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S T R U C T U R A L  B I O L O G Y

Quantifying structural relationships of metal-binding 
sites suggests origins of biological electron transfer
Yana Bromberg1*†, Ariel A. Aptekmann1†, Yannick Mahlich1, Linda Cook2‡, Stefan Senn1, 
Maximillian Miller1, Vikas Nanda3, Diego U. Ferreiro4, Paul G. Falkowski5

Biological redox reactions drive planetary biogeochemical cycles. Using a novel, structure-guided sequence analysis 
of proteins, we explored the patterns of evolution of enzymes responsible for these reactions. Our analysis reveals 
that the folds that bind transition metal–containing ligands have similar structural geometry and amino acid se-
quences across the full diversity of proteins. Similarity across folds reflects the availability of key transition metals 
over geological time and strongly suggests that transition metal–ligand binding had a small number of common 
peptide origins. We observe that structures central to our similarity network come primarily from oxidoreductases, 
suggesting that ancestral peptides may have also facilitated electron transfer reactions. Last, our results reveal 
that the earliest biologically functional peptides were likely available before the assembly of fully functional protein 
domains over 3.8 billion years ago.

Thus, life is a special, very complex form of motion of matter, but this 
form did not always exist, and it is not separated from inorganic 
nature by an impassable abyss; rather, it arose from inorganic na-
ture as a new property in the process of evolution of the world. We 
must study the history of this evolution if we want to solve the 
problem of the origin of life. [A. I. Oparin (1)]

INTRODUCTION
How did life appear on our planet? A. Oparin’s 1924 theory of abiotic 
evolution of carbon-based molecules in a primordial soup (2, 3) 
suggests a means to the end. However, the evolutionary path beyond 
the formation of individual molecules remains one of the most 
profoundly unanswered questions in biology. Although the first 
self-replicating biological molecules were possibly the catalytic RNA 
fragments, i.e., ribozymes (4, 5), propagating ribozymes requires 
energy. Biologically catalyzed redox reactions, i.e., proton-coupled 
electron transfer, drive the energy requirements of all life on Earth 
(6). This observation implies that redox reactions must have been 
among the first (if not the first) functionalities acquired by early life. 
Hence, understanding the evolution of the biological nanomachinery 
responsible for the catalysis of redox reactions (7, 8) can potentially 
elucidate the origin of life.

In the Archean Ocean, a small subset of transition metals were 
soluble and could have facilitated biological electron transfer 
reactions (9). Although redox RNAs may have also recruited peptide 

cofactors early on for stability and efficiency of electron transfer (10), 
their role is trivial compared with proteins. Extant redox enzymes 
often incorporate metals and metal-containing ligands (11). The 
original redox-active metal-binding peptide structures would have 
made an excellent starting point for diversification into a range of 
functionalities (12–14). That is, if redox-coupled catalysis was among 
the first functionalities to have evolved, could it have been the origin 
of elementary metal-binding motifs to the biological functional 
repertoire? In initial stages of life, a small number of ancient motifs 
were consistently reused in emergent biological functions/properties 
(15–19). Multiple interacting peptides may have driven higher- 
order diversification.

Here, we trace the evolution of metal-binding proteins. The 
origin(s) of biologically catalyzed redox reactions have been obscured 
by the marked expansion of protein folds following the Great Oxi-
dation Event approximately 2.35 billion years ago (20, 21). Hence, a 
phylogeny of these proteins rooted in sequence space is nearly 
impossible (22). The arrangement of multiple independent pep-
tides into catalytically active structures further complicates any 
sequence- based evolutionary analysis. Such an analysis would require 
accounting for the coevolution of nonsequential amino acid se-
quences that describe structural domains. We therefore chose to 
focus on elucidating the evolution of these peptides based on their 
structures.

Evolution of protein structures entails understanding how new 
folds arose from previously existing ones. Using network analysis, 
we trace distant relationships between metal-binding proteins. We 
observed that existing transition metal–binding folds are similar 
structurally and carry similar sequences within the overlapping 
structures. This observation suggests that they might have had a single 
or small number of common ancestors. Moreover, while metal- 
binding folds in both current redox and nonredox proteins are 
similar, the central structures are most often derived from redox 
proteins. These central structures are enriched in prebiotically avail-
able amino acids. Our analysis suggests that “simple” folds, found in 
extant oxidoreductases, may have been incorporated into the com-
plete contemporary range of metal binding and molecular functionality 
carried out by many enzyme families. Last, we identified small struc-
tural motifs that are frequently repeated within our network-central 
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structures. These motifs describe the appearance of central folds and 
are thus likely at the root of life.

RESULTS AND DISCUSSION
Analysis workflow
The detailed description of our method and results is provided in 
the text below. Here, we summarize all steps briefly (Fig. 1). We first 
developed a scoring method for the comparison of protein transition 
metal–binding substructures (spheres). Our sahle (structure-annotated 
homology, ligand-extended) scores are structure alignment–based, 
but sequence identity–driven, suggesting an ancestral, homology 
relationship. A network of pairwise sphere functional similarities for 
all metal-binding proteins available in the Protein Data Bank (PDB) 
was analyzed to remove structural redundancy, e.g., multiple uniquely 
determined structures of the same protein. The corresponding in-
crease in diversity of the functional relationships network is crucial 

for the understanding of the core structures involved in metal bind-
ing. For the resulting representative sphere network, we augmented 
edge weight (i.e., sahle scores) with information capturing the likely 
relative evolutionary ages of the connected spheres. Here, a shorter 
distance between nodes (the inverse of edge weight) indicates func-
tionally similar, evolutionarily older spheres. We then computed 
multiple minimum spanning trees (MSTs) in the network, i.e., the 
subset of the edges that connects all nodes without cycles and with 
the minimum possible total edge distance, to identify the most likely 
putative central spheres (highest betweenness centrality). Because 
of their connectedness/similarity to most other nodes, these central 
spheres were assumed to be the most ancestor-like. We further 
analyzed these central spheres to identify repeated structural motifs, 
i.e., their building blocks. We suggest that the alphabet of these 
blocks is key to all biomolecular activity observed today.

