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ABSTRACT 

L- and S-band observations from NASA’s Passive/Active

L/S band (PALS) sensor from the SMEX02 campaign were

used to estimate soil moisture. The retrieval process is based

on the “alpha approximation” method. This method utilizes a

time-series of normalized radar backscatter measurements as

well as ancillary information to estimate soil moisture over

the Walnut Creek watershed. The resulting retrieved soil

moistures are compared to in-situ soil moisture

measurements at multiple test sites within the watershed. The

calculations show reasonable results for both L- and S-band

and provide further insight into the use of L- and S-bands for

the upcoming NASA/ISRO mission.

Index Terms—Soil moisture, L-band, S-band, SMEX02, 

radar, PALS. 

1. INTRODUCTION

Surface soil moisture has been shown to be a key climatic 

component in the Earth’s hydrological cycle. It plays an 

important role in the terrestrial hydrology to study the water 

cycle [1-6]. Soil moisture also impacts the evapotranspiration 

cycle and has a strong influence over weather patterns [4, 6-

7]. Better knowledge of soil moisture can therefore improve 

our understanding of these relationships and weather 

forecasts. Relationships between infiltration and surface 

water runoff [4] further show that soil moisture impacts flood 

dynamics, so improved soil moisture measurements can lead 

to better flood prediction models and management of water 

resources [8]. Knowledge of soil moisture is also crucial 

under drought conditions in order to support irrigation 

planning and predict potential drought impacts [9]. 

     Given these applications, it is important to develop 

accurate soil moisture remote sensing methods at desirable 

spatial and temporal resolutions over large geographic areas 

[10]. Airborne or spaceborne radar measurements provide 

one approach for remotely sensing soil moisture. While many 

investigations have been conducted using X-, C-, and L-band 

radar backscatter, few references have considered soil 

moisture remote sensing using S-band radar [11]. This paper 

will investigate further the use of S-band for soil moisture 

retrieval through the application of a time-series soil moisture 

retrieval method using L- and S-band radar measurements 

taken from the PALS instrument during the SMEX02 

campaign. The investigation and comparison of L- and S-

band retrievals also provides further insight into the use of 

both frequencies in anticipation of the NASA/ISRO SAR 

mission (NISAR) [12]. 

2. METHODOLOGY

2.1 Retrieval Method 

While many radar soil moisture retrieval algorithms have 

been proposed, these past approaches require the use of 

complicated forward scattering models and ancillary 

knowledge of vegetation properties [14]. To eliminate the 

need for forward scattering models and vegetation data, the 

“alpha approximation” method is used for soil moisture 

retrieval in this paper. A brief review of the method is 

provided below; a detailed explanation can be found in [13], 

and simplified explanations can be found in [10] and [14].  

     In the alpha approximation method, the NRCS from a 

vegetated scene is represented as: 

𝜎𝑝𝑞
𝑡 = 𝜎𝑝𝑞

𝑠 exp(−𝜏) + 𝜎𝑝𝑞
𝑣 + 𝜎𝑝𝑞

𝑠𝑣     (1) 

which is a combination of surface scattering (σpq
s), volume 

scattering (σpq
v), and surface-volume (σpq

sv) interaction terms. 

The method nominally assumes that the surface scattering 

term is dominant, and that its contributions can be expressed 

as a product of independent functions of soil moisture, 

vegetation attenuation, and surface roughness [14]. Note that 

a similar argument can be made for the surface-volume 

interaction term, so that the approach can also retain 

applicable when the “double-bounce” term is dominant. 

     Given a sufficiently short temporal difference between 

radar measurements, it can be assumed that there is minimal 



change in the vegetation and surface roughness for a given 

scene. Therefore, by taking a ratio of consecutive radar 

measurements, the vegetation attenuation and surface 

roughness influences are eliminated. This NRCS ratio can 

then be expressed as: 
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Here the alpha coefficients 𝛼𝑃𝑃 in polarization combination 

PP are known functions obtained from the small perturbation 

method [14-16] and are a function of the soil permittivity and 

incidence angle. NRCS ratios having the form of (2) obtained 

from multiple passes can then be arranged into a matrix 

equation and solved for the alpha coefficients.  The resulting 

alpha coefficients are then mapped into soil moistures 

through a lookup table that relates soil permittivity (and 

therefore 𝛼𝑃𝑃) to soil moisture and soil texture. For this study, 

the Mironov dielectric mixing model [17] is used. 

