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Introduction KNN Solutions for Terminator and for Aircraft Icing

Various Al/ML tools, employed within the Clouds and the Earth's Radiant Energy System (CERES)
Satellite Cloud and Radiation Property retrieval System (SatCORPS) project, are being used to
mitigate satellite radiance artifacts and thereby yield more accurate cloud and radiation data
products. Neural network and K-nearest neighbor approaches have been developed that enable us
to better address common passive satellite remote sensing challenges, such as corrupted imagery,
day/night cloud property discontinuities, solar terminator artifacts, inadequate knowledge of the
land surface emission temperature (i.e., skin temperature), and poor assumptions about vertical
cloud structure, that have otherwise proven difficult to solve using more conventional methods.
Fixing these problems promotes a more consistent Earth radiation budget record. These efforts
demonstrate effective use of Al/ML architecture to exploit complex, multivariate predictor
relationships and produce usable output at satellite spatial and temporal resolutions that would e Aircraft icing threat is associated with optically thick
otherwise be ignored or have large biases. clouds containing SLW
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* The Clouds and the Earth’s Radiant Energy System (CERES) project provides a satellite-based
global climate data record (CDR) of Earth’s radiation budget and clouds
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* Apply K-nearest neighbors (KNN) method to

extrapolate daytime COD into nighttime using conCIUSionS
6.7- and 11-pm bands and local relationships
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* Within SatCORPS, various Al/ML tools are being used to correct level 0 satellite radiance artifacts and to derive more
accurate level 2 cloud and radiation data products

* Neural networks and KNN enable us to better address common passive satellite remote sensing challenges that have

Outcome: proven difficult using more conventional methods
* Much more realistic filling method for « Some of these are ready for implementation (e.g., nighttime COD, skin temperature), others need more work and
nighttime optically thick COD testing (e.g., multilayered clouds, cloud thickness)
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GOES-16 Cloud Optical Depth (Feb 2019) * More accurate downstream derived parametersi leading to more useful and lower latency data products for the community




