National Aeronautics and Space Administration

Handling Qualities Assessment of Manual Lunar Landing with Display Augmentation

Lynda Kramer NASA Langley Research Center

Rev 1-220123

www.nasa.gov

Artemis Human Landing System (HLS)

- Artemis campaign NASA in collaboration with commercial and international partners will establish a sustainable presence on the moon to prepare for missions to Mars
- Human Landing System (HLS) spacecraft will land the first woman and first person of color on the moon
- The return of astronauts to the moon will be achieved through a combination of automatic and manual control
- A handling qualities (HQ) evaluation of control law and display concepts for manual control of a lunar landing vehicle during the final approach and landing phase was conducted
- Data from this test will support NASA and its HLS partners in manual control design insight and trade-space options for cost savings and efficiency

ConOps Overview

Background - Spacecraft Handling Qualities (SHaQ)

- A handling qualities (HQ) evaluation of control law and display concepts for manual control of a lunar landing vehicle during the final approach and landing phase was conducted
- Handling Qualities (HQs):

"Those qualities or characteristics of a vehicle (spacecraft) that govern the ease and precision with which a pilot is able to perform the tasks required in support of a *spacecraft* role."

- Dynamics of the pilot + vehicle
- Dependent upon the pilot-vehicle interface (control and displays); the aural, visual, and motion cues involved in the required task; any stress (e.g., distraction, time pressure) due to the task or mission; and potential external disturbances to the vehicle
- Human-Rating Requirements for Space Systems (NPR 8705.2C)
 - 3.4.2: The crewed spacecraft shall exhibit Level 1 handling qualities (Handling Qualities Rating (HQR) 1, 2 and 3), as defined by the Cooper-Harper Rating Scale, during manual control of the spacecraft's flight path and attitude for crew manual control events when the vehicle has not had failures which result in degraded fight control.

Background - Handling Qualities Rating Scale

<u>Mission Task</u>: The pilot's task is manual control of the lunar landing vehicle for safe touchdown at a redesignated landing target using a hover cue

Desired/Adequate Performance Standards During Approach: Maintain sink rate (i.e., hdot less than zero), have no pilot-induced oscillations (PIOs), and have no more than minimal overshoot of the landing target for *desired task performance*.

Touchdown Parameter	Desired Performance	Adequate Performance	
Range at Touchdown	< 3 m	< 5 m	
Sink Rate	< 1.52 m/sec	< 2.13 m/sec	
Forward/Side Velocity	< 0.61 m/sec	< 1.22 m/sec	
Pitch/Roll Angle	< ± 3 deg	< ± 6 deg	
Pitch/Roll Rate	$< \pm 3 \text{ deg/sec}$	$< \pm 6 \text{ deg/sec}$	
Yaw Rate	$<\pm$ 1.0 deg/sec	$< \pm 1.5 \text{ deg/sec}$	

Example of After-Run Feedback of Task Performance

LANDING EVENT	10-FEB-2022	20:26UTC	SCN	10034002	RUN 192
		VALUE		RATING	
PERFORMANCE	AT TOUCHDOW	N:			
DOWNRAN	GE POSITION (M) - 3.28		ADEQUATE	
CROSSRAM	GE POSITION	(M) -0.03		DESIRED	
TOTAL RA	NGE (M)	3.28		ADEQUATE	
SINK RAT	E (M/S)	- 0.95		DESIRED	
ROLL ANG	LE (DEG)	0.08		DESIRED	
PITCH AN	GLE (DEG)	- 0.34		DESIRED	
VELOCITY	(M/S)	0.32		DESIRED	
ROLL RAT	E (DEG/S)	- 0.05		DESIRED	
PITCH RA	TE (DEG/S)	0.04		DESIRED	
YAW RATE	(DEG/S)	0.03		DESIRED	
PERFORMANCE	DURING APPR	DACH:			
HDOT CM	O MAINTAII	NED			