2.2 Bounding Solutions 

Because the method employs N-1 NRCS ratios obtained from 

a time series of N NRCS measurements in order to retrieve N 

soil moistures, it is necessary to provide additional ancillary 

information to complete the solution. Previous studies have 

provided maximum and minimum 𝛼𝑃𝑃 values over the time 

series for this information. These values in some past studies 

have been obtained from in-situ measurements [11]. For this 

study, maximum and minimum bounds for 𝛼𝑃𝑃 were 

calculated using a texture-based regression equation that was 

derived using in-situ data from all field sites in the campaign. 
These texture-based bounds were then utilized to perform the 

soil moisture retrievals in what follows. 

3. APPLICATION TO SMEX02 DATASET

3.1 SMEX02 Campaign 

Testing was conducted using data from the SMEX02 

campaign, which was conducted in June-July 2002 over 

central Iowa, US. Radar measurements were acquired on June 

25, June 27, July 2, and July 5–8 using the PALS instrument 

[19] over the Walnut Creek watershed. The PALS instrument

was flown on a C130 aircraft with a constant incidence angle

of 45 degrees and provided a spatial resolution of

approximately 330m x 470m [20].

     The watershed contained a total of 33 in-situ field sites 

consisting of both corn and soybean fields. Of these 33 sites, 

30 sites had PALS radar measurements with spatial footprint 

overlap within individual field site bounds. Shallow surface 

(0-6cm range) soil moisture measurements were taken at 

these sites on a total of 12 days during the campaign [21] 

using the techniques described in [22]. For the purposes of 

this study, the theta probe measurements with site-specific 

calibration were used for validating the soil moisture 

retrievals. The spatial bounds of each field site are defined 

using the corner geocoordinates provided by [23] with field 

sites ranging in size from approximately 0.27 – 1.62 km2.  

3.2 Retrievals 

Soil moisture retrievals were conducted over the watershed 

using a 400m x 400m grid to approximate the spatial footprint 

of the PALS instrument. The NRCS time-series included all 

7 dates of radar observations. A non-weighted average NRCS 

for each pixel on a given day in the time-series was calculated 

by averaging radar measurements (in power) having at least 

50% of the observed footprint within the geographic bounds 

of the pixel. The “alpha approximation” method was then 

applied to each pixel having 7 days of radar measurements 

using the texture-based bounds described in Section 2.2. 

Separate retrievals were performed using either HH and VV 

polarizations at either L- or S-bands. 

3.3 Validation using In-Situ observations 

To validate the results, retrieved soil moisture values were 

compared to the in-situ soil moisture measurements for each 

of the 30 previously mentioned field sites. This comparison 

is accomplished by calculating a weighted average of any 

400x400 m grid pixels that overlap each field site on each day 

that has both in-situ measurements and retrieved soil 

moistures (June 25, June 27, and July 5-8). A weighting value 

for a pixel over a field site is calculated by dividing the area 

of overlap between a specific overlapping pixel and a field 

site by the total area of pixels overlapping a field site. This 

value is then multiplied by the soil moisture of that pixel and 

summed with all weighted values overlapping a field site to 

result in a weighted soil moisture average. To ensure that the 

weighted averages are representative of each field site for 

comparison, only sites having 400 x 400 m grid pixel 

coverage of 50% or more of the site area are analyzed which 

results in 150 data points for each frequency and polarization 

combination.  

4. RESULTS

Figure 1 plots retrieved and in-situ soil moisture values for 

the two polarizations and two frequency combinations (LHH 

in the far-left plot, LVV in the left middle plot, SHH in the 

right middle plot, and SVV in the far-right plot). Table 1 

provides a statistical summary of the comparison including 

the root-mean-square error, bias, unbiased root-mean-square 

error, and correlation.  

     The results show an unbiased RMSE of 0.0642 or less as 

well as a correlation of 0.5655 or greater. The smallest 

unbiased RMSE (0.0569) occurs for LVV, and the highest 

(0.0642) for LHH. In general, VV polarization outperforms 

HH for unbiased RMSE as well as correlation for L-band, as 

should be expected given the greater sensitivity of 𝛼𝑉𝑉 to soil



Figure 1. Retrieved vs. in-situ soil moisture measurements using a 7-day time-series and texture-based bounds. Left plots 

represent L-band results, and right plots represent S-band results.  

