loopless paths, meaning
paths in which a vertex is not visited more than once. This
is the reason it is appropriate for CGR, as DTN nodes are

3This estimate of the complexity ignores the edges of the contact graph.
There is at least a linear dependence on the number of edges, and realistically
the number of edges should be greater than the number of contacts.

assumed to be able to store information (and this is assumed
to be preferred over sending data in loops). Note that there
can be multiple valid outputs if there is a tie for the K th best
path.

Let CM Dijkstra be Algorithm 1 that takes as an input a
contact multigraph CM , a root vertex vr, a destination vertex
vd, and a starting time initial time. Let a path P be a data
type with a list of contacts P.contacts and a list P.arr times
of arrival times to the vertices of the path in order. The arrival
time to the destination vertex can be referred to as the best
delivery time P.BDT to match notation of [2]. Then the list
P.arr times is one longer than P.contacts, and the arrival
time to the source vertex of the ith contact of P.contacts is
the ith time in P.arr times. Assume that CM Dijkstra
outputs a path with this information recorded. Let a path P
also have a spur index P.spur index, to be set during the
algorithm.

The algorithm is based on the observation that if the first k
best paths are known, the (k + 1)th best path must deviate
from one of these paths at some vertex, called the spur node.
The portion of the (k + 1)th best path from the source to
the spur node is called the root path and agrees with the
beginning of one of the first k best paths. The portion of the
(k + 1)th best path from the spur node to the destination is
called the spur path, and CM Dijkstra is used to find the
spur path and its best delivery time. To find the (k+1)th best
path, the algorithm considers all possible spur nodes in the
first k best paths. By finding the best spur path resulting from
each spur node, it generates candidates for the next best path.
Once all candidates have been generated, the optimal one can
be chosen. Throughout, the algorithm maintains a list A of
the currently known k best paths and a collection B of the
candidate best paths.



Algorithm 3 Contact Multigraph Yen’s Algorithm
Data: Contact multigraph CM , root vertex vr, destination

vertex vd, initial time, K
Result: K optimal paths from vr to vd starting after

initial time
1: A[0] = CM Dijkstra(CM, vr, vd, initial time)
2: if A[0] == ∅ then
3: return ∅
4: end if
5: Initialize min-heap B
6: A[0].spur index = 0
7: for k = 1 to K − 1 do
8: prev spur = A[k − 1].spur index
9: remove from CM the source vertex of each contact in

A[k − 1].contacts[0 : prev spur]
10: root path = A[k − 1].contacts[0 : prev spur]
11: for path P in A do
12: if P.contacts[0 : prev spur] == root path then
13: remove contact P.contacts[prev spur] from CM
14: end if
15: end for
16: for i = prev spur to length(A[k−1].contacts)−1 do
17: spur node = A[k − 1].contacts[i].src
18: remove contact A[k − 1].contacts[i] from CM
19: spur path = CM Dijkstra(CM, spur node, vd, A[k−

1].arr times[i])
20: if spur path == ∅ then
21: continue
22: end if
23: total path.contacts = root path +

spur path.contacts
24: total path.spur index = i
25: total path.BDT = spur path.BDT
26: assign total path source arrival times based on those of

A[k − 1] and spur path
27: add total path to B with value total path.BDT
28: remove spur node from CM
29: root path.append(A[k − 1].contacts[i])
30: end for
31: restore CM
32: if B is empty then
33: break
34: end if
35: A[k] = B.extract min()
36: end for
37: return A

Complexity

To determine the time complexity of Algorithm 3, we will
assume the optimal complexity of CM Dijkstra from Sec-
tion 4. The same reasoning applies if a different implemen-
tation of CM Dijkstra is used with a different complexity.
Following [10], we will assume that K is small compared
to the other variables. Then the time required by lines 11-
15 is negligable, as A will always contain less than K paths.
The dominant term is the use of CM Dijkstra in line 19.
For each k, the number of iterations of the loop starting
on line 16 is bounded above by V , since no loopless path
has more than V vertices. Thus, CM Dijkstra is called
at most KV times, so the time required by Algorithm 3 is
O
(
K|V |

(
|E| log(|CP |/|E|)+ |V | log |V |

))
. This improves

upon the version of Yen’s algorithm in a contact graph, which
has complexity of (at least) O

(
K|CP |2 log |CP |

)
[2].

Figure 3. Contact Multigraph Structure

6. IMPLEMENTATION IN HDTN
Algorithm 1 was recently implemented into NASA’s High
Rate Delay Tolerant Networking (HDTN) project, with code
available at https://github.com/nasa/HDTN. We
describe the implementation in this section. A C++ library
implementing the subset of PyCGR (as in [2]) needed by
HDTN —namely loading contact plans and computing best
routes over them using Dijkstra’s algorithm— was also re-
cently added. In Section 7, we will provide an experimental
comparison of these two algorithms to complement the theo-
retical comparison given in the previous sections.