Ref: Cooper, George E.; Harper, Robert P., Jr. (April 1969). The Use of Pilot Rating in the Evaluation of Aircraft Handling Qualities. NASA- TDN-D-5153. https://ntrs.nasa.gov/citations/19690013177

Existing Lunar Lander HQ Criteria/Data

- Gemini/Apollo Programs
 - HQ criteria on the required attitude control power for Satisfactory Handling Qualities
 - Max. Rate Command vs. Time to Reach Max. Rate Command
 - Used Cooper HQ Rating Scale
 - Based on Rate-Command Attitude-Hold (RCAH) control laws
 - Simple, minimum augmentation control system
- Altair Studies (Constellation Program):
 - <u>Revalidated Apollo Criteria</u> using Cooper-Harper HQ Rating Scale
 - Higher-level control law types appear more tolerant of lower values of control power than RCAH
 - Translational Rate Command (TRC)
 - Attitude-Command Velocity-Hold (ACVH)
 - Augmentation of RCAH with Hover Cue creates expanded Level 1 HQ area (for lower control powers)
 - Higher glideslope angle creates easier task

80 99560 40 4 thrusters 20 4 thrusters 5 thrusters 1 thrusters 4 thrusters 5 thrusters 1 thrusters 5 thrusters 5 thrusters 5 thrusters 1 thrusters 5 thrusters

[Credit: Figure 14 from NASA TN D-4131]

Cheatham & Hackler

Current Handling Qualities Evaluation Study

- Evaluation of control law types using hover cue on Nav Display as a display aid for precision landings
 - RCAH Control Law 12 deg/sec Maximum Rate
 - ACVH Control Law 20 deg Maximum Attitude
 - Both with hover cue of similar dynamics
 - Create fair comparative basis
 - Both included a Hover Hold (HH) / Incremental Position Control (IPC) mode
 - Holds vehicle position over landing target when groundspeed is less than 0.5 m/s and pilot can tweak vehicle position in 1-m increments. Provides for stabilized descent.
- Variations in vehicle characteristics are through Reaction Control System (RCS) Jet Size
 - Control powers of 1.1, 2.9, and 4.3 deg/sec²
- Task:
 - Manual control of Lunar Landing Vehicle for safe touchdown at redesignated Landing Target (LT)

Lunar Flight Deck (LFD) Simulator at NASA LaRC

- Lunar Flight Deck (LFD) simulator
 - Flew to landing area adjacent to the Apollo 15 Landing Site
 - On a 30 deg Glidepath
 - Redesignated LT within a 200x200m Landing Zone (LZ) near Pluton crater
 - Used Altair vehicle model, LaRC Constant Deceleration Guidance
 - Allows for near constant deck angle, flight path angle and thrust-to-weight ratio
 - Used Rotational Hand Controller (RHC) for translation control with RCAH or ACVH control laws
 - Used Translational Hand Controller (THC) for sink rate (hdot) control and to move vehicle position in discrete 1-m increments in IPC mode

Piloting Task

- Task starts at 1000 m Above Field Level (AFL), i.e., Above the Landing Zone
- Flying On Auto-Pilot to 150 m AFL
- At 150 m AFL,
 - Landing Target Redesignated
 - 50 m Redez on 1st run, 2 runs to 75 m
 - Pilot gets manual control
 - Task is to translate and descend to Redesignated Landing Target
 - Arriving 20-30 m AFL, without significant overshoot
 - Then, vertical descent to landing

Desired and Adequate Performance Standards

Touchdown Parameter	Desired Performance	Adequate Performance	
Range at Touchdown	< 3 m	< 5 m	
Sink Rate	< 1.52 m/sec	< 2.13 m/sec	
Forward/Side Velocity	< 0.61 m/sec	< 1.22 m/sec	
Pitch/Roll Angle	$<\pm 3 \text{ deg}$	$<\pm 6 \text{ deg}$	
Pitch/Roll Rate	$<\pm 3$ deg/sec	$<\pm 6$ deg/sec	
Yaw Rate	$<\pm$ 1.0 deg/sec	$<\pm$ 1.5 deg/sec	

