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ABSTRACT 

The National Aeronautics and Space Administration (NASA) 
- Indian Space Research Organization (ISRO) Synthetic
Aperture Radar (NISAR) mission plan to launch a SAR
operating at L- and S-band with a 12-day repeat frequency. A
global soil moisture product at 200 m spatial resolution
derived from 200 m NISAR radar measurements is currently
under development. Although several retrieval algorithms are
being investigated, this paper focuses on a “time series ratio”
retrieval approach. In order to understand and assess the
performance of this algorithm, an error model has been
developed and is reported in this paper. The model is applied
to examine errors as a function of the instrument
characteristics and for a given location. Initial progress in
including vegetation effects and in predicting errors as a
function of spatial location is also described.

Index Terms— NISAR, Soil Moisture, Error Model 

1. INTRODUCTION

Soil moisture information is important for many land surface 
applications. For the past decade, the monitoring of global 
soil moisture has been successfully demonstrated using L-
Band radiometer measurements [1]-[2]. Although L-Band 
radiometry allows for global coverage and frequent revisits, 
the soil moisture maps produced have a spatial resolution of 
~ 40 km, which is not sufficient for agriculture monitoring. 
Research has also been pursued to develop techniques that 
use Synthetic Aperture Radar (SAR) for soil moisture 
retrievals that achieve a finer spatial resolution [3]-[4]. The 
launch of the National Aeronautics and Space Administration 
(NASA) - Indian Space Research Organization (ISRO) 
Synthetic Aperture Radar (NISAR) [5] (expected in 2024) 
opens new opportunities for performing soil moisture 
monitoring at  200 m spatial resolution using SAR 
measurements. 

NISAR is being developed as a joint effort between NASA 
and ISRO and will operate a 1.26 GHz SAR system utilizing 

a SweepSAR technique that will provide 12-day exact repeat 
sampling. The expected spatial resolution will vary from 3 to 
10 meters depending on the radar mode utilized, and the 
incidence angle will range from 34 to 48 degrees over the 
swath. For soil moisture applications, NISAR’s L-band 
frequency is particularly of interest as it provides significant 
penetration into vegetated regions, allowing continued 
measurements of soil moisture even for mature crop regions. 
The development of a global soil moisture product at 200 m 
with a 12 day revisit time is currently in process. Although 
several retrieval algorithms are being investigated, this paper 
focuses on a “time series ratio” approach [6]-[10]. In order to 
understand and assess the performance of this algorithm, an 
error model was developed. Expected algorithm errors are 
examined in this paper as a function of instrument 
characteristics (number of looks, measurement noise) and for 
a given location.  

The following section describes the time series ratio 
algorithm in more detail, and Section 3 formulates the error 
model considering multiple sources of uncertainty. Section 4 
then presents preliminary results of the error model obtained 
from simulations, and Section 5 describes extensions of the 
model that are currently under development. 

2. TIME SERIES RATIO ALGORITM

The time series ratio retrieval algorithm is based on the 
observation that roughness and vegetation impacts on the 
backscattered signal from land surfaces can be eliminated if 
a ratio of two consecutive observations is considered. The 
algorithm begins by expressing the backscattered normalized 
radar cross section (NRCS) for a vegetation-covered soil 
layer as a sum of three components:  

𝜎"#$ =	𝜎"#' 𝑒)*+, +	𝜎"#./ + 𝜎"#/     (1) 

where 𝜎"#$  represents the total NRCS in polarization 
combination pq, 𝜎"#'  represents the NRCS of the soil surface 
that is also multiplied by the two-way vegetation attenuation 
𝜏"# , 𝜎"#/  is the NRCS of the vegetation volume, and  𝜎"#./ 



represents scattering interactions between the soil and 
vegetation. 

The time series ratio approach assumes that vegetation and 
roughness effects can be considered negligible between two 
consecutive observations. The approach also nominally 
assumes that the vegetation attenuated surface backscatter is 
the dominant term between consecutive overpasses, and that 
this term can be written as a product of a function of soil 
moisture only 𝛼"#, a function of surface roughness only 𝜎"#.	2, 
and the vegetation attenuation 𝑒)*+,: 

𝜎"#' 	𝑒)*+, = 	𝛼"#	𝜎"#.	2	𝑒)*+,    (2) 

It is noted that this assumption can remain valid even in cases 
in which the surface-volume interaction term dominates the 
observed backscatter. 