New structural alignment scoring identifies distantly 
related peptides
To identify protein folds that bind metal-containing ligands and 
carry out similar functions, we developed a structure-annotated 
homology, ligand-extended approach (sahle). Sahle is a method that 
objectively scores structural and functional relationships between 
structural fragments. The approach is based on length (L) and the 
percentage of sequence identity (PID) in the proteins (Eq. 1). Studies 
have shown that active site regions of homologous enzymes are often 
similar, despite overall structural differences (23). Moreover, less 
than 15 Å distance usually separates amino acids driving protein 
function (24–27). Using sahle, we compared the 15-Å-radius protein 
spheres centered on the center of the bound transition metal ligand. 
Note that these sphere sizes were conservatively selected to be likely 
larger than needed to encompass all functionally relevant pieces of 
the protein structure

         sahle = PID −  {     
100, L < 10        

   
1099.669 ∙  L   −0.67247 (  1+ e   −  L _ 1000   )   , L ≥ 10

    (1)

We have previously shown that the Euclidean distance between 
bound ligand centers in aligned structures reflects likely functional 
similarity of the folds (26). Sahle was developed (Materials and 
Methods and fig. S1) using a curated training set of structural align-
ments of fragments of proteins that bind hemes and iron-sulfur 
clusters with low ligand-ligand distances (26). Sahle is able to iden-
tify 72% of similar proteins in the development set at 95% precision 
(at the default cutoff of sahle ≥ 0, F-measure = 0.82; Materials and 
Methods and Eq. 2). Note that, while sahle can achieve higher recall 
of correct alignments, this would come at a substantial cost to pre-
cision, e.g., at sahle ≥ 5,~75% of the alignments could be recognized 
at ~84% precision (fig. S2).

Metal-binding protein folds are similar across ligands
Using alignments of all 4672 PDB metal-binding protein spheres 
(Materials and Methods), we evaluated whether the sahle score cor-
rectly identified alignments of both proteins that bind the same or 
different ligands. The Spearman correlation between positive sahle 
scores and ligand-ligand distances of the training set alignments 
was −0.62; higher distances meant lower scores. However, the 
two measures of structural similarity did not capture identical signals. 
For same ligand (not in the training set) and different ligand-binding 
protein alignments, the correlation was only slightly lower (−0.52 and 

Fig. 1. Workflow of the study. We developed the sahle scoring method for com-
parison of protein transition metal–binding substructures (spheres). A network of 
pairwise sphere similarities was further analyzed to remove redundancy and 
identify central-most ancestor-like structures. We further identified repeated struc-
tural motifs making up these central spheres.
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−0.58, respectively). Note that neither lower ligand-ligand distances 
(26) nor protein sequence identity (28) guarantees structural similarity 
of protein folds. This analysis suggests that sahle more reliably iden-
tifies alignments of structurally similar proteins than ligand-ligand 
distance or sequence similarity alone.

For all combinations of ligands, alignments with a negative sahle 
score distribute across the entire spectrum of ligand-ligand distances 
(Fig. 2, blue bars; median distance ≥ 7.5 Å). However, the alignments 
with a positive sahle score predominantly cluster toward the lower 
range of ligand-ligand distances (red bars; median distance ≤ 1.9 Å). 
This observation suggests that sahle captures structural similarity 
across a variety of proteins and ligands and, thus, could be used for 
large-scale comparisons.

Two additional trends are salient. First, 40% of different ligand- 
binding protein alignments that have low (≤1 Å) ligand-ligand dis-
tances have a negative sahle score (Fig. 2D). Although evaluating all 
of these alignments in detail is beyond the scope of this study, we 
note that most of the spheres involved come from functionally dif-
ferent enzymes [different enzyme commission (EC) numbers (29)]. 
For example, the Mn+2-binding fructose-1,6-bisphosphatase 
(EC 3.1.3.11) and the heme-binding flavocytochrome B2 (EC 1.1.2.3) 
are proteins of very different functions, whose spheres align with 
only 0.02 Å between ligand centers; they also share 8 residues of only 
12 aligned (sahle = −32). We thus conclude that, for different ligand- 
binding proteins, the distance between ligand centers is not infor-
mative of functional similarity.

On the other hand, for more than 1 in 10 of the different ligand- 
binding protein alignments that have a positive sahle score, the 
ligand-ligand distances are ≥10 Å. Note that, when the techni-
cally different ligands represented in the alignment are similar 

(e.g., different porphyrins), the sahle score distribution mirrors 
the same ligand distribution (fig. S3A). Scores of alignments of 
proteins that bind different simple ions also distribute similarly (fig. 
S3B) to those of same-ion alignments; albeit, the former scores are 
subject to variability, likely according to the levels of interchange-
ability of the ions in nature (Fig. 3).

Cambialistic folds are one possible explanation for the preferen-
tial alignments of different ion-binding proteins (30). Similarity in 
necessary ligand coordination geometry is also likely to play a role 
(31). The most interchangeable ions in our set are Mn2+, Ni2+, and 
Fe3+; Co2+ and Fe2+ can also substitute these. Divalent Cu2+, Co2+, 
and Fe2+ have similar patterns of interchangeability with other ions 
and are somewhat interchangeable among themselves (Fig. 3). Cu+ 
is a much less replaceable version than Cu2+, and, in general, both 
types of copper ions are less often substituted than others. Funda-
mentally, these observations are concordant with the Irving-Williams 
series, where stability of first-row divalent metal complexes increases 
across the period to reach a maximum at copper, i.e., Mn2+ < Fe2+ < 
Co2+ < Ni2+ < Cu2+ (32). In evolutionary terms, early folds may indeed 
have been cambialistic (20). This observation suggests that the likely 
order of fold evolution corresponds to metal availability (33). The 
Archean Ocean was relatively rich in Fe, Co, and Mn; the solubility of 
Mo, Ni, and Cu increased as the oceans became more oxidized (20).

Excluding the ion and porphyrin protein-containing alignments 
leaves <1% (28,648 of 3,312,018) of different ligand-binding pro-
tein alignments, attaining a sahle score ≥0. Some of these proteins 
bind similar ligands (e.g., Fe3S4 and Fe4S4), others identify the same 
protein that has been slightly mutated to accommodate a different 
ligand (e.g., PDB 1a7e and 1a7d), and others still highlight the same 
protein that binds different ligands under different experimental 

Fig. 2. Sahle captures ligand-ligand Euclidian distance trends in structural alignments. Histograms of sahle ≥ 0 (red) and <0 (blue) alignment distributions across 
Euclidean ligand-ligand distances in alignments of protein spheres binding (A) the development set of HEM (heme), SF4 (Fe4S4), and FES (Fe2S2) ligands; (B) same ions 
(does not include hydrated ions); (C) same nondevelopment set, non-ion, and ligands; and (D) different ligands. Medians of each distribution are indicated by same color lines.
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conditions (e.g., 3i9t and 1j2c). Thus, these alignments are, arguably, 
of the same or of a similar structure in terms of the evolutionary 
space that they may occupy.

