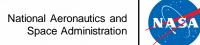

Lattice Confinement Fusion (LCF) Overview

Nuclear Processes by which Nuclei are Fused to Produce Energy

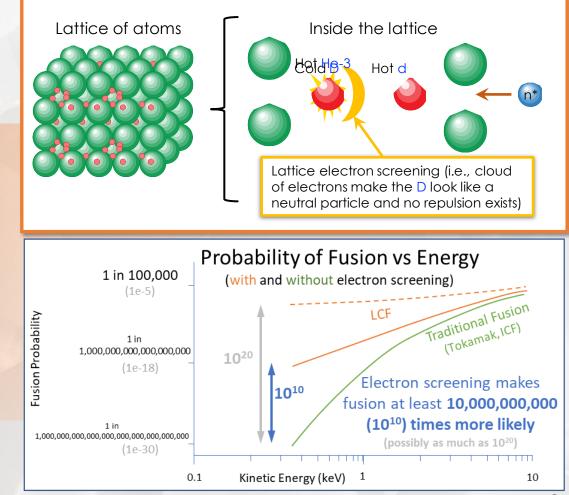
Theresa L. Benyo, PhD Analytical Physicist, NASA Glenn Research Center


Novel Nuclear Fusion Reactions as an Energy Source

- Harnessing fusion would provide humanity nearly limitless energy
- For 30 years multiple labs have observed fusion reactions suggesting Lattice Confinement Fusion (LCF)
- LCF may be the key to harnessing fusion within a compact contained system
 - Eliminates need for weapons-grade uranium (HEU)
 Compact, controllable power
 - Reduces safety, security, and supply concerns
 Zero radioactive waste
- - **Potential Long-Term Applications**

* Note: LCF offers near-term means for terrestrial exploration of warm dense matter, Heliophysics, and Astrophysics

How LCF Works


- Traditional fusion: Heats plasma 10x hotter than center of sun hard to control
- LCF addresses the pressure, temperature, and containment challenges with fusion
 - Heats very few atoms at a time
 - Approaches solar fuel density
 - Lattice provides containment

Technical Details Simplified

Part A: Electron Screening (increases fusion probability)

Part B: High Fuel Density (billion times more dense than traditional fusion)

A + B (+ trigger) = Viable Fusion

LCF Variables (Triggering and Loading Mechanisms)

Triggering

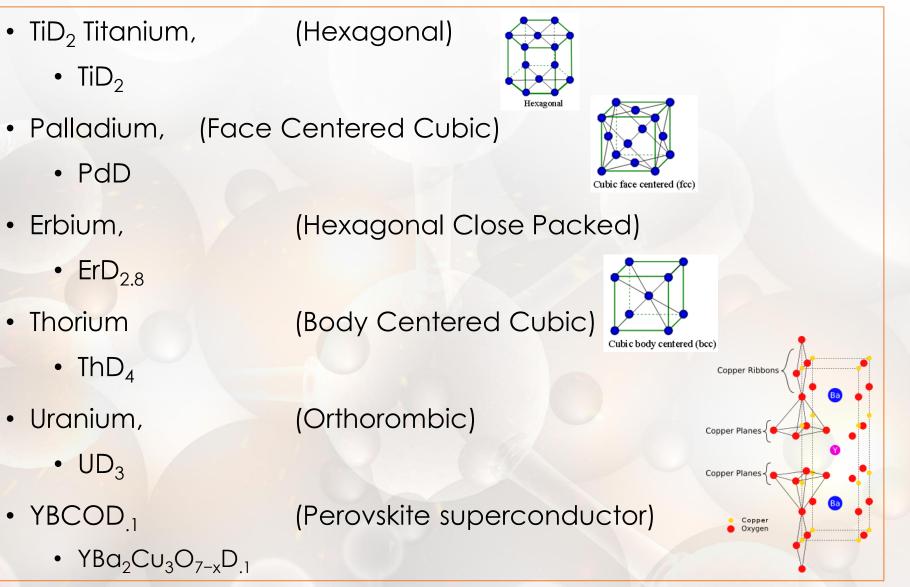
- Bremsstrahlung photo-neutrons
 - Collisional heating (PRC)
 - NASA: Physical Review C
- Accelerated Deuteron Plasma
 - Electron Screened fusion

