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Abstract.24

We present the comparison of source-partitioned CO2 flux measurements with a25

high-resolution urban CO2 emissions inventory (Hestia). Tower-based measurements26

of CO and 14C are used to partition net CO2 flux measurements into fossil and27

biogenic components. A flux footprint model is used to quantify spatial variation28

in flux measurements. We compare the daily cycle and spatial structure of Hestia29

and eddy-covariance derived fossil fuel CO2 emissions on a seasonal basis. Hestia30

inventory emissions exceed the eddy-covariance measured emissions by 0.36 µmol m−2
31

s−1 (3.2%) in the cold season and 0.62 µmol m−2 s−1 (9.1%) in the warm season. The32

daily cycle of fluxes in both products matches closely, with correlations in the hourly33

mean fluxes of 0.86 (cold season) and 0.93 (warm season). The spatially averaged34

fluxes also agree in each season and a persistent spatial pattern in the differences35

during both seasons that may suggest a bias related to residential heating emissions.36

In addition, in the cold season, the magnitudes of average daytime biological uptake37

and nighttime respiration at this flux site are approximately 15% and 27% of the mean38

fossil fuel CO2 emissions over the same time period, contradicting common assumptions39

of no significant biological CO2 exchange in northern cities during winter. This work40
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demonstrates the effectiveness of using trace gas ratios to adapt eddy-covariance flux41

measurements in urban environments for disaggregating anthropogenic CO2 emissions42

and urban ecosystem fluxes at high spatial and temporal resolution.43

Keywords: eddy-covariance flux measurements, source partitioning, emissions inventory,44

fossil fuel CO2 emissions, biogenic CO2 fluxes45
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1. Introduction46

Cities are becoming the focus for formulating and implementing carbon dioxide (CO2)47

emissions mitigation efforts (Hutyra et al., 2014; Lee and Koski, 2014; Bulkeley,48

2013). Evaluating the effectiveness of emissions reduction efforts requires accurate CO249

emissions estimates (Lauvaux et al., 2020; Turnbull et al., 2018). Although cities cover50

only 3% of the global land area, urban areas are home to 55% of the world’s population,51

a proportion that is expected to increase to 68% by 2050 (Chaouad and Verzeroli, 2018).52

Overall, more than 70% of global fossil fuel CO2 (CO2ff) emissions are from urban areas53

(Edenhofer et al., 2015). Efforts to assess and mitigate CO2 emissions can provide54

benefits for urban sustainability and balanced economic growth (Hsu et al., 2019).55

Urban areas are consistently reported as a net source of CO2 emissions (Velasco56

and Roth, 2010). The eddy-covariance technique has been applied to measure urban57

CO2 emissions in different cities for about two decades (Björkegren and Grimmond,58

2018; Park and Schade, 2016; Ao et al., 2016; Helfter et al., 2016; Lietzke et al., 2015;59

Christen, 2014; Järvi et al., 2012; Christen et al., 2011; Vogt et al., 2006; Nemitz et al.,60

2002; Grimmond et al., 2002). The attribution of urban CO2 flux measurements is61

challenging due to the spatial heterogeneity, mixed emission sources and sinks, and62

limited spatial coverage of flux measurements (Aubinet et al., 2012). Although most63

previous studies focus on the observed net CO2 flux, a few studies attempt to partition64

flux measurements into fossil and biogenic components accounting for the temporal65

and spatial variability of the multiple sources and sinks. Menzer and McFadden (2017)66

modeled fossil CO2 emissions based on winter data and extrapolated them to the growing67

season to estimate biogenic fluxes. Ishidoya et al. (2020) demonstrated partitioning of68

CO2 fluxes into liquid and gaseous fossil components using O2 and CO2 measurements.69

Sugawara et al. (2021) used a nearby tower to estimate the biogenic component of a70

total CO2 flux measurement.71

Quantification of anthropogenic CO2 emissions is challenging due to the difficulty72

of separating CO2ff emissions from biogenic CO2 (CO2bio) fluxes (Miller et al., 2020;73