Second, positive sahle scoring alignments of metal ion–binding 
proteins encompass a wider range of ligand-ligand distances than 
alignments of larger ligand-binding proteins (Fig. 2, B versus C and D; 
e.g., red bars, ≥4 Å). Furthermore, there was a noticeable increase 
in the number of sahle-positive alignments of ion-binding proteins 
at much higher ligand-ligand distances [≥10 Å; putative false posi-
tives (pFPs); Fig. 2B]. This particular observation is mostly due to 
the alignments of Cu+2-binding proteins (80.5%; fig. S4). Of the 
positive sahle Cu+2-binding protein alignments, a fifth had ligands 
at a distance of ≥10 Å, as compared to only 4% of alignments 
involving other ions. Furthermore, the majority (82%) of these non- 
copper alignments had a low (sahle ≤ 5) score, suggesting prediction 
uncertainty; less than a third of Cu+2-binding protein alignments 
fell into this scoring range. The remaining Cu+2 pFPs involved 
sequence-similar proteins and high sahle scores (median = 20). 
Trivially, these sequence- and structure-similar binding regions are 
likely to be functionally similar in terms of the evolutionary space 
that they occupy.

Of the Cu-containing protein spheres in these pFPs, roughly 40% 
were a result of studies involving mutated or engineered proteins. 
For example, a study of tyrosinase activity produced slightly mutated 

structures of the same protein (PDB ID 2zwg aligned to 3awz and 
3ax0 mutants), resulting in alignments with a ligand-ligand distance 
of more than 18 Å and sahle scores of more than 75. The remaining 
high-scoring alignments with distant ligands may be due to multi-
nuclear sites or slight alterations of protein function across organisms 
and environments. For example, di-copper sites can accommodate 
a range of ligand distances, which determines their reactivity. In 
general, Cu-binding proteins have evolved to differentially coordi-
nate copper ions to fine-tune their redox potential and stability to 
fit specific protein functions (34, 35). Thus, largely similar proteins 
may incorporate a Cu ion in different locations. Sahle recognized 
functionally similar spheres in cases where ligand-ligand distances 
and sequence similarity measures alone were insufficient.

Network analysis highlights likely ancestral protein structures
In a sahle-based similarity network of protein spheres (Materials and 
Methods), spheres that bind the same ligands were closer together 
than others (Fig. 4A); this observation is trivial—spheres that bind 
the same ligand are more likely to be similar (Fig. 2, A to C) than 
those that do not (Fig. 2D). Moreover, a substantial PDB technical 
bias toward easily crystallizable proteins of widespread interest 
ensures that many spheres in our set represent essentially the same 
or very similar proteins, whose structure was determined in diverse 
experimental conditions.

In the experimental bias and redundancy-reduced network of 
1509 spheres (Materials and Methods and Fig. 4B), sphere diversity 
was improved, as illustrated by a better representation of more 
exotic ligands (Fig.  4,  A  versus  B distributions) and by lower 
sahle scores between as compared to the complete network (fig. 
S5). Curiously, in both network representations, most of the 
Cu- and heme-binding spheres clustered together and away from the 
center of the network, suggesting lower similarity to other spheres. 
On the other hand, Fe, FexSx clusters, and Mn binding folds were 
central. Arguably, the spheres that are most similar to the largest 
number of diverse others are also most like the common ancestor of 
all spheres. These spheres are most parsimonious, requiring the 
smallest number of changes/mutations to describe the existing 
variety. The centrality of the network sphere thus suggests that the 
earliest folds bound Mn and Fe ligands. These folds could then have 
been optimized throughout evolution to bind more complicated 
ligands (e.g., hemes) and ions that later become more widely avail-
able (e.g., Cu and Mo).

To assign a putative relative evolutionary age to the reduced 
network spheres, we mapped their corresponding complete protein 
sequences (PDB chains) to a tree of bacterial genomes [Genome 
Taxonomy Database (GTDB) (36), version 04-rs89; Materials and 
Methods and data S1: SphereAges]. Note that the GTDB tree root is 
chosen heuristically at the midpoint of all branches, leading to phyla 
in every iteration of the tree-building process (36). However, given 
a particular tree, the relative distances to the root can be computed 
for all leaves and nodes. In our analysis, the minimum mapped 
distance to the root of these proteins was 1.18, representing the 
Endomicrobium proavitum species (mapping to 264 spheres). We 
also computed for each sphere the last common ancestor (LCA) 
of the complete diverse set of organisms to which each sphere could 
be mapped (Materials and Methods). For a 10th of the spheres, the 
LCA was at the root of the tree, while for most (58%) others, it was 
only one node away. These observations further highlight the likely 
ancient origins of the proteins in question.

Fig. 3. Similar spheres bind a variety of metals. Ion-binding spheres are listed in 
the same order along the x (PDB code) and y (chemical designation) axes (e.g., MN is 
Mn2+). The colors of cells in the plot (e.g., MN/Mn2+ vs FE/Fe3+) indicate the number 
of sahle-positive alignments of MN- and FE-binding spheres, normalized by the total 
number of sahle-positive alignments of these spheres (y axis, parenthesis; e.g., 
19,319 + 22,076 for MN and FE). The range of colors is white (does not happen) to 
dark blue (happens all the time). Gray indicates no available alignments in this 
set; trivially, self-hits are excluded from different ligand-binding protein alignment 
data. The black outline highlights the portion of the heatmap, where each ligand 
has a comparable number of alignments (y axis, parenthesis) in the dataset.
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For each pair of spheres, we also computed their distance in the 
GTDB tree. Notably, this distance was not strongly anticorrelated with 
the sahle score (Spearman’s ρ = −0.14), which would be expected if the 
structural similarity of protein spheres directly followed evolutionary 
trajectory and rates. The distributions of these scores were very different, 
with most spheres poorly related, regardless of their tree distances.

If their origin is shared and ancient, similar functional spheres 
may occur in distantly related organisms and even in otherwise 
dissimilar genes. For example, the protein structure spheres from a 
Sus scrofa domesticus dihydropyrimidine dehydrogenase (PDB ID 
1gte_D) and a Thermotoga maritima ferredoxin (PDB ID 1vjw_A), 
both binding an iron-sulfur cluster (Fe4S4), aligned well (sahle = 10.2) 
but were far in the evolutionary tree (distance = 2.01 on a [0, 2.88] 
scale). In assigning sphere age via whole-chain sequence similarity, 
the S. scrofa sphere mapped to the oldest E. proavitum genome. It 
also mapped to T. maritima, but not to the native ferredoxin (rep-
resented by the 1vjw protein). This observation highlights a lack of 
overall sequence similarity of the proteins housing our two spheres. 
Thus, their true relationship, blurred by evolutionary distance, is 
only revealed by a structural alignment (Fig. 5).

