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Abstract 

 

Digital Engineering is a transformative strategy that leverages an integrated model-based approach to improve communication, 

decision making, design understanding, and acquisition efficiency of system development. As modern systems are derived from 

pre-existing systems, harvesting expert knowledge from proven systems in a useful, model-based way will reduce the 

experiential learning and cognition required for new system development, contributing to a Digital Engineering transformation. 

Motivated by performance gains observed during a multi-year, sequential development activity, this survey reviews knowledge, 

architecture, and pattern literature to establish a framework for research of architectural methods for expert knowledge 

identification and description using Model Based System Engineering. The multi-year sequential development activity is offered 

as the experimental system of interest for this research. This work aims to enable a digital engineering strategy that improves 

concept phase decision making, accelerates knowledge acquisition from lessons learned repositories, and eases the burden of 

generational knowledge loss. 
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1. Introduction 

This study establishes a conceptual framework for a digital engineering enabling methodology aimed at 

accelerating experiential learning and improving concept development phase decision making by expressing and 

describing expert knowledge from an existing system. Digital engineering is strategy for improving acquisition 
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integrity (1) by capitalizing on recent trends in globalization (2). Despite accelerating growth in technology and 

information transfer (2), the development of large, complex systems remains a skill honed by experience (3) (4) (5). 

By depending solely on experience, organizations face a costly burden preparing the workforce, and this burden is 

increased when the business supplies a dynamic marketplace or suffers generational knowledge loss. This study 

establishes the groundwork for research that aims to reduce the organizational learning burden and improve concept 

phase decision making by making expert knowledge embedded in proven systems accessible to the modern engineer.  

The concept development phase of the project lifecycle is a critical stage for long term project performance. During 

the concept development phase, stakeholder requirements are translated into design solutions (4) and errors in this 

process represent 86% of reported cost impacts (6) and are unrecoverable with more than 95% confidence (7). Thus, 

concept phase decision making is paramount to project success. Interestingly, architectural theory (8) (9) suggests that 

systems are derived from debate on existing systems. Therefore, a methodology suitable for harvesting foundational 

decisions made in the formulation of existing systems may offer utility in framing and informing decisions during 

new system development activities. 

The architectural theory of patterns offers such a methodology (10). Demonstrated in the field of software 

engineering (11), the architectural theory has been validated in the systems engineering domain as a means of 

describing expert knowledge (12). Operating as a heuristic, a pattern describes an observed solution in terms of the 

balance of relationships necessary for achieving the solution (10). As these relationships may not exist wholly within 

the system of interest, a complete pattern must include relationships to other patterns (10). A reference architecture 

has been proposed as one such description by expressing relationships between technical and business architectural 

descriptions in a customer context (13). In the context of a reference architecture, a technical architecture describes 

the solution to a problem in technology using design patterns (13). A design pattern represents the expert knowledge 

of design and is the subject of this study. 

This study is motivated by the demonstrated performance of a design team responsible for the sequential, multi-

year development of three novel energy storage solutions. Differing in shape, dimension, and energy density, the three 

designs were approached in order of increasing complexity and mission criticality. Each design adhered to a common 

approach, enabling previously proven solutions to be refined in increasingly complex solutions. The observed 

reductions in budget and schedule need and gains in design performance suggest the development of something more 

than material and procedural knowledge reuse. This work aims to identify and describe the problem-solving heuristics 

developed over the course of the sequential development activity and express that information in a reusable and 

archivable way. The architectural theory of patterns and Model Based Systems Engineering are proposed as enabling 

techniques for achieving this objective. 

The goal of this writing is to establish a conceptual basis for research in architectural methods as a means of 

identifying and describing expert knowledge from existing systems for capture in model based tools. In this paper, the 

concepts of knowledge, architecture, and architectural theory are defined, and a framework and methodology for 

applying architectural theory proposed. The system of interest is introduced, and physical and anecdotal evidence are 

provided to communicate the development of expert knowledge and highlight the utility of existing knowledge transfer 

methodologies. This work concludes with research questions that guide further research.  