1,200 eV

64,000 eV

- DoE LBNL: Nature and J. of Applied Physics
- Electrolytically enhanced Screening
 - Electron Screened nuclear reactions
 10 eV
 - NASA: Int. J. of Hydrogen Energy
- Deuterium flux
 - Induced nuclear reactions

1 eV


• NASA: J. of Electroanalytical Chemistry

All these reactions produce millions of eV energy/reaction. Figure of Merit: Output Energy/Input Energy

Loading

- Heat and pressure
 - TiD₂, ErD_{2.8}
- Plasma discharge
 - TiD₂, PdD
- Gas Cycle
 - Pd_{.75} Ag_{.25}
- Electrolytically
 - Ti, Pd_{.75} Ag_{.25}, Pd, Th, U, YBCO

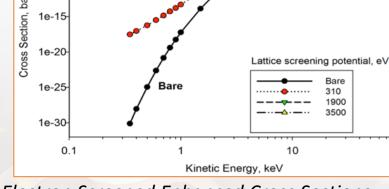
LCF Variables (Materials)

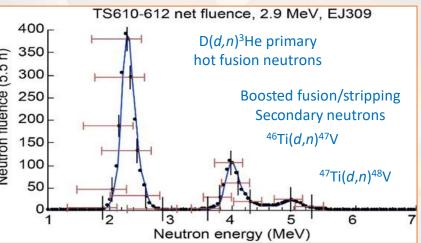

LCF is repeatable with different lattice materials

Physical Review C Papers: Bremsstrahlung-induced Nuclear Reactions in Electron Screened, Deuterated Metal Lattices