• No Pilot-Induced Oscillations for Desired Performance

• Sink Rate always maintained for Desired Performance

Pilot Comment and Rating Card

- Quantitative Task Performance
 - Approach Path Tracking
 - Landing Performance
 - Fuel Usage
- Cooper-Harper Pilot Ratings
- NASA Task Load Index (TLX) Workload Ratings
- Post-Run Comment Card
 - Likert Ratings on acceptability of rotational control for translation and utility of cockpit displays for the task
 - Subjective Comments
- Post-test debrief

LANDING EVENT	10-FEB-2022	20:26UTC	SCN	10034002	RUN 192
		VALUE		RAT ING	
PERFORMANCE	AT TOUCHDOW	/N:			
DOWNRAN	GE POSITION (M) - 3.28		ADEQUATE	
CROSSRAN	IGE POSITION	(M) -0.03		DESIRED	
TOTAL RAI	NGE (M)	3.28		ADEQUATE	
SINK RAT	E (M/S)	- 0.95		DESIRED	
ROLL ANG	LE (DEG)	80.0		DESIRED	
PITCH AN	GLE (DEG)	-0.34		DESIRED	
VELOCITY	(M/S)	0.32		DESIRED	
ROLL RAT	E (DEG/S)	- 0.05		DESIRED	
PITCH RA	TE (DEG/S)	0.04		DESIRED	
YAW RATE	(DEG/S)	0.03		DESIRED	
PERFORMANCE	DURING APPR	OACH:			
HDOT CMD	O MAINTAIL	NED			

SHaQ Pilot Comment Card – Part 1

- 1) Assign Cooper-Harper Pilot Ratings
- 2) Rotational Control

Rate Acceptability of Rotational Control for Translation to Redesignated Landing:

Please Comment On:

- a. Rotational Control Power / Sensitivity
- b. Ability to Precisely Control Translation

3) Cockpit Displays

Rate Utility of Cockpit Displays for Mission/Task:

Please Comment On:

- a. Hover Cue Response / Fly-ability of Cue
- b. Display Influence on Ability to Complete Safe Approach and Landing
- c. Use of Head-Out and Head-Down Information
- 4) <u>Others</u>:
- 5) <u>Summary / Overall Comments</u>
 - a. Any Change in Pilot Rating?
 - b. TLX Rating

Subjects and HQ Testing Protocols

- 10 Subjects
 - 6 Current Pilot Astronauts (National and International)
 - 4 NASA Test Pilots
 - All military Test Pilot School graduates
 - Skilled in aircraft handling qualities evaluations
 - Some had experience in rotary wing vehicles
- Nominally 18 HQ runs per pilot
 - 2 control laws x 3 CPs x 3 runs
 - Blocked by Control Law, then Blocked by CP (3 runs within each)
 - Run 1: Training run with 50m redesignation distance from LT
 - Runs 2 and 3: Data runs with 75 m redesignation distance from LT
 - After data runs, pilot gave HQR rating and comments, NASA TLX workload ratings, Likert ratings

Example of SHaQ Run Card

Pilot	Config	Man Ctrl Block	CP Block	REDEZ dist	REDEZ Angle
		Diock	(ueg/sec)	50	-40
1	1	RCAH	2.9	75	80
				75	-75
				50	70
1	2 RCAH		1.1	75	-78
				75	55
		RCAH	4.3	50	65
1 3	3			75	75
				75	-38
				50	65
1 4	4	ACVH	4.3	75	75
				75	-38
				50	70
1	5	5 ACVH	2.9	75	-78
				75	55
				50	-40
1	6	ACVH	1.1	75	80
				75	-75

Cooper-Harper Pilot Ratings

<u>Mission Task</u>: The pilot's task was manual control of the lunar landing vehicle for safe touchdown at a redesignated landing target using a hover cue.

- Hover Cue:
 - "Changes everything."