The observation that sahle scores capture functional relationships 
of folds, but not putative evolutionary distances, suggests that both 
should be used in evaluating the timeline recorded in the sphere 
network. We thus assigned to each edge of the network, connecting 
two spheres, a weight representative of the product of normalized 
sahle score, both relative sphere ages, and the sphere LCA relative 
ages. In other words, the edge weight was highest for connecting 
structurally similar relatively ancient spheres present in a wide array 
of extant bacteria. It was lowest for barely similar relatively newer 
spheres found in a small subsection of the tree of life.

We computed the MST (37, 38) (i.e., a network connecting all 
spheres with a minimum number of edges) to identify the possible 
evolutionary paths across the network nodes (bootstrapped 1000 times 
across randomly selected 90% of the data; Materials and Methods). 

In the network, we computed nodes of the highest betweenness 
centrality (39, 40), highlighting those that most often occur on the 
shortest path between all spheres in the network. Most spheres in 
our network were not central (fig. S6 and data S1: Center Spheres). 
By far, the most central 1% (21 spheres) were thus deemed to be 

Fig. 4. The distribution and similarity of the metal ligand-binding proteins. Positive sahle-scored pairwise similarity (edges) network of (A) all and (B) representative 
metal ligand–binding spheres (nodes). Nodes are colored according to the bound metal as shown in corresponding distribution bar plots (ligands are identified by PDB 
codes). Note that Fe-containing ligands (HEM < HEC, FE2, FE, SF4, FES) are differentiated in shades of red.

Fig. 5. Alignment of the S. scrofa dehydrogenase and the T. maritima ferredoxin 
highlights traceable similarities in distantly related metal-binding sites. In the 
structural alignment of spheres, red and orange represent overlapping sections of the 
sphere, while blue and green represent the unaligned portions. Structure-based 
alignment of spheres can accommodate functionally relevant sequence rearrange-
ments (i.e., out of sequence order alignments).
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structurally closest to the most ancient folds (Fig. 6). The ligands 
bound by these spheres were diverse (including a heme and various 
ions), but putatively older metal ions/ion-containing ligands were 
more common, i.e., 17 Fe/Co/Mn/Ni-binding spheres. There were 
also three Cu-binding spheres, suggesting later optimization and 
reuse of existing folds.

We note that the prebiotically formed peptides would, by defini-
tion, have been derived from prebiotically available amino acids 
(Ala, Gly, Ile, Leu, Pro, Val, Ser, Thr, Asp, Glu, and Phe) (41–44). 
We observed that there was a correlation between the fraction of 
prebiotically available amino acids in the spheres and distance of the 
sphere to the root (Fig. 7A); there were more prebiotically available 
amino acids in putatively older spheres or more widespread struc-
tures. Central spheres favored some of the prebiotic amino acids 
(Fig. 7B): The simple alanine and glycine, as well as isoleucine and 
phenylalanine, were significantly overrepresented as compared to 
bacterial sequences as a whole, as well as compared to complete struc-
tures of proteins and other spheres considered here. On the other 
hand, proline and serine were depleted in the same comparisons. In 
addition, all spheres were somewhat depleted in the acidic residues 
as compared to complete protein structures. All spheres were also 
unexpectedly enriched in histidine, a biotically synthesized amino 
acid. For central spheres in particular, this finding is in line with the 
studies suggesting histidine’s ancient origins (45) and the findings 
of histidine’s side-chain molecule imidazole in cometary dust/
meteorite fragments (46, 47). Furthermore, if early histidine was cru-
cial to metal binding, this finding could justify the early appearance 
of histidine’s biotic synthetic pathway (48).

Notably, 14 of the annotated proteins housing the central sphere set 
were either oxidoreductases or otherwise involved in electron trans-
port, a 1.6-fold enrichment compared to the expectation for the 
network (hypergeometric P value = 0.02). This observation is in line 
with other studies that have identified many of the most ancient 
proteins as likely oxidoreductases (49–51). Our findings thus 
suggest that metal-binding folds used for electron transfer may 
indeed have given rise to the variety of metal-binding fold uses 
observed today.

Central network spheres are composed of ancient basic 
structural motifs
Most proteins are composed of repetitions of the same structural 
motifs, analogous to decorative tiles composing patterns (52). Likely 
ancient structural fragments have been shown to never combine 
two or more different structural motifs (19). We looked for repeti-
tive motifs in the central spheres to identify those most likely found 
at the origin of life. We previously developed an approach that 
exhaustively evaluates how a given protein can be decomposed into 
recurring structural fragments (52). Briefly, a protein is broken down 
into every possible continuous fragment of various lengths, and 
each fragment is structurally aligned to the whole protein. The best set 
of suboptimal alignments is constructed and scored to find the size and 
the phase of the repetitions. We applied this approach to the protein 
structures of our central spheres and identified 31 representative 
structural motifs (Fig. 8A and Materials and Methods). These were 7 to 
68 amino acids in length and encompassed a diversity of folds (fig. S7). 
We further loosely clustered these motifs into six clusters (Fig. 8B).

Fig. 6. A minimum spanning tree through the network of representative spheres. Twenty-one most-central spheres (bootstrap betweenness centrality ≥ 0.3) are 
indicated in larger size. Spheres of highest centrality (≥0.4) are identified by arrows, listing their PDB codes and betweenness centrality values.
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In search for sequence evidence of structural motif ancestry, we 
built for each cluster a (pseudo) multiple sequence alignment (MSA), 
guided by the pairwise structural alignments of all motifs to the 
central one. Note that our alignments were quite degenerate, 
suggesting that the similarity of our structural motifs is not driven by 
sequence similarity and making explicit evolutionary relationship 
hard to infer. We further searched UniProt (53, 54) with hidden 
Markov models (HMMs) built using our alignments (Materials and 
Methods). Notably, for every cluster, these searches generated a num-
ber of hits reflecting motif sequence length (data S1: ClusterHMM); 
neither of the shortest motif clusters had significantly aligned to 
any of the sequences. The most salient inference from this observa-
tion is that sequence searches, which require a sufficient length to 
attain the necessary significance, do not reliably capture remote 
homology of short motifs likely present at the origins of life.