Because surface roughness and vegetation properties are 
assumed to remain almost constant over two consecutive 
measurements, the ratio of NRCS values measured at times 
t4 and 𝑡6  can be expressed as: 
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where 𝛼"# is a known function of the surface permittivity and 
incidence angle. In this study, 𝛼"# is estimated from the first-
order scattering amplitude of the small-perturbation model 
(SPM). Given a time series of N measurements, successive 
ratios can be combined into a matrix equation having N-1 
ratios for N unknown 𝛼"# values. To solve this undetermined 
system, ancillary minimum and maximum bounds are 
provided for 𝛼"# over the time series duration. The 𝛼"# 
coefficients are then determined by solving the system using 
a bounded least mean square method, and the obtained  𝛼"# 
are inverted into soil moisture using ancillary soil texture 
information.  

3. ERROR MODEL

The performance of this retrieval algorithm versus in-situ 
measurements has been assessed on specific datasets as 
shown in [11]. Here a more general error model for the 
expected algorithm performance is developed. In this 
development, it is assumed that the minimum bound for 𝛼"# 
is applied in the matrix equation solution in order to simplify 
the formulation. 

The successive ratios of a time series of N measurements (as 
in Eqn (3)) can be combined to show that the 𝛼"# value at 
time t is related to that at an earlier time “zero” through 

𝛼"#$ = 	𝛼"#<
7+,8
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To apply the minimum bound in the time series solution, we 
assume in what follows that time “zero” is labeled as the time 

with the minimum NRCS value, for which it is assumed that 
the minimum bound 𝛼"#<  is applicable. Note that this time 
zero may then occur at any point in the time series, with the 
solution at all other time series points then determined from 
Eqn (5). 

As previously discussed, the 𝛼"# coefficients obtained from 
(5) are then inverted into soil moisture 𝑠?:

𝑠? =	𝑓ABCD2'D(𝛼"#$ )   (6) 

where 𝑓ABCD2'D  is the inverse of the function relating 𝛼"# to 
soil moisture for a specified soil texture. Errors ∆	𝛼"#$ 	in the 
measured value of 𝛼"#$  then map to errors in soil moisture 
∆	𝑠? through 

𝑠? +	∆	𝑠? = 	𝑓ABCD2'D(𝛼"#$ 	+	∆	𝛼"#$ )    (7) 

which for small errors can be expanded as 

𝑠? +	∆	𝑠? = 𝑓ABCD2'DH𝛼"#$ I + 𝑑𝑓ABCD2'D 	H𝛼"#$ I	∆	𝛼"#$    (8) 

so that 
∆	𝑠? = 𝑑𝑓ABCD2'D 	H𝛼"#$ I	∆	𝛼"#$     (9) 

From Eqn (5), 
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in terms of speckle errors in the radar measurements; 
additional potential errors in 𝛼"#<  will be discussed 
subsequently. Eqn (10) now involves the standard deviation 
of the ratio of the NRCS at times t and zero. Modeling the 
NRCS 𝜎"#$  and 𝜎"#<  as uncorrelated Gaussian random 
variables (due to the extensive multi-look integration used to 
create the 200 m NRCS values of interest), the standard 
deviation of the ratio is: 
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where 𝑚$, 𝑠$ , 𝑚< and 𝑠< are the mean and standard deviation 
of the random variables 𝜎"#$ 	and 𝜎"#<  respectively. 

The standard deviation of the NRCS can be expressed as 
function of the number of looks in the multi-look average: 
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so that Eqn (11) becomes: 
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Finally, the error in soil moisture due to speckle contributions 
is  
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Eqn (14) shows that the error obtained depends on the soil 
texture and soil moisture values at time t, the minimum bound 
𝛼"#< ,	as well as the number of looks in the 200 m product. It 

is noted that the term ?8
?=

 in Eqn (14) is equivalent to  
;+,8

;+,=
, so

that equation (14) could be further simplified. However this 
simplification is avoided at this point in order to enable an 
inclusion of additional errors that account for uncertainties in 
the minimum bound applied.  These errors in the minimum 
bound are modeled by describing 𝛼"#<  in Eqn (5) as its mean 
value multiplied by a Gaussian random variable with mean 
equal to 1 and a specified standard deviation. This results in 
additional error contributions in Eqn (14) that are included in 
what follows. 