Data Structures

The inputs to the implementation of Algorithm 1 are a contact
plan, which is a vector of contacts; the ID of the destination
node; and a pointer to the root contact, from which the root
vertex and initial time can be determined. These were chosen
to agree with the inputs to the Contact Graph Dijkstra Search,
for easy comparison. Each contact is an instance of a class
containing fields for the source node’s ID, the destination
node’s ID, and the contact’s start and end times (Figure 3).

The following representation of a contact multigraph was
chosen to give an efficient implementation; see Figures 1
and 2 for visualizations of contact multigraphs. Roughly
speaking, a contact multigraph will be represented as an ad-
jacency list of vertices, with additional information recorded
for each adjacency. We begin with a vertex class to represent
network nodes. It will have a node ID and adjacencies, which
are other vertices that can be reached by traversing a contact.
For each vertex v, the adjacencies will be stored as a mapping
from a node ID to a vector of contacts, recording every edge
in the multigraph from v to a given adjacent vertex. We will
assume contacts in this vector do not overlap and are sorted by
time, as discussed in Section 4, allowing for a binary search
of the contacts in line 5 of Algorithm 2. A contact multigraph
class will contain an unordered map mapping node IDs to
their corresponding vertex objects. This allows access to a
vertex and its fields in constant time from the node ID.

Throughout the execution of the Dijkstra search, a min-
priority queue is used to store the unvisited vertices, sorted
by arrival time (see Section 3). The priority queue is im-
plemented through a heap that uses a custom comparator to
insert vertex objects based on their arrival time. A vertex
object also contains relevant fields for the routing algorithm
such as the arrival time, whether that vertex has been visited
already, and a predecessor contact, to be set and updated in
line 10 of Algorithm 2. At the end of the routing algorithm,
the route to the destination vertex can be reconstructed by
following back the chain of predecessors to the root vertex

https://github.com/nasa/HDTN


7(line 14 of Algorithm 1). The end result, a route, will be
a chain of contacts from the starting node to the destination
node.

The construction of the contact multigraph comes from filling
up the above-mentioned structure from the contact plan.
Looping through the contacts in the contact plan, a vertex is
created for the source and destination node IDs of the contact.
The contact is then inserted into the adjacencies from the
source vertex to the destination vertex, sorted by time. One
optimization in the construction of the contact multigraph
is as follows: if a node ID never appears as the source of
a contact, then it has an outdegree of zero in the contact
multigraph, and thus is never constructed because it cannot
be part of the optimal route. This results in better runtime of
the construction of the contact multigraph and the routing.

Integration with HDTN router

The function implementing the Algorithm 1 in C++
was added to the new HDTN routing library as an-
other option for routing in addition to dijkstra CGR
implementation https://github.com/nasa/HDTN/
blob/master/common/cgr/src/libcgr.cpp. It
was also integrated with the HDTN router module so that if
the user selects to use CMR instead of CGR, this function is
invoked by the router to get the next hop for the optimal route
leading to the final destination.

7. EXPERIMENTAL RESULTS
The CMR implementation successfully finds the optimal
route that CGR finds. CMR was integrated with HDTN and
run on an HDTN simulator. CMR produced the same route
within this simulator as CGR. In addition, preliminary timing
tests between CMR and CGR yields positive results. On a
contact plan with 6 nodes and 9 contacts, averaged over 100
trials, CMR found the optimal route in 16 microseconds while
CGR found the optimal route in 22 microseconds (see Figure
4). This decrease in runtime is expected to be larger in bigger
contact plans due to the algorithmic complexity differences.
Further breaking down the runtime of CMR, approximately
half of the runtime (8 microseconds) was taken up by the
construction of the contact multigraph.

After preliminary testing, our next step was to test scala-
bility of the algorithm. To wit, we initiated testing run-
time efficiency with larger contact plants generated from
real satellite data. To test the scalability of our algorithm,
we elected to pull from the STARLINK mega constellation,
whose Two-Line Elements (TLEs) are available at https:
//celestrak.org/. On these greater tests, we antici-
pated that the runtime of CMR in generating the multigraph
would become a smaller and smaller percentage of the overall
CMR runtime with larger contact plans. This would then
result in even greater speedups when compared with CGR.

Simulation in SOAP

For the simulations, we used the Satellite Orbit Analysis Pro-
gram (SOAP) developed by the Aerospace Corporation [12].
SOAP is built around a GUI, which makes manually building
large simulations time consuming. In a naive workflow, one
typically adds satellites to the simulation by hand and then
augments them with platforms and sensors to record sunrise
and sunset times for line-of-sight communication. We wanted
to develop a script-based system so that one could add,
ideally, all 2300 STARLINK satellites to a single simulation.

Figure 4. CMR vs. CGR runtime comparison in
microseconds. The red bar corresponds to constructing the

multigraph from the contact plan, while the blue bars
correspond to computing the routes.