Basu et al., 2020). Previous studies demonstrated the feasibility of using 14C isotope74

measurements to separate CO2ff from CO2bio fluxes (Basu et al., 2016; Turnbull et al.,75

2015; Miller et al., 2012), but flask measurements of 14C are expensive and discontinuous.76

Continuous measurements of carbon monoxide (CO) provide another approach to track77

CO2ff emissions (Park and Schade, 2016; Silva et al., 2013; Turnbull et al., 2011; Vogel78

et al., 2010; Levin and Karstens, 2007). Uncertainties in the CO to CO2ff ratio,79

which vary as a function of emission sectors, complicate the attribution of urban CO280

fluxes. The use of 14C measurements to determine the ratio of CO to CO2ff has not81

yet been applied to eddy covariance flux measurements. We attempt to combine the82

complementary strengths of CO and 14C to decompose net CO2 flux measurements, and83

use the partitioned CO2ff emissions to evaluate a high-resolution emissions inventory.84

Emissions inventories use activity data to aggregate urban CO2ff emissions (Olivier85

and Janssens-Maenhout, 2012; Boden et al., 2009; Gurney et al., 2009), but the86
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differences among inventories are sizeable (Gurney et al., 2020; Oda et al., 2019;87

Gately and Hutyra, 2017). Atmospheric inversions use inventories as prior estimates of88

emissions and optimize the emissions using atmospheric CO2 mole fraction observations89

(Lauvaux et al., 2020; Kunik et al., 2019; Lauvaux et al., 2016; Staufer et al., 2016;90

Turner et al., 2016; Bréon et al., 2015). Two substantial sources of uncertainty in91

inverse estimates of urban CO2ff emissions are uncertain CO2bio fluxes and unknown92

error characteristics in emissions inventories (Wu et al., 2018). The Hestia emissions93

inventory (Gurney et al., 2012) was developed in part to support the Indianapolis Flux94

Experiment (INFLUX) and uses energy consumption, population density, and traffic95

data to quantify CO2ff emissions for an entire urban landscape at an approximately 20096

m and hourly resolution. While excellent agreement between Hestia and atmospheric97

inversions has been shown over multiple years at the scale of an entire city (Lauvaux98

et al., 2020), the high-resolution performance of the Hestia inventory has not yet been99

evaluated with eddy-covariance flux measurements.100

This study compares source-partitioned CO2 eddy-covariance flux measurements101

with a high-resolution emissions inventory (Hestia) in a suburban region of Indianapolis,102

Indiana, USA. We partition the net CO2 flux measurements into CO2ff and CO2bio103

components using a flux-gradient relationship (Stull, 2012) and atmospheric CO104

measurements. 14C isotope measurements are used to estimate the CO to CO2ff105

ratio and reduce the uncertainty in the flux decomposition. The source decomposition106

methods are similar to those used by Ishidoya et al. (2020) and Sugawara et al. (2021).107

In addition, we use a flux footprint model (Kljun et al., 2015, 2004) to match each flux108

measurement in space and time with the Hestia inventory to provide a direct comparison109

of independent estimates of anthropogenic CO2 emissions at high spatial and temporal110

resolution. This is, to our knowledge, the first such comparison of these innovative and111

independent assessments of high-resolution urban CO2 emissions, and is timely given the112

growing interest in monitoring the impact of urban systems on atmospheric composition.113

2. Data and Methods114

2.1. Site Descriptions and Atmospheric CO2 Flux Measurements115

The INFLUX observation network (Davis et al., 2017) measures atmospheric CO2 and116

CO mole fractions, and net CO2 fluxes in and around Indianapolis, IN (Figure 1). The117

locations, sampling heights and measurements at these sites are described by Miles et al.118