In structure, the signal was better observed. We aligned our 
motifs to a collection of structures containing 70%-sequence non- 
redundant PDB chains (PDB70), further reduced to only chains of 
fewer than 1000 amino acids in length. Each of the motifs reliably 
aligned [TopMatch ≥ 80; score cutoff ensuring crystallographic 
levels of resolution (54)] to as many as 65% of the structures; median 
number of structures per motif = 12,566, i.e., about a third of PDB70. 
Motifs aligned better, i.e., with higher TopMatch scores, to structures 
binding the same metal as the sphere of that motif’s origin (fig. S8). 
However, the motif alignments also covered a large number of 
non–metal-binding proteins, suggesting that these motifs may have 
been repurposed for other functions. A notable piece of evidence 
pointing to the motifs’ early appearance in Earth’s history was the 
fact that each aligned to a third (median value) of the PDB70, as 
compared to 7% of the PDB obtained by matching random fragments 

Fig. 7. Prebiotically available amino acids are enriched in ancient proteins. (A) The fraction of prebiotically available amino acids (AAs) in spheres mapping to an 
organism of a particular distance to root (≥3 spheres required per organism). (B) An enrichment of certain prebiotic amino acids in central spheres, as compared to all 
spheres in the representative network, full structures of network proteins, and all bacterial structures in the PDB. On the x axis, separated by a bold dashed line, amino 
acids A to F are considered prebiotically available, while M to Q are not.

Fig. 8. Structures of central spheres are composed of likely ancient motifs. (A) Structure of iron-binding Corynebacterium ammoniagenes R2 protein with highlighted 
motifs. Thick ribbon representations highlight residues within the peptide sphere, and colored segments indicate motifs. Here, pieces of motifs may be outside the 
sphere, e.g., thin red and green strands while the purple one is completely outside the sphere. (B) Structural alignments of motifs across all clusters. Clusters 2 and 5 had 
aligned to the largest number of PDB structures and are, thus, likely the oldest.
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of similar secondary structure (Materials and Methods). We further 
calculated the average number of each cluster’s motifs reliably align-
ing to a given protein in the sets of the central structures, all struc-
tures in our representative network, all metal-binding proteins, and 
all metal nonbinding proteins (data S1: MotifstoPDB_byclass). For 
clusters 3 and 6, motifs aligned to central structures more frequently 
than to other structure subsets—an observation unlikely for truly 
ancient motifs. Alignments for clusters 1, 2, 4, and 5 were similar 
across all analyzed structure subsets, but cluster 1 motifs were infre-
quent across all protein sets. The fact that our cluster 2, 4, and 5 small 
structural motifs are equally well distributed throughout the vast 
majority of protein structures can be interpreted as evidence of their 
early appearance, predating protein diversification.

We further identified a set of structures that aligned to our 
motifs with a sahle score ≥ 0 and/or TopMatch score ≥ 80 (data S1: 
ClusterToPDB and MotifstoPDB). At random, shorter motifs are 
expected align to a larger number of structures, but each of the cluster 
4 motifs (average length of 8 residues) aligned to fewer structures 
than clusters 2 and 5 (average length of 16 to 24 residues). Note that 
cluster 3 had matched the largest number of structures with positive 
sahle scores, but its motifs are too long and preferentially more 
common in the central spheres to be considered ancient. They may, 
instead, represent a result of duplication of the shorter cluster 2 
motifs, particularly in light of nearly three-quarters of shared struc-
tural matches between the two clusters. Thus, motifs of clusters 2 
and 5 appear to represent the most basic, and likely ancient, metal- 
binding structures.

In a bottom-up engineering of synthetic metalloproteins that 
mimic natural enzymes, clusters may be thought of as building blocks. 
Cluster 3 motifs are found in the ribonucleotide reductases, methane 
monooxygenases, ferritins, and hemerythrins (12). The Due Ferri 
series of design shows that much of the structure and chemistry of 
natural proteins is recapitulated from minimal metalloproteins 
composed of just two cluster 3–like elements (56, 57). Duplicating 
cluster 2 produces a simple rubredoxin mimetic (58). Combinations 
of clusters 2 and 5 can produce P-loops and bacterial ferredoxin folds 
(59) that recapitulate both chemical and biological functions (60, 61). 
Our clusters thus represent robust building blocks for natural 
metalloenzymes, so it is not unexpected that they have been so useful 
in the design of synthetic ones.

While there is evidence that prebiotic metal-binding motifs could 
be even shorter (15), sequence-based attempts to find them are 
limited by difficulties of establishing statistical significance of short 
alignments. The shortest Pfam (62) motif, for example, is seven 
amino acids long, but among the nine Pfams of nine or fewer resi-
dues (similar to the smallest cluster 5 motifs), there is only one that 
is associated with metal binding (PF03991: a copper-binding 
octapeptide repeat); moreover, all structures carrying this repeat align 
well to cluster 2 motifs. The five 4Fe-4S iron-sulfur cluster binding 
domains (PF12798, PF12800, PF12797, PF00037, and PF12837) are 
15 to 24 residues long and contain the familiar Cys-x-x-Cys-x-x-
Cys-x(n)-Cys signature (63). As part of ferredoxin folds [Structural 
Classification of Proteins—Extended (SCOPe) (64) domain d.58], 
these Pfam domains can also be aligned well to structures carrying 
cluster 2 and 5 motifs. However, a search of Pfam using motif 
sequences did not produce hits to these. This finding was in line 
with the overall depletion in cysteines in our central, as compared to 
other, metal-binding spheres. Furthermore, less than half of our mo-
tifs, all longer than 24 residues, mapped (65) to any Pfam domain 

(data S1: MotifToPfam), suggesting that sequence-based methods 
may be lacking in power to identify short motifs representative of 
metal binding in even a specifically targeted set of sequences.

Ancient relationships are difficult to trace in sequence even when 
structures can guide the convergence of the exploratory space. To 
exhaust sequence space evidence for prebiotic origins of our motifs, 
we considered the Alva et al. work (19) reporting a collection of 
ancient sequence- and structure-similar metal-binding protein repeats 
(six groups of metal-binding fragments; data S1: AlvaToMotif). 
We evaluated the correspondence of our motifs to these fragments 
in structure space. Overall, longer fragments matched fewer clusters, 
while larger motifs matched more fragment groups. These results 
indicated the expected baseline alignments in both extremes, i.e., 
large motifs capture many fragment structures and short fragments 
fit many motifs. However, for midrange fragment and motif sizes, 
the similarity likely carries evolutionary meaning. While cluster 5 
motifs were not matched by any of the fragments, cluster 2 motifs 
had matched two of the three mid-length fragment groups. This ob-
servation reaffirms the ancient origins of both fragments and motifs. 
The match to two fragment groups further suggests that the appear-
ance of cluster 2 structures might have predated the divergence of 
these fragments in sequence.