To achieve this, we analyzed the associated (ORB) simulation
files to see how they were formatted. We then wrote code to
programmatically generate ORB files according to specified
parameters, such as (1) date of simulation, (2) duration of
simulation, (3) list of satellites and ground stations to use,
(4) customized reports for additional data such as the distance
between any two satellites at specified time slices of the
simulation.

The simulations we used for these experiments consist of a
few hard coded ground stations specified by longitude and
latitude coordinates, together with a random k-sample of
the entire STARLINK network. We then coded the ORB
files to generate a report of contact times (saved as a CSV
file), which track the rise and set times for when any two
satellite / ground stations are connected throughout line-of-
sight during the simulation period, which was typically fixed
to twenty-four hours. This data is then sufficient to describe
the underlying time-varying graph of the simulated space
network in question..

Finally, by running SOAP in GNU/Linux, we were able to
pass in our generated ORB files as arguments and generate the
contact reports as an automated batch process. The contact
report CSV outputs were then parsed and translated to the
JSON format required by the CMR implementation and used
in this paper.

In this paper, the simulations were constructed with four
imagined ground stations, at Albany, NASA Glenn Research
Center, UC Berkeley, and Guam. In addition, we took
samples of size 10, 50, 100, and 200 from the STARLINK
mega constellation. With each simulation lasting for 24 hours
(86400 seconds), and counting the ground stations as nodes,
the contact plans consisted of 14, 54, 104, and 204 nodes
corresponding to 368, 7186, 28162, and 109330 contacts
respectively.

For the routing problem, we selected four longer distance
connections to test, namely Albany to Berkeley, NASA Glenn
to Berkeley, Albany to Guam, and NASA Glenn to Guam.
For each connection tested, routes were computed using
our CGR and CMR implementations within each of the
four simulations. For each simulation-algorithm-connection
combination the time it took to run the routing algorithm
was computed in microseconds. The results of the CGR
implementation appear in Table 1, and the results of the CMR
implementation appear in Table 2.

https://github.com/nasa/HDTN/blob/master/common/cgr/src/libcgr.cpp
https://github.com/nasa/HDTN/blob/master/common/cgr/src/libcgr.cpp
https://celestrak.org/
https://celestrak.org/


CGR Route 10 sat 50 sat 100 sat 200 sat

Albany - Berkeley [10-30] 376 26286 334939 12509186
Glenn - Berkeley [20-30] 423 33965 459089 33339362
Albany - Guam [10-40] 352 25931 321582 11837432
Glenn - Guam [20-40] 244 31025 293578 14852335

Table 1. Runtime in microseconds for each simulation in
CGR implementation

CMR Route 10 sat 50 sat 100 sat 200 sat

Albany - Berkeley [10-30] 254 8338 45929 154221
Glenn - Berkeley [20-30] 275 13287 59814 267133
Albany - Guam [10-40] 178 9577 40781 158381
Glenn - Guam [20-40] 222 9188 44727 155402

Table 2. Runtime in microseconds for each simulation in
CMR implementation

8. CONCLUSION
While HDTN is still an experimental program, we hope
to bring our software to wider adoption and use in space
missions. Results and improvements like those presented
in this paper are part of the reason we are confident that
HDTN will mature into a successful product. As we continue
experimenting and examining scalability for our algorithms,
we are setting HDTN into the position to best support the
widest group possible.

The increase in efficiency we achieve with CMR is only
realized by a combination of theoretical research and prac-
tical implementation. We will continue testing HDTN and
CMR as we build additional robustness and assurance in our
capabilities. We are currently targeting several missions for
implementation and testing, including connecting to the ISS
and future Artemis and Mars missions. This will further
establish HDTN as the performance-optimized version of
DTN. Pushing HDTN forward brings to space research a new
possible tool to expand the horizons of what is possible.

Future Work

In this paper we presented some first steps we can take to
address complexity and scalability of contact-based routing.
Implementing CMR in HDTN proved to be successful at
speeding up route computation by using an updated data
structure to represent all contacts and implementing the Con-
tact Multigraph Dijkstra Search. Naturally, the next step in
this process would be to implement Yen’s Multigraph algo-
rithm to find multiple shortest paths between two endpoints
in the network. Given the success of Multigraph Dijkstra’s
algorithm, we expect Multigraph Yen’s algorithm will also
perform better in practice when compared to CGR.

However, even with the better runtime provided by CMR,
scalability still remains a big issue in contact-based rout-
ing. In both CGR and CMR, route computation requires
knowledge of the entire network. This becomes expensive
and impractical in large scale networks, such as the one we
expect to see in a future space internet. One way to address
the scalability of these routing methods is by partitioning the
network into smaller sub-networks or clusters. This would
allow the use of different routing algorithms on inter and
intra-cluster routing and would avoid the situation of running
a search on a large scale contact multigraph. Arriving at this

network partition, as well as developing distributed routing
algorithms that allow the interaction of different endpoints
and clusters, leave much potential future work.
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