(2017) and the instrument performance is described by Richardson et al. (2017). 14C119

isotope measurements, collected weekly, are used to evaluate CO to CO2ff ratios using120

methods described by Turnbull et al. (2015).121

Since the flux decomposition requires atmospheric measurements of CO2 and CO122

mole fractions at different heights as well as 14C isotope measurements, the need for123

multiple observational datasets limits the time and location for which we have available124

data. In total, there are seven months (January through July, 2013) that include all of125
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Figure 1: The Indianapolis Flux Experiment (INFLUX) measurement network in

Indianapolis, IN (left) and cumulative flux footprints from January to July in 2013

at Tower 2 (right). The contours in the right panel represent the percentage of the

time-integrated flux that comes from within that boundary (copyright of the base map

belongs to Google Maps). The color of the marker in the left panel represents the

measurements at each site: red for CO2, yellow for CO and 14C, blue for CH4, and

white for surface energy balance fluxes. The coordinates in the right panel are the

distance (m) to the measurement site.

these data sets (atmospheric measurements of CO2 and CO mole fractions, 14C isotope,126

and CO2 flux) available at Tower 2 (39.7978°N, 86.0183°W), which is located in a127

heterogeneous suburban environment (Figures 1 and S1). There is a highway to the128

north, urban vegetation to the south, and neighborhoods with detached houses. The129

heterogeneous surroundings present a good test of our ability to partition net CO2 flux130

measurements into fossil and biogenic components and to use flux footprint analyses131

to compare the spatial and temporal heterogeneity of source-specific flux data and the132

Hestia inventory.133

The flux instrumentation, which includes a sonic anemometer (Campbell Scientific,134

CSAT-3) and a high-frequency open-path infrared CO2 sensor (LI-COR Environmental,135

LI-7500), is mounted at 30 m above ground level (AGL) on Tower 2. The eddy-136

covariance technique measures the covariance between fluctuations in vertical wind137

velocity and CO2 density to detect the integrated exchange of CO2 between land and138

atmosphere (Lee et al., 2004; Foken and Napo, 2008; Aubinet et al., 2012). We use139

flux calculation and filtering methods recommended by Vickers and Mahrt (1997). We140

filter out extreme values outside 3.5 σ range of the data (0.2% of data are filtered out)141

and nighttime fluxes during weak turbulence conditions when the friction velocity is less142

than 0.2 m/s (3.6% of data are filtered out) (Gu et al., 2005). Negative fluxes show143
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contributions of photosynthesis to the flux data (Figure S2). Based on the similarity144

of the diurnal variation of net CO2 flux measurements (Figure S3), we define the cold145

season as January to March (JFM) and the warm season as April to July (AMJJ).146

2.2. Partitioning Fossil and Biogenic CO2 Fluxes147

To partition fossil and biogenic components from the net CO2 flux measurements, we148

apply a flux-gradient method and atmospheric CO measurements. In addition to flux149

measurements, we also measure CO2 and CO mole fractions at 10 m and 40 m heights150

AGL at Tower 2 (Miles et al., 2017). We use the net flux measurement (FCO2) and151

vertical gradient in CO2 mole fraction (∇CCO2) to solve for the eddy diffusivity (K):152

K = − FCO2

∇CCO2

, (1)153

and use that eddy diffusivity and the CO vertical gradient (∇CCO) to solve for the CO154

flux (FCO):155

FCO = −K∇CCO. (2)156

The fossil fuel CO2 emission (FCO2ff ) is estimated by combining the CO flux with the157

emission ratio (R) of CO to CO2ff:158

FCO2ff =
FCO

R
, (3)159

and we attribute the difference between the net flux measurement and the partitioned160

fossil fuel CO2 emission to the biogenic CO2 flux (FCO2bio):161

FCO2bio = FCO2 − FCO2ff . (4)162

There are three assumptions in this method: (1) Turbulent eddies are small enough that163

local scalar gradients are proportional to turbulent fluxes; (2) CO and CO2 are subject164

to the same vertical mixing processes; (3) Within the turbulent flux footprint, CO is165

mainly produced by fossil fuel combustion simultaneously with CO2ff emissions. We166

filter out counter-gradient fluxes, and limit the eddy diffusivity and CO flux within 3.5167