Structural motifs give rise to observed folds
A likely evolutionary order of the SCOPe (64) structural folds was 
reported by Wang et al. (66). In comparison to these findings, we 
noted a trend toward a higher diversity of motifs mapping to puta-
tively older folds (Fig. 9 and data S1: SCOPtoMotif). Specifically, 
only 4 (of 31) motifs were missing in the putatively oldest fold (c.37: 
P-loop containing nucleoside triphosphate hydrolase). Note that 
P-loop nucleoside triphosphatases (NTPases) and Rossman folds likely 
share common ancestry in a beta-alpha-beta ancestral fragment (67), 
possibly similar to the cluster 2 motifs. This finding is in line with 
an earlier observation that these two fold families were responsible 

Fig. 9. Relationship between SCOP fold evolutionary order and diversity of mapped 
motifs. The x axis denotes the total number of motifs (of 31 in total) that were 
matched by PDB structures carrying specific SCOP folds. The y axis indicates the node 
distance (nd) from the root of each of these SCOP folds according to Wang et al. (66). 
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for introducing at least a third of the known biocatalytic mechanisms 
into life’s repertoire (14). One of the four motifs missing from c.37 
(1knk chain A residues 1 to 30) appeared almost immediately in the 
second oldest fold (c.1: TIM beta/alpha barrel). Another missing 
motif appeared somewhat later (1gyc chain A residues 210 to 256 
appears in b.6: Cupredoxin- like folds). The two remaining motifs 
(cluster 6) did not appear at all in any of the Wang et al. list of age- 
assigned SCOP folds. However, the fold to which these were aligned 
(a.25, ferritin-like folds; primarily ribonucleotide reductase-like 
family) has been previously reported to be evolutionarily ancient (68) 
and had collected 27 motifs overall, as many as the oldest c.1 and 
c.37. These three folds together (c.1, c.37, and a.25) contained 30 of 
31 motifs in our set. The third oldest ferredoxin-like (d.58) and the 
later terpenoid synthase (a.128) folds were also motif rich (24 mo-
tifs each), although 32 other SCOP folds (of 1223 folds in total; data 
S1: SCOPtoMotif; no age available) had mapped to as many motifs or 
more. We note that some of the youngest folds (e.g., a.123, d.211, and 
c.10) also had many (17 to 22) motifs, but no other SCOP folds had 
collected as many motifs as the oldest folds. This suggests that the 
alphabet of motifs evolved before the first SCOP fold in the Wang 
et al. list, i.e., more than 3.8 billion years ago (66), and then consis-
tently reused in a diversity of arrangements in evolution of life.

Summarizing the findings
Three conclusions from our work are most salient. First, the peptides 
at the origins of life were likely used for facilitating electron transfer. 
They have since been widely repurposed in the complete variety 
of biological functions and, hence, have adapted their sequences. 
However, the likely ancient folds are still enriched in amino acids 
that must have been prebiotically available. Second, the interchange-
ability of metals used in the biological activity reflects the likely con-
temporaneous availability of these metals on geological time scales, 
with folds binding these metals possibly adapted from a common 
ancestor. This observation suggests that the more robust geological 
chronometers could be useful in exploring the timing of biological 
evolution. Last, we find that the earliest biologically functional 
peptides were likely available before the assembly of fully functional 
protein folds over 3.8 billion years ago. These may have been used 
as cofactors for RNA-driven catalytic activity together with the avail-
able metal ligands, as evidenced by both their nucleotide and metal 
binding abilities. This scaffolding could then have allowed for more 
complicated protein fold assembly facilitated by bound metals and 
led to the structural diversity we observe today.

MATERIALS AND METHODS
Structural sphere alignment and scoring
We extracted from the RCSB Ligand Expo (4) a list of 151 ligands 
containing transition metals Co, Cu, Fe, Mn, Mo, Ni, V, and W. We 
then collected from the PDB (9 May 2014; data S1: PDBLigands_list) 
the protein structures (resolution ≤ 3 Å) that bind these ligands. 
We further extracted from these the metal-binding spheres, defined 
as all residues within a 15-Å radius from the geometric center of the 
metal ligand and containing more than 35 amino acids (residues). 
We removed all spheres from the same protein structure (same 
PDB ID) that shared any residues. This set was further reduced for 
redundancy, by choosing one representative for every subset of 
100% sequence-identical spheres, binding the same ligand, and sharing 
the same number of chains. Note that this set could still include 

spheres from sequence-identical chains of the same PDB ID, as long 
as the spheres did not encompass any of the same residues and were 
not identical in sequence. The resulting collection contained 
4672 spheres (10.6084/m9.figshare.14563518).

We previously (26) described an approach for evaluating the 
reliability of structural TopMatch (55) alignments of ligand-binding 
microenvironments, from here on referred to as spheres, on the basis 
of the Euclidean distance between their ligand centers. We used 
TopMatch v7.3 (default parameters; composite alignment mode 
disabled). Briefly, we previously observed that shorter distances 
between ligand centers in structural alignments are more likely in 
structurally/functionally similar proteins. For redox proteins, for 
example, efficient electron transfer does not allow for high reorga-
nization energy of the necessary protein parts, requiring rigid assembly 
of donor and acceptor sites (69). As a corollary to our observation, 
we assume that overlapping ligands in structural alignments confer 
fold functional similarity.

To assess structural and functional relationships between metal- 
binding folds and, more generally, between structural fragments, 
here we built a new sahle scoring method. Our method is based on 
alignment length (L) and the percentage of sequence identity (PID) 
derived from structural alignments of protein 15-Å spheres. To develop 
our method, we collected a set of TopMatch alignments of spheres 
binding Fe2S2 (177 spheres), Fe4S4 (180), and heme (1265). We only 
considered alignments between structures binding the same ligand. 
Alignments were defined as correct (positive) when ligand centers 
in the alignment were, respectively, ≤2.1, 2.8, and 3.0 Å apart for 
Fe2S2 (3884 alignments), Fe4S4 (2520), and heme (135,659), and in-
correct (negative; respectively, 6518, 6753, and 377,028) otherwise 
(10.6084/m9.figshare.14563362). Note that these ligand-ligand dis-
tances are more conservative than the 3.5-Å distance allowed for 
structural alignments by Rosato et al. (27), but as we do not require 
50% domain sequence identity, our cutoffs are likely to produce 
similar groupings of folds.

We fit an exponential decay curve, inspired by the HSSP score 
(70), through the L/PID space to best separate the correct (above the 
curve) and incorrect sample (below the curve) alignments. We varied 
the exponent and factor parameters (Eq. 1) to optimize the F-measure 
for our training set (Eq. 2) using the optimization function as de-
scribed by Nelder and Mead (71) and implemented in the R optim 
function of the stats package (72) (over a range of exponent = [0.3, 1] 
and factor = [100, 1000] parameters)

  Precision =   TP ─ TP + FP   Recall =   TP ─ TP + FN    

                    F − measure = 2 ∙   
precision ∙ recall

  ─  precision + recall   (2)

Here, all alignments that fall above the curve were predicted 
positive, and those below the curve were predicted negative. Align-
ments placed above the sahle curve, PID–sahle ≥ 0, are either true 
positives (TPs; correct alignments) or FPs (incorrect alignments). 
Similarly, correct alignments placing below the curve are false 
negatives (FNs; PID–sahle  <  0). Final sahle parameters were 
exponent = 0.67247 and factor = 1099.669 (Eq. 1); with these values, 
the F-measure was 0.82 (95% precision and 72% recall; Eq. 2).