2. Concept and Term Development, A Literature Review 

2.1. Knowledge and the Role of Knowledge Management Systems 

Human learning, the acquisition of knowledge, occurs in three domains: cognitive, affective, and psychomotor (14) 

(15). The cognitive domain incorporates knowledge recall and recognition, and intellectual ability and skill 

development (16) and is critically important in knowledge management (17). Rooted in Greek philosophy (18) (19) 

(20), the modern study of knowledge management is derived from the writings of Polanyi (17) (21) (22) and the more 

recent work of Nonaka (19), and Nonaka and Takeuchi (17) (20). Polanyi postulated that knowledge includes a hidden, 

or tacit, component that cannot be easily communicated (23) (21). Nonaka surmised that tacit information includes 

both cognitive and technical elements, and when combined with explicit knowledge, represents the entirety of 
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knowledge contained within an organization (18) (19). Applying this definition in a study of innovation organizations 

(20) laid the groundwork for modern organizational knowledge management systems (18) (23). Coincident with 

Nonaka’s work, research in education and cognitive psychology acknowledged that knowledge exists at both a tacit 

and explicit level (24) and that knowledge is the combination of domain (declarative, procedural, and conditional (14) 

(25)) and specific (cognitive awareness and strategy) knowledge (24) (26) (27). Although the two definitions differ in 

rigor, both agree that knowledge contains both a tacit and an explicit dimension.   

The concept of tacit knowledge remains a topic of debate in the field of knowledge management (17) (23). Tacit 

knowledge is expert knowledge that is known but difficult to describe by specification or standard (28) (29). According 

to Grant (17), Polanyi defined knowledge as a continuum ranging from explicit to ineffable (tacit). Adhering to 

Polanyi’s original work, Kingston (23) proposes four categories for characterizing tacit knowledge: explicit 

information shared in writing or figure, symbolic experiential knowledge shared between experts, non-symbolic 

experiential knowledge shared by demonstration, and true tacit knowledge unknowingly possessed by the owner. 

Kingston’s description of expert knowledge echoes that of studies in cognitive psychology by incorporating both 

learned ‘best practice’ knowledge and ‘wisdom’ or strategic meta-knowledge (23) (24) and suggests three principle 

formats describe symbolic experiential knowledge: heuristics, classification hierarchies, and pattern recognition (23). 

Heuristics are “rule of thumb” simplifications representing mental shortcuts (23) (30) which are used to make 

decisions when the problem feels familiar enough that no additional data or information is required (30). Classification 

hierarchies describe how the problem solver organizes the information presented within the problem statement (23). 

Cognitive psychology research has shown that “perceptual chunking” of information presented in a problem statement 

is organized according to literal aspects (declarative knowledge) by the novice and with fundamental principles 

(procedural knowledge with application) by the expert (23) (31) (32). Pattern recognition refers to the identification 

and recall of perceptual chunks of information based on familiarity with the relationships between elements within 

the perceived configuration (23) (32). For example, a short term memory experiment showed that expert chess players 

were able to recreate a layout, or configuration, of chess pieces, or elements, on a game board after brief observation 

when the chess pieces were arranged according to the rules of origin and movement, or relationships, established for 

the game of chess (32) (33). Based on these findings, expert knowledge is defined as tacit knowledge that represents 

best practices and strategic metaknowledge that enables application of fundamental principles and is deducible by 

observation when the observer is familiar with the rules and relationships operating within a system. 

2.2. Architecture and the Role of Architectural Theory and Ontologies 

Architecture is an abstract concept that is difficult to describe. The dictionary provides a five-part definition 

including: the art or science of building, the formation or construction resulting from or as if from a conscious act, a 

product, a method or style of building, and the way a system is organized (28). Analyzing this definition leaves the 

reader wondering if architecture is a system of thought, the act of conscious construction, or a structural diagram. 

Historical writings provide additional insight by defining architectural theory as “…any written system of architecture, 

whether comprehensive or partial, that is based on aesthetic categories.” (8) Aesthetic pertains to a sense of beauty, 

or concerns emotion or sensation as compared to intellectuality (28). Aesthetic categories include the abstract notions 

of proportion, symmetry, balance, rhythm, and unity (34). Therefore, architecture is a study of aesthetics, and 

architectural theory is a system of categorizing observed aesthetics. 

Applying the notion of aesthetics to system design reinforces Griffin’s (5) call for elegant system design and affirms 

the balance of art and science described by Ryschkewitsch et.al (3). However, as systems engineering is concerned 

with the logical aspects of a system, a practical definition is required. Logical pertains to a study of logic, or the 

principles governing correct and reliable inference such as the relationship between facts (28). The NASA Systems 

Engineering handbook describes several categories of logical aesthetic including functional, behavioral, and temporal 

expressions of the observed system (4). The categorical allocation of system aesthetics aligns with the definition of 

architectural theory and the example provides a practical example of logical architectural expressions for a system.  