4. RESULTS

4.1. Results for a single measurement 

Errors were computed for incidence angle 40o, frequency 
1.26 GHz,  𝑚< and 𝛼"#<  corresponding to 1% soil moisture 
and varying truth soil moistures (which determine 𝛼"#$ ).  
The number of looks is defined using 

𝑁\OO]' = 	 Q
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`2AaABN\	bD'O\c$AOB
R
6

 (15) 

in which a 200 m cell size (spatial resolution) is assumed, and 
the original resolution is set to either 5 m (i.e. 𝑁\OO]' =
1600)	or 10 m (𝑁\OO]' = 400). 

The Mironov model [12] is applied for the soil permittivity; 
this model describes the dielectric constant as a function of 
the clay fraction, the soil moisture, and the radar frequency. 
Predicted soil moisture retrieval errors are then presented for 
various clay fractions and soil moisture conditions. 

Figure 1 illustrates predicted speckle induced errors (i.e. 
uncertainty in 𝛼"#<  is neglected) for VV polarized NRCS 
measurements using 400 (left plot) or 1600 (right) looks. As 
expected, the error decreases when the number of looks 

increases. Errors also increase with soil moisture (due to the 
decreased sensitivity of 𝛼"#  to soil moisture for higher soil 
moisture values). Errors also increase for lower clay 
fractions.  In both plots, the speckle-induced errors are 
predicted to remain less than a targeted performance value of 
6% uncertainty in most cases. 

Figure 2 considers the same case as in Figure 1 using 
𝑁\OO]'=1600 but further incorporates uncertainties in the 
minimum bound 𝛼"#<  of 10% (left) and 20 % (right). 
Including these uncertainties further increases errors 
especially for lower clay fractions and higher soil moisture. 
Given that errors in 𝛼"#<  are expected to remain below 
approximately 10%, the results again show that the 
performance target of 6% accuracy can be met in most 
situations.   

5. EXTENSIONS

5.1. Predicting performance over larger regions 

The error model results of Figures 1 and 2 can be extended 
over larger regions by incorporating maps of soil texture and 
applying a climatology of expected soil moisture values. 
Such information has been previously compiled for the Soil 
Moisture Active/Passive (SMAP) mission, and can be used to 
develop a larger scale error simulation. The required 
climatology (initially at 40 km spatial scale) has been 
developed using 6 years of SMAP soil moisture products to 
determine bi-monthly minimum, maximum and average soil 
moisture maps. Errors predicting over large spatial and 
temporal scales based on this information will be presented.  

5.2. Adding vegetation effects 

The proposed error model has neglected vegetation 
contributions; extension to incorporate vegetation effects are 
currently under development. As a first step toward including 
vegetation effects, Eqn (10) can be rewritten as: 

∆	𝛼"#$ = 	Δ	 L𝛼"#< 	
7+,8 h7ijk8

7+,= h7ijk= M = 	𝛼"#< 	Δ	 L	
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Figure 1: Modeled error in retrieved soil moisture as a function of 
soil moisture and clay fraction for 𝑵𝒍𝒐𝒐𝒌𝒔=400 (left) or 1600 (right) 
for incidence angle = 40o and frequency = 1.26 GHz. Uncertainty in 
𝜶𝒑𝒒𝟎  is neglected. 
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Figure 2: Modeled error in retrieved soil moisture as a function of 
soil moisture and clay fraction for 𝑵𝒍𝒐𝒐𝒌𝒔= 1600 including 
uncertainties of 10% (left) and 20% (right) in 𝜶𝒑𝒒𝟎 . 



in which 𝜎CDa$ and 𝜎CDa<  correspond to additive vegetation 
scattering contributions that bias measured NRCS returns. It 
is proposed to describe these quantities as a function of the 
NDVI and terrain class at a given location. The incorporation 
of a model for uncertainties in these quantities is also under 
consideration. Both an NDVI climatology and terrain class 
information are available from the MODIS mission for use in 
these efforts. Results from these studies will also be 
presented. 
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