σ range of their estimates to screen out extreme values caused by tiny denominators.168

Human respiration, which would appear in this decomposition as a biological flux, is169

estimated based on the population density of Indianapolis (896 people km−2 in the year170

2013) multiplied by a typical emission rate of 942 gCO2 person−1 day−1 (Prairie and171

Duarte, 2007).172

The emission ratio of CO to CO2ff is estimated from flask measurements of 14C173

and CO measurements (Turnbull et al., 2015). The urban CO and 14C enhancements174

are estimated by the differences between Tower 2 and upwind background sites (Tower175

1 or 9 depending on the wind direction). The median and mean values of CO to CO2ff176

ratios estimated from these enhancements are 9.52 and 8.98 ppb ppm−1 (cold season)177

and 9.13 and 9.02 ppb ppm−1 (warm season) (Figure S4). We use 9 ppb ppm−1 as an178

approximate value to infer CO2ff emissions. To test the uncertainty of using different179

ratios on the flux decomposition, we vary the emission ratio to 11 and 7 (9 ± 2) ppb180



7

ppm−1. These are plausible bounds (Table 2 in Turnbull et al. (2015)) for this flux site,181

representing approximately the 70th and 30th percentiles of the values. With a linear182

relation of the flux decomposition to the emission ratio (Equation 3), this maximum and183

minimum boundary approach represents our limited confidence in the emission ratio and184

its uncertainty bounds. A more formal error propagation would suggest more confidence185

than we have in our estimate of the uncertainty in the emission ratio. In addition, since186

traffic emissions are likely to have a higher ratio and residential emissions have a smaller187

ratio, we add another scenario with a CO to CO2ff ratio of 15 ppb ppm−1 for northerly188

winds from the highway and 7 ppb ppm−1 for the other wind directions based on sectoral189

emission ratios estimated by Turnbull et al. (2015).190

2.3. Flux Footprint and Emissions Inventory191

A flux footprint, which is defined as the contributing area upwind from the192

measurement site (Leclerc and Foken, 2014), is essential to account for the spatial193

heterogeneity of emission sources. We use a two-dimensional flux footprint model194

(https://footprint.kljun.net/) (Kljun et al., 2015, 2004) to match with the Hestia195

inventory and estimate the emissions predicted by the inventory at the tower location.196

Flux footprints were computed with a spatial resolution of approximately 2 m. The197

size of footprint depends on measurement height, surface roughness, and atmospheric198

thermal stability. The footprint will increase with an increase in measurement height,199

with a decrease in surface roughness, and with an increase in atmospheric thermal200

stability (Burba and Anderson, 2010). Tower-based measurements of wind field and201

boundary layer characteristics are used to estimate the input parameters of the flux202

footprint model (measurement height above displacement height, roughness length,203

Obukhov length, friction velocity, mean wind speed, boundary layer height, standard204

deviation of lateral velocity fluctuations). The displacement height and roughness length205

are estimated as 6 m and 0.45 m, respectively. The displacement height is estimated206

to be 0.7 times the local mean building and tree heights (Weng et al., 2013) and the207

roughness length is computed from the mean wind and momentum fluxes measured208

at 30 m AGL (Kent et al., 2017; Drew et al., 2013). We estimate the flux footprint209

(f) for each hourly flux measurement. After interpolating the Hestia inventory to the210

coordinates of each flux footprint, we weight the hourly Hestia emissions (QH) with the211

spatially-resolved fractional flux contributions (f) at the same time and sum over the212

domain of flux footprint (R) to produce a spatially-weighted estimate of the Hestia flux213

that would be measured at the tower (FH):214

FH =
R∑
i=1

QH(xi, yi)f(xi, yi)δxδy. (5)215

The emissions predicted by the Hestia inventory at the tower (FH) are compared with216

the partitioned CO2ff flux measurements (FCO2ff in Equation 3).217
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3. Results218