"I like the way the hover cue, velocity vector, and ownship position, they just play nicer together when I'm in rate command/attitude hold"

- *High Control Power*: "a lot more active control."
- Low Control Power:

"you put in a full half stick and if you don't wait, you're gonna overshoot. And then you're sitting there holding it to stop. And then your like, "come on, when is it going to stop."

• RCAH v. ACVH

"For ACVH, in particular, is very sensitive to holding that position on the stick. If you release it, it goes [snap back] and if you put it in quick it goes [snap back] because it's taking lead from that."

• Fuel/Redez

"if you add a pressure with time, fuel I think those PIOs would come out."

Pilot Workload - RCAH

- Smaller the spider web, the better (lower workload)
 - Performance big numbers are bad
- No significant differences between 2.9 and 4.3 deg/sec² control power for workload components or Overall Workload
- At 1.1 deg/sec²:
 - Significant decrease in performance
 - Significant increase in frustration
 - Significant increase in Overall Workload

Pilot Workload - ACVH

- No significant differences between 2.9 and 4.3 deg/sec² control power for workload components or Overall Workload
 - Slight increase in workload for 4.3 deg/sec² in almost every workload attribute
- At 1.1 deg/sec²:
 - Significant decrease in performance
 - Significant increase in frustration
 - Significant increase in Overall Workload

Ref: Hart, S.G. and Staveland, L.E., "Development of NASA-TLX (Task Load Index): Results of Empirical and Theoretical Research." In P.A. Hancock & N. Meshkati (Eds.), Human Mental Workload. Amsterdam: North-Holland, 1988, pp. 139-183.

Conclusions

- Hover cue display augmentation
 - Significantly improves the pilot's ability to control translation to a hover
 - Creates satisfactory handling qualities for otherwise, sluggish configurations
 - Expands acceptable (Level 1 / Level 2) envelopes for minimum control power compared to Cheatham-Hackler
 - Allows lower control power design for HLS
 - Is not a panacea as evidenced by pilot-induced oscillations and higher workload for the lowest control power
- Simpler RCAH manual control law with hover cue appears viable for lunar landing vehicles with control powers as low as 2.9 deg/sec²
 - Test data showed RCAH was as least as good as (if not better than) ACVH when hover cue is used
 - Even lower control powers with RCAH may be viable with pilot training (using predictive, smooth control inputs; crosschecking PFD attitude), moving ND (primary display) closer to the window for easier pilot scanning, limiting landing target redesignation distance
- Hover Hold/IPC guidance mode significantly reduces workload in vertical descent and enables better "fine tuning" of the touchdown point
- Low control powers flyable as long as you don't fall over the "PIO Cliff" dependent on attention, task upset, aggressiveness, closed-loop vs. open-loop, redesignation size, time/fuel constraint

Recommendations

- Tailoring hover cue to configuration
- IPC as a submode of RCAH control law is recommended
- Examination of Time-Fuel Constraints / Redesignation Distance / Trajectory
 - Fuel/Time almost unconstrained for this test
- Tailoring display design/location with OTW view for improved pilot scan and attention
- ACVH (and similar control laws) need a controller without a spring-force
 - Triggered "closed-Loop" control

Flight Control Response Types - RCAH

- Rate Command / Attitude Hold (Traditional Apollo):
 - Deflection of the Rotational Hand controller (RHC) will command a body angular rate in proportion to deflection in each axis (pitch, roll, yaw)
 - Upon inceptor return-to-center the attitude rates will be stopped and the new attitude will be held constant

Flight Control Response Types - ACVH

- Attitude Command / Velocity Hold (ACVH):
 - Deflection of the RHC will command a pitch or roll attitude proportional to deflection
 - Upon inceptor return-to-center the attitude will roll to level, holding current translational velocity
 - Z-axis acts as in RCAH with pilot free to yaw the vehicle as desired.