However, the relationship between architecture and solution remains unclear. While the NASA handbook describes 

how the user progresses from architectural expression to a solution (4), architectural theory provides a more practical 
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example in a discussion of industry and architecture. In translated excerpts from writings on Industriebau, Gropius 

(8) noted that improvements in product quality are no longer sufficient to achieve market success, instead aesthetic 

values must be considered from the outset resulting in a technically excellent product permeated with intellectual 

content, with form, to secure a presence among a mass of similar products. In this writing, Gropius defined the 

relationship between technology, design, and architecture given the equivalence between technology and product, 

design and form rich with intellectual content, and architecture and aesthetic value. This relationship between 

architecture, design, and solution is preserved in architectural ontologies such as Enterprise Architecture (35), 

Department of Defense Architectural Framework (DoDAF) (36), NATO Architectural Framework (NAF) (37), and 

ISO 42010 (38). Although differing in name and convention, each ontology provides a conceptual framework for 

describing a system architecture. For example, Enterprise Architecture uses interrogatives and perspectives to provide 

a comprehensive view of the system (39). Interrogatives represent the fundamentals of communication, namely What, 

How, When, Who, Where, and Why (39). Perspectives represent the reification of a system from the abstract to the 

concrete and are organized according to business stakeholder (40). It is important to note that the different perspectives 

in this example do not refine adjacent perspectives with additional detail as each stakeholder holds a complete view 

of the system (39). The Enterprise Architecture ontology considers the business perspectives of the enterprise 

architect, designer, and technician and therefore enables the sought-after relationship between system, design, and 

solution. Additionally, the What interrogative represents a logical view of the system, enabling a logical perspective 

for each stakeholder, thereby satisfying the architectural framework objectives for this study.   

2.3. The Architectural Theory of Patterns 

In his seminal work, Alexander used diagrams to provide an abstract view of physical relationships that resolve 

small systems of interacting and conflicting forces that are independent of all other forces and all other possible 

diagrams (41) (42). Retrospectively defined as a Pattern (42), the contemporary definition of a pattern is a solution to 

a problem in a context (10) (12) (42). Alexander applied this concept in the holistic description of a complex system 

by relating individual patterns observed within a system to form of network diagram he called a Pattern Language 

(10). In so doing, a framework for deducing and describing system architecture was developed (12).   

The notion of patterns has deep roots in studies of human problem solving. Studies on cognition use the term pattern 

to describe a type of heuristic, an efficient mental process, or shortcut, that reduces complex problem solving to a 

simpler judgmental operation (43) (44) (45) (28) by ignoring part of the information (46). The study of heuristics 

began a shift from mathematically rigorous to the general with the work of Rene Descartes in the 17th century and 

Bernard Bolzano in the 18th century to reduce the rigor of considering all conceivable solutions to a problem (45). 

Gaining acclaim in mathematics, heuristics were applied in the study of economics and decision making (45). 

Psychologists adopted heuristics to describe human mental processes of learning (47) and perception (48), and were 

the first to consider certain regularities in the environment, such as proximity between objects, as part of the 

observation and problem solving process (45). Acquiring and applying patterns has formed the basis of an educational 

taxonomy (14) and has been attributed to engineering problem solving (49).  

Alexander applied the work of cognitive psychologists to develop Pattern Language as a means of describing the 

perceived organization and environmental adaptation of human dwellings, villages, towns, and cities(12) (50) (51) 

(52). Pattern Language combines structural hierarchy with Gestalt Theory (53) to describe the invisible parts of a 

system (54) by expressing design in terms of relationships and rules to transform those relationships (50) (51) (52). 

Bauer (53) illustrates this point through an example of a kiosk located on a street corner by noting that Pattern 

Language does not structurally decompose a city into discrete elements for replacement or improvement, but instead 

attempts to differentiate the integrated urban street corner from other city complexes based on features invisible in 

kiosk design such as pedestrians waiting to cross the roadway, bus schedules, magazine subscriptions, and traffic light 

phases, all of which make the newspaper kiosk a functional element of the city (53) (55) (56). In so doing, Pattern 

Language provides a practical means of describing the “wholeness” of an observed system. From the perspective of a 

systems engineer observing an engineered system, wholeness represents the application of expert knowledge.  
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Although Alexander’s Pattern Language (10) enables the identification and acquisition of expert knowledge from 

an observed system, the review of knowledge literature identified two critical aspects that must be considered when 

applying architectural theory. First, barring expert knowledge, the user of a procedure or method is likely to pursue 

literal aspects of the methodology, as has been observed with the proliferation of pattern books in software and systems 

engineering. Therefore, any effort aimed at methodizing the application of architectural theory is counterproductive. 