Net CO2 flux measurements, decomposed as a function of time and space, behave as219

expected given the environment surrounding the tower. Observed CO2 emissions are220

larger in the cold season than the warm season (Figure 2a), perhaps due to increased221

emissions from building heating around the tower (Figures 1 and S1). In the cold222

season, there are two prominent peaks in emissions likely corresponding to peaks in223

traffic volume during rush hours. In the warm season, CO2ff emissions are mixed with224

photosynthesis and respiration from urban vegetation within the flux footprints. The225

daytime photosynthetic uptake of CO2 indicates the role of urban vegetation. The data226

show high emissions from the north, and lower emissions or net uptake from the south227

(Figures 2b and 2c), consistent with the highway to the north and urban vegetation to228

the south of the tower.229

Partitioning of the net observed CO2 fluxes into fossil and biogenic components230

yields plausible temporal behavior of these flux components (Figure 3). While smaller231

than the estimated CO2ff emissions, the magnitude of the cold season daytime (9 to232

20 LST) averaged biological uptake is 15% of the mean CO2ff emissions over the same233

time period and the ecosystem respiration averaged over nighttime (21 to 8 LST) is234

27% of the mean nighttime CO2ff emissions. These are non-negligible flux magnitudes235

that need to be considered to obtain accurate CO2ff emissions (Figure 3a). Human236

respiration is estimated to be 0.22 µmol m−2 s−1, which would contribute about 10% of237

the average nighttime CO2bio fluxes in the cold season. A typical pattern of ecosystem238

fluxes emerges in the warm season (Figure 3b). The warm season CO2bio fluxes are239

equal in amplitude to the CO2ff emissions, emphasizing the importance of accounting240

for CO2bio fluxes in attempts to quantify urban CO2ff emissions. The error bars are241

the standard errors of the seasonal means, which represent a mixture of day-to-day242

variability, random measurement errors, and uncertainty in the flux decomposition using243

a typical emission ratio (9 ppb ppm−1). We will examine the impacts of using different244

ratios on the flux decomposition.245

The seasonally-averaged partitioned CO2ff emissions estimates show remarkable246

similarity to the Hestia inventory when matched in space and time using the flux247

footprint model. Seasonal-mean CO2ff emissions differ (Hestia minus observed CO2ff248

emissions) by 0.36 µmol m−2 s−1 (3.2% of the mean partitioned CO2ff emissions) in the249

cold season (Figure 4a) and 0.62 µmol m−2 s−1 (9.1% of the mean partitioned CO2ff250

emissions) in the warm season (Figure 4b). The corresponding standard deviations251

(SDs) of the residuals are 8.91 µmol m−2 s−1 and 7.52 µmol m−2 s−1, which include252

random errors in the flux measurements. The temporal patterns of seasonally-averaged253

Hestia and the partitioned CO2ff emissions also agree remarkably well (Figures 4c and254

4d). The correlation coefficients of the diurnal variations are 0.86 (cold season) and 0.93255

(warm season), and the slopes are 1.13 and 0.95, respectively. The Hestia emissions256

are smaller during the night and higher during the day compared to the partitioned257

observations in the cold season (Figures 4c and S5a), and consistently slightly higher258
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(c)(b)

(a)

CO2 flux
(µmol m-2 s-1)

Figure 2: Diurnal variation of seasonally-averaged CO2 flux measurements during the

cold (JFM) and warm (AMJJ) seasons in 2013 (a). Error bars indicate the standard

errors of the seasonal means. Spatial variation of time-averaged CO2 fluxes in the

cold (b) and warm (c) seasons. Color indicates flux magnitude. The radial coordinate

corresponds to wind speed (m s−1) and the angular coordinate is the wind direction.

than the partitioned observations in the warm season (Figures 4d and S5b).259

We also find similarity in the comparison of eddy-covariance and Hestia CO2ff260

emissions as a function of wind direction (Figure 5). In the cold season, the Hestia261

emissions are higher than the observed CO2ff emissions for all wind directions except262

the north, west and northwest wind (Table 1). A similar pattern exists in the warm263

season. Since residential buildings lie upwind in the west and northwest wind directions264

(Figures 1 and S1), we infer residential emissions could be the source of this discrepancy.265
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Figure 3: Diurnal variation of seasonally-averaged CO2 flux measurements (FCO2Net)

and the partitioned fossil fuel (FCO2FF) and biogenic (FCO2Bio) fluxes in the cold (JFM)

(a) and warm (AMJJ) (b) seasons in 2013. Error bars are the standard errors of the

seasonal means.