We considered the preponderance of heme alignments as a pos-
sible hindrance for generalizability of our metric and down-sampled 
the heme alignment set to the same number of correct and incorrect 

http://dx.doi.org/10.6084/m9.figshare.14563518
http://dx.doi.org/10.6084/m9.figshare.14563362
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alignments as Fe4S4. Sahle scores optimized using these data achieved 
F-measure = 0.80 (87% precision and 75% recall) when evaluated 
on the entire set. As these values were similar to our Eq. 1 results, we 
deemed sahle to be sufficiently robust to imbalance in the training 
set (fig. S1). Last, note that the sahle curve represents the lowest 
bound of sequence identity for a correct alignment at a given align-
ment length. The distance of the alignment from the computed sahle 
curve along the PID y axis correlates well with the reliability of the 
alignment correctness (fig. S2).

We further structurally aligned all pairs of the 4672 spheres in our 
PDB set, regardless of their ligand identity, using TopMatch. For 
every alignment of one sphere to another, we computed the sahle 
distance and the Euclidean distances between metal ligand centers. 
A total of 10,911,456 alignments were retrieved (all-to-all noniden-
tical spheres); of these, about half (5,804,705; 4,852,311 different 
ligand and 952,434 same ligand alignments) had a sequence iden-
tity >0% and were retained (10.6084/m9.figshare.14563518). Note 
that, at sahle ≥ 0, the recall (Eq. 2) of putatively correct alignments 
(ligand-ligand distance ≤3 Å) of different ligand-binding spheres 
was lower than that of same ligand-binding spheres (~15% versus 
~53%, respectively).

Building a network of sphere similarities
We built a network of structurally similar protein spheres, where 
spheres were nodes and an edge existed between any two nodes with 
a sahle score ≥ 0; edge weights were recorded as the corresponding 
sahle scores. The largest connected component in this network contained 
99% (4613 of 4672) of the spheres (10.6084/m9.figshare.14563500).

To ensure that our network better represented the natural struc-
tural and functional diversity, we set out to remove closely related 
spheres from consideration. We applied Walktrap clustering [R iGraph 
package implementation (73)] to our network recursively, i.e., cluster-
ing nodes within the identified network clusters. By the end of this 
process, each cluster contained very similar spheres, binding only one 
ligand. Note that clusters that could not be broken down via further 
clustering were split by moving the different ligand spheres to individual 
clusters. This process retained 1551 clusters of proteins (including 
774 singletons). Notably, heme-binding proteins formed the biggest 
clusters (fig. S10), indicating an experimental bias in the PDB.

By selecting a single protein from each cluster, we reduced the 
network size while increasing diversity. As the goal of this study was 
to explore the evolution of the folds in our network, we retained 
representatives for each cluster on the basis of their connectivity to 
other nodes, which may indicate their evolutionary trajectory. We 
chose the cluster representative, i, as the node with the shortest (un-
weighted) distance to all nodes outside of i’s cluster. When reduced 
to only one representative node per cluster (1551 nodes total), the 
network was decomposed into 34 components. However, the largest 
component contained 97% (1509) of the nodes (Fig. 4; 10.6084/m9.
figshare.14563458).

Assigning sphere age
To assign relative ages to all spheres in our set, we mapped their 
corresponding full protein sequences to the GTDB (36) (release 
04-rs89) of organisms [using fusionDB (74) as reference of fully 
sequenced genomes and HFSP ≥ 0 (75) to assure functional and 
sequence similarity]. We assigned each sphere the age of the rela-
tively oldest (closest to the root) organism to which the sphere protein 
sequence was mapped. Furthermore, each representative node of a 

cluster of spheres was assigned the age of the oldest sphere in the 
cluster. We further identified the relative age of the LCA of all 
organisms to which a sphere could be mapped at HFSP ≥ 0. A total of 
1,248 representative proteins had an age (assigned from 253 organ-
isms) and an LCA; an additional 36 were assigned their cluster age 
and a constant LCA = 2.2 (maximum LCA in our set); for all others, 
the age was = 3 (maximum age in our set) and LCA = 2.2. For every 
two spheres, where possible, we also computed the distance in the 
GTDB tree; a constant distance = 3.5 (maximum distance in our set) 
was assigned otherwise.

Finding most central spheres
We computed MSTs across the representative network with edge 
distances determined as the inverse of edge weights (Eq. 3), i.e., 
10 minus the product of normalized (range 0 to 10): (i) node-to-node 
sahle score (10 is highest normalized sahle score and the highest 
edge weight); (ii) 10 − sphere age (for both nodes of the edge, 0 is 
the oldest normalized age, so 10 − 0 = 10 is the highest edge weight); 
and (iii) 10 − sphere lca (for both nodes of the edge, 0 is the oldest 
normalized lca, so 10 − 0 = 10 is the highest edge weight). Thus, 
larger edge weights represent smaller distance, and the distance 
between nodes N1 and N2 is (with sahle_score, age, and lca vari-
ables normalized)

 
   

   edge _  distance  N1−N2   = 10–norm(edge _  weight  N1−N2  )
      edge _  weight  N1−N2   = sahle _ score * (10 −  age  N1   ) * (10 −  age  N2   ) *     

 (10 −  lca  N1   ) * (10 −  lca  N2   ) )   
    (3)

Note that many MSTs are possible across a large network. We thus 
bootstrapped our network 1000 times, retaining random 90% (1358 
of 1509) of the nodes and computing an MST [Prim’s algorithm (37)] 
each time. In each iteration, we computed the betweenness centrality 
of the nodes (39, 40) (R iGraph implementation) to highlight those 
that most often occur on the shortest path between all spheres in 
the network.

As the relatively oldest organism in the tree is determined by the 
particular iteration of GTDB, we also looked to compare our results 
to those generated without explicitly specifying the oldest sphere age. 
Thus, we compared the betweenness centrality values using the 
network with edges weighed as in Eq. 3 versus edges that use the 
normalized distance between the spheres in the GTDB tree instead 
of sphere age. The central spheres were different for the two network 
types. However, the betweenness centrality scores over all spheres 
correlated well between the two networks (Spearman  = 0.63), 
suggesting that the MSTs of these capture similar trends.

