
Large-Scale VQE Simulations 
with Tensor Networks

Abid Khan1,2,3, M. Sohaib Alam2,3, Wayne Mullinax3,4, Bryan K. Clark1, and 
Norm M. Tubman3

1 University of Illinois at Urbana-Champaign
2 USRA Research Institute for Advanced Computer Science

3 NASA Ames Research Center
4KBR Inc.



Tensor Networks and VQE
• It’s hard to do large-scale circuit optimization 
• Use Tensor Networks to approximate parameterized Quantum Circuits
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Ground State Hubbard Model

𝒏𝒙 × 𝒏𝒚

Fraction of max bond dimension



The Goal
• Perform VQE simulations with many qubits

• Approximate parameterized quantum circuit  as an MPS
• Observe the performance as we tune the MPS bond dimension
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Model and Ansatz
Fermi-Hubbard model with no Boundary Conditions at half filling

(𝑡, 𝑈) = (1,2)

=

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 −1

NP ansatz layer

onsite horizontal hops fswapsvertical hops

[Cade et al. 2020]

fswaps
𝑁𝑃 𝜃, 𝜙 =

1 0 0 0
0 cos 𝜃 𝑖 sin 𝜃 0
0 𝑖 sin 𝜃 cos 𝜃 0
0 0 0 𝑒𝑖𝜙

For an 𝑛𝑥 × 𝑛𝑦 grid, one layer of the NP ansatz requires
𝟏𝟎𝒏𝒙 𝒏𝒚 – 𝟒𝒏𝒙 – 𝟒𝒏𝒚 parameters

𝑛𝑞 = 2𝑛𝑥𝑛𝑦



Optimization
Given a system size 𝑛𝑥 × 𝑛𝑦 and 𝑟 layers of the NP ansatz:
1. Choose a bond dimension 𝜒
2. Minimize 𝐸𝜒 𝜃 = ⟨𝜓𝜒 𝜃 𝐻 𝜓𝜒 𝜃 ۧ with tensor network backend

• Gradients can be computed using automatic differentiation
• Optimized with BFGS
• Optimization terminates when 𝐸𝜒 𝜃(𝑡+1) − 𝐸𝜒 𝜃(𝑡) < 10−7

3. Obtain the optimized parameters 𝜃𝜒∗

ൿ|𝜓𝜒 (𝜃) 𝐸𝜒 𝜃 = ⟨𝜓𝜒 𝜃 𝐻 𝜓𝜒 𝜃 ۧ
𝑟 layers
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Computing Gradients



Results

= DMRG

= 𝐸𝜒𝑏 𝜃𝜒𝑏
∗

= 𝐸min 512,𝜒max
𝜃𝜒𝑏
∗

We perform VQE optimization with 𝜒𝑏 ∈ {16, 32, 48, 64}

𝜃𝜒𝑏
∗ = argmin

𝜃
⟨𝜓𝜒𝑏 𝜃 𝐻 𝜓𝜒𝑏 𝜃 ۧ

𝐸𝜒𝑎 𝜃𝜒𝑏
∗ = ⟨𝜓𝜒𝑎 𝜃𝜒𝑏

∗ 𝐻 𝜓𝜒𝑎 𝜃𝜒𝑏
∗ ۧ

𝜒𝑏/𝜒max

1DRelative Energy Error (%)

𝜒𝑏/𝜒max

2DRelative Energy Error (%) 1 − 𝜓 (𝜃𝜒𝑏
∗ ) 𝜓exact

2

𝜒𝑏/𝜒max



Takeaways
• Using the MPS bond dimension, we can trade computational resources 

with ground state accuracy

• The complexity of the circuit is bounded by its entanglement entropy, 
which is bounded by the MPS bond dimension

• Generally, when 𝜒1 < 𝜒2, 𝐸𝜒2 𝜃𝜒1
∗ < 𝐸𝜒1 𝜃𝜒1

∗

• Optimizing at a low bond dimension yields circuits that yield more accurate 
target states when the circuit is evaluated exactly

𝜒𝑏/𝜒max

1DRelative Energy Error (%)

𝜒𝑏/𝜒max

2DRelative Energy Error (%)

Relative Energy 
Error (%)



Further Research
1. Instead of minimizing                                             

𝐸𝜒 𝜃 = ⟨𝜓𝜒 𝜃 𝐻 𝜓𝜒 𝜃 ۧ,                                           
what if we minimized                                            
1 − 𝐹 𝜃 = 1 − 𝜓𝜒 𝜃 𝜓DMRG
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2. How well do these optimized parameters perform as 
initialization for true VQE?
1. How many optimization steps
2. Does this get us out of barren plateaus

𝜒𝑏/𝜒max

2DRelative Energy Error (%)



Conclusion
• Performed VQE simulations of up to 32 qubits

• MPS bond dimension tunes accuracy with resources

• Optimized parameters yield more accurate energies when 
circuits are evaluated exactly
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