Table 1: Statistics of flux differences (µmol m−2 s−1) between the Hestia inventory and

the partitioned fossil fuel CO2 emissions (Hestia minus observed CO2ff emissions) for

different wind directions.

DIFF N NE E SE S SW W NW

Cold Median -2.00 3.32 2.88 3.45 4.14 3.15 -4.47 -2.14

Season Mean -1.93 5.88 4.88 3.58 3.84 1.89 -4.72 -1.87

(JFM) RMSEa 10.98 9.27 8.22 5.63 7.45 8.00 10.40 9.06

Warm Median 2.49 3.34 1.92 1.98 0.98 0.42 -2.71 -4.27

Season Mean 5.31 3.61 0.92 1.37 0.52 -1.32 -4.17 -5.21

(AMJJ) RMSE 8.24 9.32 5.19 5.54 5.97 8.62 8.47 13.66
aroot mean square error

These results are somewhat sensitive to the choice of CO to CO2ff ratio in the266

flux decomposition. Seasonal-mean flux bias and bias percentage change significantly267

when the emission ratio varies from 9 ppb ppm−1 to 11 or 7 ppb ppm−1 (Figure S6268

and Table S1). Figure S6 shows the impact of plausible ratios on the diurnal cycle of269

the partitioned CO2ff and CO2bio fluxes. The lower bound of 7 ppb ppm−1 increases270

the CO2ff emissions estimate (Figure S6b and Equation 3), thus driving the CO2bio271

fluxes down about 3 µmol m−2 s−1 in the cold season (Figure S6c and Equation 4).272

This would strengthen the finding of daytime photosynthesis. The upper bound ratio273

of 11 ppb ppm−1 would increase CO2bio fluxes by about 2 µmol m−2 s−1 in the cold274

season, leaving midday fluxes slightly negative and nighttime respiration at about 4275

µmol m−2 s−1. Similar results are shown in the warm season (Figures S6e and S6f).276

The magnitude of the partitioned fluxes varies linearly with the change of emission277
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Figure 4: Histogram of flux differences between the Hestia inventory and the partitioned

fossil fuel CO2 emissions (Hestia minus observed CO2ff emissions) in the cold (JFM) (a)

and warm (AMJJ) (b) seasons in 2013. Bias, bias percentage compared to the mean

partitioned CO2ff emissions, and standard deviation (SD) of residuals are listed. Diurnal

variation of seasonally-averaged CO2ff emissions in the cold (c) and warm (d) seasons.

Error bars are the standard errors of the seasonal means.

ratio, but the diurnal cycle is not sensitive to this choice. The scenario with the space-278

varying emission ratio (15 & 7 ppb ppm−1), which may be more realistic than a constant279

ratio, does not significantly change either the diurnal variation (Figure S6) or the bias280

estimation (Table S1) when compared to the default scenario (9 ppb ppm−1).281

4. Conclusions and Discussion282

The remarkable agreement between the Hestia inventory and the partitioned flux283

measurements suggests that both methods are able to describe the temporal and spatial284

variability in urban CO2ff emissions at neighborhood scale. Neither approach has285

yet been cross-validated at such a high spatial and temporal resolution. The flux286
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Figure 5: Cumulative flux footprints (a and d), the partitioned fossil fuel CO2 emissions

(b and e) and the Hestia inventory (c and f) for different wind directions. Panels a to

c are in the cold season (JFM) and panels d to f are in the warm season (AMJJ) in

2013. The coordinates in the left panel indicate the distance (m) to the measurement

site (copyright of the base map belongs to Google Maps). The contours represent the

percentage of the time-integrated flux that comes from within that boundary and each

contour represents a 10% interval. In the middle and right panels, the red circles, the

lines and the plus marks represent the mean, the median and the outliers, respectively.