Selecting center structural motifs
Proteins often contain recurrent structural motifs that can be con-
sidered repetitions and variations of a basic, possibly ancient, struc-
tural unit. To characterize repetitions and identify motifs in the 
20 central spheres, we used an approach similar to the method de-
scribed in Parra et al. (52). To detect repeats, we decomposed the 
structure into smaller units (tiles) with the constraint that these tiles 
be structurally similar to each other. In a protein, the possible tiles 
are not necessarily unique (i.e., nonoverlapping), nor are they re-
quired to cover a chain completely (i.e., be present repeatedly across 
the entire chain sequence). However, it is possible to identify those 
tiles that, when repeated in a nonoverlapping fashion, cover a max-
imum fraction of the structure.

http://dx.doi.org/10.6084/m9.figshare.14563518
http://dx.doi.org/10.6084/m9.figshare.14563500
http://dx.doi.org/10.6084/m9.figshare.14563458
http://dx.doi.org/10.6084/m9.figshare.14563458
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Every continuous fragment of the protein is a possible tile. Hence, 
the length of tiles ranges from one amino acid to the entire sequence 
length N. Because the C traces of tiles containing one or a few resi-
dues are too small for meaningful comparison, we used a cutoff of 
six amino acid residues for a minimum tile length. Thus, in a pro-
tein of length N, the total number of tiles in the set T is (Eq. 4)

   N  T   =  ∑ L=6  N   (N − L + 1)  (4)

We used TopMatch to generate an exhaustive list of structural tile 
alignments, along with the transformations (rotations and transla-
tions) that maximize the superimposition of equivalent C atoms. 
In the TopMatch score (Eq. 5), L is the length of the alignment, ri is 
the Euclidean distance between equivalent C atoms, and the score 
S is a function of the L and structural deviation of the superimposed 
structural fragments, where the scaling factor  = 6.35 Å determines 
the rate of decrease in L as a function of the structural deviation

  S =  ∑ i  L     e    − r i  
2  ⁄    2     (5)

We aligned each of the tiles in T, Ti ∈ T, to all other tiles, Tk ∈ T.  
Each match is uniquely identified by its length Lik, the sequence lo-
cation of its center amino acid Zik, and the associated score Sik. The 
matches are sorted by Sik, where the self-alignment (i = k) has the 
highest score, because the respective alignment length is maximal 
and the structural deviation is zero. Note that Lii = Sii, i.e., the score 
obtained from an alignment of a tile with itself, evaluates the length 
Lii of the alignment and the complete length of the tile Ti. From the 
set of tiles that match Ti (with Lii ≥ 0.9Lik), we extract the subset 
that maximizes the sum over the TopMatch scores, Ci = max ∑k Sik, 
where any two tiles Tk1 and Tk2 in the subset cannot overlap by any 
of their residues. This sum defines tile Ti’s sequence coverage (Ci); 
we define the associated tile score as in Eq. 6, which represents the 
fraction of the protein structural space that can be covered by repe-
titions of a given tile

     i   =    C  i   −  L  ii   ─ N −  L  ii  
    (6)

For each tile size (L), we sum the tile scores (; Eq. 6) and calcu-
late the difference in the sum of scores between sequential sizes size 
L and L + 1. The resulting function has peaks at length L that maxi-
mizes the coverage of the structure. From each of these peak tile 
lengths, we further choose the tiles that maximize the coverage of 
the metal sphere.

This approach produced 223 tiles, representing the 20 spheres in 
our set. For each sphere, we further selected all nonoverlapping tiles 
that best covered that sphere; a total of 71 tiles. We further aligned 
all tiles within a sphere and hierarchically clustered them [using the 
silhouette coefficient (76) as the guide for the number of clusters] on 
the basis of the TopMatch alignment scores. For each cluster, we chose 
a representative structural motif as the one tile that covered the largest 
fraction of the sphere (31 motifs total; data S1: MotifList); these were 
further clustered into six structurally similar groups (fig. S11).

Establishing motif origins
For each of the six resulting clusters, we picked the most central 
motif as the representative of that cluster [using Python’s NetworkX 
(77) centrality measure]. Within each cluster, we used the structural 
alignment of each motif (M) to the representative (R) to build a 

pseudo-MSA. Here, the pairwise sequence alignment was extracted 
from the structure alignment for each Mi-to-R match. Alignments 
across all Mi were compiled using R as reference sequence. We used 
this MSA to build an HMM with hmmer’s (54) hmmbuild and per-
formed an hmmsearch (with parameters -E 20 -domE 20 --max) on 
the UniProt sequence database (53). We then extracted the species 
names for each UniProt match and mapped it to GTDB. Using the 
ete3 get_common_ancestor function, we searched for the most 
recent common ancestor of each structural cluster.

Establishing the baseline for comparison of structural 
motif alignments
A large number of structural alignments to small motifs may be 
suspect without an expectation baseline. We therefore evaluated how 
many alignments a random structural fragment would generate. We 
first extracted random structural fragments of motif-similar lengths 
from complete protein structures harboring our central spheres; we 
excluded residues within 15 Å of metals or those in our motifs. The 
number of alignments to PDB70 for this set of fragments was lower 
(median number of alignments = 53 per fragment). However, given 
the natural preponderance of helix and sheet structures, i.e., folds 
much like our motifs, comparison to fragments of random secondary 
structure may not have fully described the characteristic properties 
of our motifs versus random fragments of similar biochemical 
constraints.

We observed that nearly all structural fragments of exactly the 
same secondary structure as our structural motifs [determined via 
DSSP (78, 79)] were also well aligned via TopMatch (≥80), i.e., 
identical secondary structure indicated other instances of the same 
motifs. We thus required a somewhat less restrictive approach to 
selecting baseline fragments. We selected fragments that did not 
match (TopMatch < 80) any of our motifs but were similar in length 
and secondary structure to cluster 2 and 5 motifs (cluster 2–like 
fragments: 30 to 70% helix residues and a loop residue at the start 
and/or end of the fragment; cluster 5–like fragments: 25 to 70%  sheet 
residues and at least two loop residues); we selected the same number 
of random fragments as motifs per cluster. The number of reliable 
matches for these eight fragments similar to cluster 2 and the 
four fragments similar to cluster 5 was higher than that of random 
fragments, confirming the importance of the simplest helix and the 
hairpin structures with a network of hydrogen bonds (median = 2193 
and 2390 for clusters 2 and 5, respectively). However, the number of 
hits was still lower than that obtained by cluster motifs.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at https://science.org/doi/10.1126/
sciadv.abj3984

View/request a protocol for this paper from Bio-protocol.
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