National Aeronautics and Space Administration

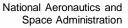
100



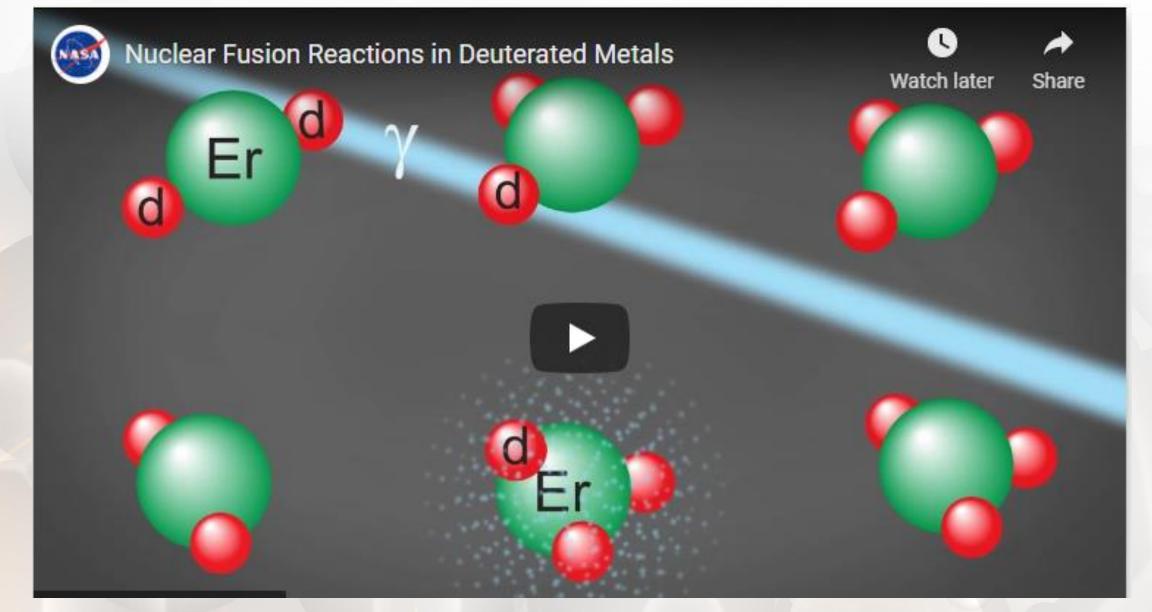

Accepted 6 December 2019

Phys. Rev. C

APS

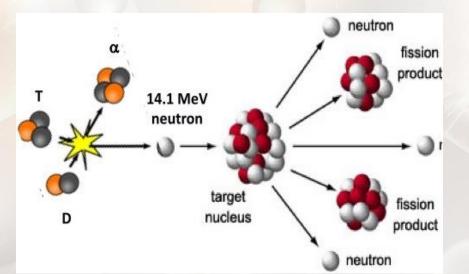


Electron Screened Enhanced Cross Sections



Fast Neutrons Observed

Lattice Confinement Fusion



Lattice Confinement Fusion Fast-Fission Overview

- Takes advantage of both nuclear processes
 - Fusion reactions provide the neutrons to fission non-fissile material
- Neutrons must be > 2 MeV to fission 238 U or 232 Th.
- LCF Fast-Fission generates an average of 6.4 MeV neutrons up to 15.6 MeV
- The Hybrid Fusion Technology generates energetic neutrons to fission
 - ²³⁸U (99.7% DU, 99.3% natural Uranium)
 - ²³²Th (100%, natural thorium)

	Fusion Reaction	MeV	Occurrence	useful particle energy (MeV)	
	D(d,n) ³ He	4.00	primary $\approx 50\%$	n=2.45	
	D(d,p)T	3.25	primary $\approx 50\%$	p=3.00	
	D(³ He,p) α	18.30	secondary	p=15.00	
	D(t,n)α	17.60	secondary	n=14.10	
	T(t,α)2n	11.30	low probability	n=1 to 9	
	211 (211)2	10.00			
	³ He(³ He,α)2p	12.86	low probability	p=1 to 10	
	^s He(^s He,α)2p Fission Reaction	12.86 MeV	low probability Occurrence	p=1 to 10 useful particle/energy (MeV)	
N. N	Fission			useful particle/energy	
	Fission Reaction	MeV	Occurrence	useful particle/energy (MeV)	
	Fission Reaction 232 Th(n, γ)f	MeV 200	Occurrence high probability	useful particle/energy (MeV) n=1 to 9	
	Fission Reaction $^{232}Th(n, \gamma)f$ $^{232}Th(p, \gamma)f$	MeV 200 200	Occurrence high probability some probability	useful particle/energy (MeV) n=1 to 9 p=1 to 10	

National Aeronautics and Space Administration

Conclusion

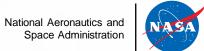
Demonstrated

- Bremsstrahlung photoneutron-initiated fusion in a "Globally Cold Locally Hot" environment.
- Process is repeatable and works with different lattice materials holding the deuteron fuel.
- Observed boosted fusion or nuclear stripping reactions indicate a path to scaling.

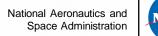
Calculated

- Electron screening increases localized fusion rates in dense fuel.
- Neutrons and screened charged particles most efficiently heat the dense fuel.
- Electron screening increases large angle scattering between charged particles enhancing quantum tunneling and increased fusion rates.

Predicted

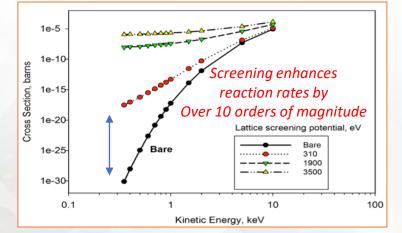

• Fusion rates consistent with observed neutron flux.