The bottom and top edges of the box indicate the 25th and 75th percentiles. The

whiskers extend to the most extreme data points not considered outliers that are defined

as more than 1.5 times the interquartile range away from the top or bottom of the box.

measurement partitioning is sensitive to the CO to CO2ff emission ratio, but the287

consistency of Hestia and flux data suggests that flask measurements have accurately288

quantified that ratio. The success of this test suggests that these eddy-covariance289

flux decomposition methods can be used to quantify source-specific, neighborhood-290

scale CO2ff emissions. Further the successful comparison to Hestia suggests that the291

algorithms and input data used in the inventory system are accurate and precise even292

at the fine resolution of the eddy-covariance flux measurements.293

This study also shows the promise of using this approach for studying urban294

ecosystem CO2 fluxes. Previous work has suggested that the edges found in urban295

ecosystems lead to fundamentally different behavior of these ecosystems (Reinmann296

et al., 2020). These findings are largely based on chamber-scale flux measurements.297

It is not clear whether or not, when upscaled to spatial domains that integrate across298

many edges such as a suburban forest, existing ecosystem models and model parameters299
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will suffice in describing urban CO2bio fluxes. Current ecosystem models used in urban300

studies are largely devoid of urban ecosystem flux measurements in either calibration301

or evaluation due to lack of data (Wu et al., 2021; Hardiman et al., 2017). We suggest302

that the decomposition methods can serve as a new approach for obtaining ecosystem303

flux data necessary to develop the next generation of urban ecosystem models.304

Finally, this study emphasizes the importance of urban ecosystem fluxes, both in the305

warm (growing) season and the cold (dormant) season. Our results appear to contradict306

the findings of Turnbull et al. (2015) who found no net impact of biological CO2 fluxes307

on CO2 enhancements in Indianapolis outside of the growing season. We found the308

percentage of daytime biological uptake in the cold season is 15% compared to the309

mean CO2ff emissions. Our results are consistent with the flask measurements (Figure310

5 in Turnbull et al. (2015)) which showed that, for Tower 2, the total CO2 enhancement311

in the winter months was 0.8 to 0.9 times the CO2ff enhancement, suggesting modest312

net biological uptake of CO2 during these months within the city. The flask 14C-313

based CO2bio enhancement at Tower 2 averaged over the cold season for the three314

months of this study is -0.37 ppm (Table S2) that is about 10% of the estimated fossil315

CO2 enhancement (3.6 ppm), consistent with our eddy-covariance flux measurements.316

Turnbull et al. (2015) found no net biological CO2 contribution to the wintertime317

enhancements when averaging together four towers including Tower 2. The other towers318

likely have less influence from urban vegetation based on their position around the319

city. The importance of growing season biological fluxes has been shown in multiple320

observational (Miller et al., 2020; Turnbull et al., 2015) and inversion (Lauvaux et al.,321

2020; Sargent et al., 2018; Wu et al., 2018) studies. Uncertainty in biological fluxes has a322

large impact on inverse flux estimates (Lauvaux et al., 2020; Wu et al., 2018). This flux323

decomposition approach enables evaluation of the modeled ecosystem flux priors using324

direct urban ecosystem CO2 flux measurements. Further, a number of studies (Lauvaux325

et al., 2016; Heimburger et al., 2017) have made the reasonable assumption of neglecting326

CO2bio fluxes in the dormant season. This work shows that urban ecosystems in327

Indianapolis are moderately active even in the cold season. Additional eddy-covariance328

flux measurements are needed to study the spatial and temporal variations in urban329

ecosystem CO2 fluxes.330
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