RMSE Bias UBRMSE Corr. 

LHH 0.0671 0.0195 0.0642 0.5655 

LVV 0.0601 0.0194 0.0569 0.6716 

SHH 0.0634 0.0246 0.0585 0.6475 

SVV 0.0630 0.0253 0.0577 0.5962 

Table 1. Statistics from the Scatter Plots in Figure 1. 

moisture as compared to 𝛼𝐻𝐻. While for S-band, VV 

outperforms HH in unbiased RMSE and HH outperforms VV 

in correlation. When comparing L- and S-bands, LVV shows 

a slightly improved UBRMSE as compared to SVV, while 

SHH in contrast shows a lower UBRMSE than LHH. LVV 

however shows the highest correlation and lowest unbiased 

RMSE between retrieved and in-situ soil moistures. Given 

the relatively small number of observations available from 

the SMEX02 campaign, the results generally indicate that 

both L- and S-band radar backscatter data can provide 

reasonable soil moisture retrievals for the crop conditions 

considered in SMEX02.   

5. CONCLUSIONS

The reported results show reasonable performance for both 

L- and S-band retrievals using both HH and VV polarizations.

These results provide further insight into the use of L- and S-

band radar measurements using the alpha approximation

method. Additionally, the results show good performance

using texture-based information when bounding solutions for

the alpha approximation method and provide further insight

into alternative bounding options for cases in which in-situ

information is not available. The results reported further

motivate the combined use of L- and S-band radar

measurements for use in the upcoming NASA/ISRO NISAR

mission and recommend further investigation into a

combined frequency soil moisture retrieval method.

6. REFERENCES

[1] Entekhabi, D., E. Njoku, P. O'Neill, K. Kellogg, W. Crow, W.
Edelstein, J. Entin, S. Goodman, T. Jackson, J. Johnson, J. Kimball,

J. Piepmeier, R. Koster, K. McDonald, M. Moghaddam, S. Moran,

R. Reichle, J. C. Shi, M. Spencer, S. Thurman, L. Tsang, J. Van Zyl, 

''The Soil Moisture Active and Passive (SMAP) Mission," 

Proceedings of the IEEE, vol. 98, no. 5, 2010.

[2] SMAP Handbook, 2014, document available at:

https://smap.jpl.nasa.gov/system/internal_resources/details/original

/178_SMAP_Handbook_FINAL_1_JULY_2014_Web.pdf.

[1] P.C. Dubois, J.J. van Zyl, “Measuring soil moisture with imaging

radars,” IEEE Transactions on Geoscience and Remote Sensing, vol. 

33, no. 4, pp. 915-926, 1995.

[2] Srivastava PK, Petropoulos GP, Kerr YH (2016b) Satellite Soil
Moisture Retrieval: Techniques and Applications. In: Prashant K

Srivastava, George P Petropoulos, Yann H Kerr (eds) Volume I.

Elsevier Press, pp 440

[3] Srivastava, P.K. Satellite Soil Moisture: Review of Theory and

Applications in Water Resources. Water Resource

Manage 31, 3161–3176 (2017). https://doi.org/10.1007/s11269-

017-1722-6

[4] T. L. Delworth and S. Manabe, “The influence of potential

evaporation on the variabilities of the simulated soil wetness and
climate,’’ J. Climate, vol. 1, no. 5, pp. 523-547, 1988.

[5] A. K. Betts, J. H Ball, A. C. Baljaars, M. J. Miller, and P. Viterbo,

“Coupling between land surface, boundary layer parametrizations
and rainfall on local and regional scales: Lessons from the wet

summer of 1993,” Fifth Con$ Global Change Studies: American

Meteor. SOC. Nashville, TN, Jan. 23-28, 1994

[6] Entekhabi, Dara, Ghassem R. Asrar, Alan K. Betts, Keith J.

Beven, Rafael L. Bras, Christopher J. Duffy, Thomas Dunne, Randal

D. Koster, Dennis P. Lettenmaier, Dennis B. McLaughlin, William

J. Shuttleworth, Martinus T. van Genuchten, Ming-Ying Wei, and
Eric F. Wood. " An Agenda for Land Surface Hydrology Research

and a Call for the Second International Hydrological

Decade". Bulletin of the American Meteorological Society 80.10