Acceptability of Rotational Control for Translation

- Significant control power differences
 - 2.9 and 4.3 CPs had acceptable rotational control for translation
 - 1.1 CP slightly unacceptable

Example Run Matrix for Two Subjects

Dilat	Config	Man Ctrl	CP Block	REDEZ dist	REDEZ Angle	Б	Vilat	Config	Man Ctrl	CP Block	REDEZ dist	REDEZ Angle	
Pliot	Config	Block	(deg/sec ²)	from LT (m)	from Vert (deg)	P	1101	Config	Block	(deg/sec ²)	from LT (m)	from Vert (deg)	
				50	-40						50	70	
1	1	RCAH	2.9	75	80		2	1	RCAH	4.3	75	-78	
				75	-75						75	55	
				50	70						50	-40	
1	2	RCAH	1.1	75	-78		2 2	2 RC	RCAH	1.1	75	80	
				75	55						75	-75	
					50	65						50	65
1	1 3 RCAH 4.3	4.3	75	75 2 3	RCAH	2.9	75	75					
		75	-38						75	-38			
				50	65						50	70	
1	4	ACVH	4.3	75	75		2	4	ACVH	1.1	75	-78	
				75	-38						75	55	
				50	70						50	-40	
1	5	ACVH	2.9	75	-78		2	5	ACVH	2.9	75	80	
				75	55						75	-75	
				50	-40						50	65	
1	6	ACVH	1.1	75	80		2	6	ACVH	4.3	75	75	
				75	-75						75	-38	

Cooper Rating Scale (1957)

	Adjective rating	Numerical rating	Description	Primary mission accomplished	Can be landed
		L	Excellent, includes optimum	Yes	Yes
NORMAL	Catiofastan	2	Good, pleasant to fly	Yes	Yes
OPERATION	Satistactory	3	Satisfactory, but with some mildly unpleasant characteristics	Yes	Yes
EMERGENCY OPERATION		4	Acceptable, but with unpleasant characteristics	Yes	Yes
	Unsatisfactory	5	Unacceptable for normal operation	Doubtful	Yes
		6	Acceptable for emergency condition only *	Doubtful	Yes
NO		7	Unacceptable even for emergency condition*	No	Doubtful
OPERATION	Unacceptable	8	Unacceptable - Dangerous	No	No
		9	Unacceptable - Uncontrollable	No	No
	Unprintable	10	"Motions possibly violent enough to prevent pilot escape"		

* Failure of stability augmenter

Figure 3.- Original Cooper Rating Scale.

Credit: Figure 3 from Cooper (1957)]

Cooper-Harper Rating (CHR) Scale

NASA

- Internationally accepted standard for assessing HQ for over 40 years
- Cooper-Harper scale yields a rating of pilot compensation (effort required) to achieve a specific level of performance in the accomplishment of a mission or task
- Pilots are briefed on the task to be evaluated and its performance requirements (Desired/Adequate)
- Assess performance for composite of 2 data runs (optional 3rd data run)
- Pilots should always go through the flow logic of the Cooper-Harper chart and verbalize their decision on if control was achieved, and if so, was desired or adequate performance attained.
 - Classify overall performance as desired (CHR 1-4), adequate (CHR 5-7), or inadequate (CHR 8-10)
 - Level 1 Handling Qualities are CHR of 1, 2, or 3
- This rating along with the associated pilot comments and quantitative task performance data define the vehicle's handling qualities

CHR Scale Descriptions

DEFINITIONS FROM TN-D-5153

COMPENSATION

The measure of additional pilot effort and attention required to maintain a given level of performance in the face of deficient vehicle characteristics.

HANDLING QUALITIES

Those qualities or characteristics of an aircraft that govern the ease and precision with which a pilot is able to perform the tasks required in support of an aircraft role.

MISSION

The composite of pilot-vehicle functions that must be performed to fulfill operational requirements. May be specified for a role, complete flight, flight phase, or flight subphase.

PERFORMANCE

The precision of control with respect to aircraft movement that a pilot is able to achieve in performing a task. (Pilot vehicle performance is a measure of handling performance. Pilot performance is a measure of the manner or efficiency with which a pilot moves the principal controls in performing a task.)