Extended


 Hybrid LCF Fast Fission takes advantage of fast neutrons created under LCF to fission natural U

Website

https://www1.grc.nasa.gov/space/science/lattice-confinement-fusion/



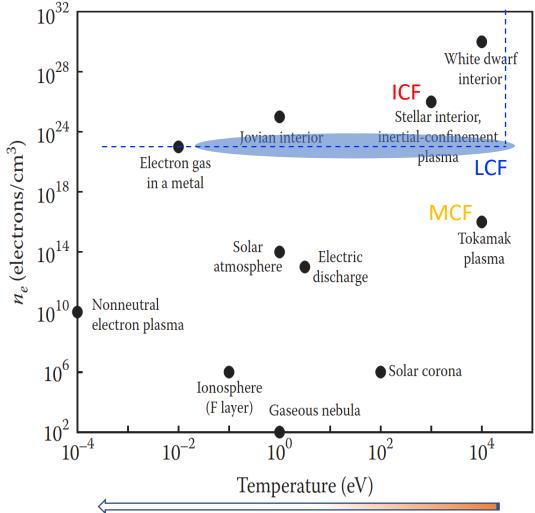
Backup

The Path: Electron Screening [1]

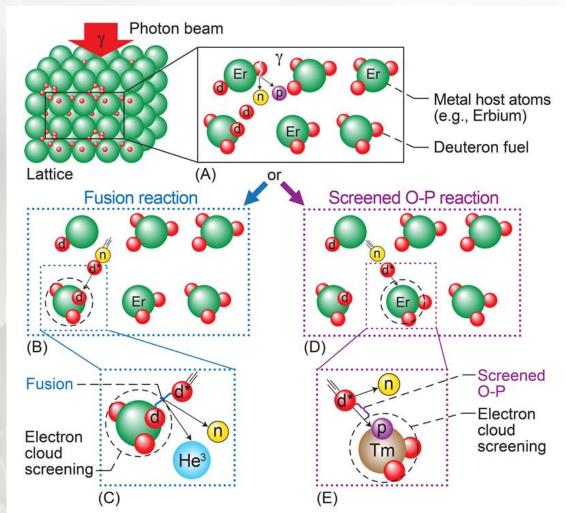
- Electron screening results in a *more transparent Coulomb Barrier, shifting the Gamow Factor,* as if deuterons were at far higher energies.
- This exponentially increases fusion rates.
- Laboratory astrophysics using accelerated deuteron beams across the Periodic Table show lattice and plasma screening provide up to 3+ keV screening.
- The *PRC* Theory Paper indicates a *higher probability of large angle scattering of screened charged particles* on screened deuterons.

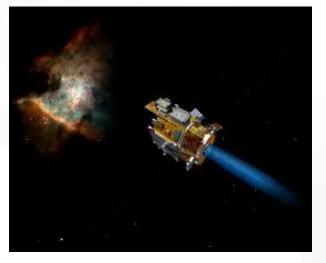
Electron Screened Enhanced Cross Sections

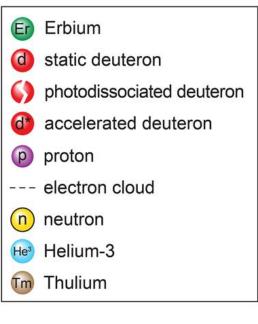
However, screening is only effective below 10 keV.


$$\sigma_{\text{bare}}(E) = \frac{S(E)}{E} \exp\left[-G(E)\right]$$

The Path: Electron Screening [2]


- Fermi Degeneracy occurs with > 10²³ electrons/cm³:
 - White Dwarf stars
 - Gas giant planets
 - Metal conduction bands
 - LCF deuterated lattices
- Fermi Degeneracy is relatively temperature insensitive
- LBNL results published in Nature and the Journal of Applied Physics attribute a 100 to 1000-fold increase in fusion rates to electron screening occurring at only 1.2 keV
- Screening is effective < 10 keV
- LCF Straddles both hot fusion and electron screened regimes


Examples of electron density vs temperature



Increasingly effective electron screening

LCF Reaction Mechanisms

National Aeronautics and Space Administration