ROLE

The function or purpose that defines the primary use of an aircraft.

TASK

The actual work assigned a pilot to be performed in completion of or as representative of a designated flight segment.

WORKLOAD

The integrated physical and mental effort required to perform a specified piloting task.

Cooper-Harper Ref. NASA TND-5153

Ref: Cooper, George E.; Harper, Robert P., Jr. (April 1969). The Use of Pilot Rating in the Evaluation of Aircraft Handling Qualities. NASA- TDN-D-5153. <u>https://ntrs.nasa.gov/citations/19690013177</u>

Workload: Task Load Index (TLX) rating card

Title	Descriptions
MENTAL DEMAND	How much mental and perceptual activity was required (e.g., thinking, deciding, calculating, remembering, looking, searching, etc.)? Was the task easy or demanding, simple or complex, exacting or forgiving?
PHYSICAL DEMAND	How much physical activity was required (e.g., pushing, pulling, turning, controlling, activating, etc.)? Was the task easy or demanding, slow or brisk, slack or strenuous, restful or laborious?
TEMPORAL DEMAND	How much time pressure did you feel due to the rate or pace at which the tasks or task elements occurred? Was the pace slow and leisurely or rapid and frantic?
PERFORMANCE	How successful do you think you were in accomplishing the goals of the task set by the experimenter (or yourself)? How satisfied were you with your performance in accomplishing these goals?
EFFORT	How hard did you have to work (mentally and physically) to accomplish your level of performance?
FRUSTRATION LEVEL	How insecure, discouraged, irritated, stressed and annoyed versus secure, gratified, content, relaxed and complacent did you feel during the task?

Verbalize your rating for each scale: AL DEMAND 100 50 1 High ICAL DEMAND 100 50 High ORAL DEMAND 100 50 L L High ORMANCE 50 100 Г I. Poor RT 100 50 і I High **FRATION** 50 100 High

Integrated Hover Cue Symbology set

 Composed of ownship symbol, hover cue, velocity vector, and landing target (LT)

Hover Cue → Control Symbol ("Fly-To" Sense) Velocity Vector → Reference Information Landing Target (LT) → Desired Hover Location

Pilot's Task

Position and continue to hold hover cue over desired hover location; control laws will bring vehicle to hover over desired hover location

On Initial Approach

Don't chase LT; let the LT come to the hover cue (unless hover cue lags the velocity)

Landing Site Views

Landing site views – on approach (left picture) and from above (right picture)

Apollo Auto-Flight Operations

Number of Re-designation Commands Given during descent, after pitch-over

<u>P66 / Att Hold Takeover</u> <u>Altitude</u>

Flight	No of Re-designations	Range Designations Displaced LM from
	(in P64)	Landing Site
11	Switched to P66 Early	
12	7	
14	1	2000 ft downrange, 300 ft North
15	18	1110 ft uprange, 1341 ft North
16	10	620 ft uprange, 635 ft South
17	8	

Flight	P66 Height (ft)
11	550
12	400
14	370
15	400
16	240
17	240

Reference: *Digital Apollo: Human and Machine in Spaceflight*, Author: David A Mindell, The MIT Press, Cambridge, MA, 2008.

Ref: Major, L.M., Brady, T.M., and Paschall, II, S.C.: "Apollo Looking Forward: Crew Task Challenges." paper presented at the 2009 IEEE Aerospace Conference, 7-14 March 2009

Experimental Matrix

Pilot Task- manually fly and land at redesignated landing target

3 runs flown for each control law (RCAH, ACVH) and control power (1.1, 2.9, 4.3 m/sec2) combination 1st run – 50m redesignation, practice run 2nd and 3rd runs – 75m red redesignation, after competing both runs give HQR rating and comments, NASA TLX workload ratings, Likert ratings

Runs blocked by control law

Runs blocked by control power

Control power blocks randomized within each control law block

Half pilots flew ACVH control block first, then RCAH block Half pilot flew RCAH control block first, then ACVH block