Secondly, the success of the short-term memory experiment depended on pre-existing familiarity with the origin and 

rules of motion for the chess pieces, suggesting the success of an architectural theory methodology may be dependent 

on pre-existing expert knowledge. Therefore, for a pattern to be valid, it must be authored or reviewed and approved 

by someone possessing relevant expert knowledge. 

2.4. Adoption and Use in Engineering Domains, Establishing Precedent 

A review of available literature suggests engineering communities have not yet realized the complete benefit of the 

architectural theory of patterns. For example, Gamma et.al (11) introduced Alexander’s Pattern Language to software 

engineering and the community embraced the notion as a means of improving code reusability and reliability, 

documenting and communicating efficient program solutions, and improving programming productivity (60) (61) 

(62). In so doing, a pattern was understood to be an important and reoccurring system construct, and pattern language 

as the structure guiding pattern application (52). However, it has been noted that adoption has fallen short of 

architectural theory as the popular pattern texts are merely collections of isolated patterns (52). Using the development 

of the Macintosh computer as exemplar text, Kerth (52) postulates the utility of architectural theory in the management 

of disperse project teams and recommends focus areas for improving the realization of architectural theory including 

encouraging result evaluation and feedback, expanding artifactual use to include description of the guiding 

philosophy, and enhancing investigative interviewing skills. Coplien (51) echoes these recommendations when 

reiterating that patterns and architecture are linked, and that patterns transcend the definition of objects and logical 

architecture to include such issues as sociology and psychology that exist far from the tangible physical structure of a 

system. In a writing on lean systems architecture, Coplien (63) refines the role of architectural theory in the software 

domain to a logical expression of system functionality and cautions the reader that imposing structure beyond abstract 

base class slows productivity and creates rework in software development. In the described writings by Coplien (51) 

and Kerth (52), architectural theory is credited with providing benefit beyond object definition, however both authors 

suggest the concept requires renewed promulgation if these benefits are to be realized.  

The systems engineering community is at risk of following the software community to a similar end. Introduced as 

a system architecture methodology, emerging modeling technologies were seen as a potential accelerant for system 

architectural methods (12). Unfortunately, the methodology itself appears to be in question. For example, the 

terminology has been used in both abstract and artifactual descriptions ranging from a metamodel for a generic system 

(64) to the description of objects (65) including reoccurring blocks of written text (66) (67). However, the introduction 

of Reference Architecture offers the community a renewed focus on theoretical principles. A Reference Architecture 

identifies design patterns as the foundation of a technical architecture description and relates this description to the 

business perspectives of the enterprise (mission, vision, strategy) in a customer context (13). However, no work has 

been found illustrating the implementation of design patterns in developing a technical architecture description.  

2.5. Implementing Design Patterns, A Methodology 

A fundamental tenant of Pattern Language is that patterns are mined, not created (12) (57). Pattern mining is the 

process of identifying expert knowledge used in problem solving. Leitner [11] and Iba [12] proposed frameworks for 

the pattern-mining process. Both use a three-step process of candidate identification, candidate consolidation and 

refinement, and pattern documentation. The principal difference between the two methods is pre-existing knowledge 

of the system. Iba’s methodology depends on a conversational interview process (29) while Leitner’s framework 

requires prerequisite knowledge of the system (58). The interview method assumes the interviewer has no prior 

knowledge of the solution and must deduce problem solving logic through a series of conversational interviews (59). 
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Conversely, Leitner’s pre-requisite knowledge methodology assumes pattern mining is performed by the solution 

designer (58). Each framework is dependent on expert knowledge, but neither describes the refinement and 

consolidation process. 

Alexander provides pattern mining guidance beginning with observation to identify a feature worth abstracting, 

identifying, and refining interacting forces, and describing the interacting forces in a context that limits relevance of 

the observation (10). Acknowledging that patterns are without scale (10), feature identification guidance is left to the 

pattern miner. Once identified, the observation is refined by functional assessment (10). The refining process translates 

observation into a pattern that describes a dense system of internal forces having only a weak external interaction (10) 

(42). The pattern is not complete until the context is defined. The context serves to limit applicability of the pattern to 

instances where the interacting forces exist, and the solution maintains the observed force balance (10). Alexander 

provides an example of a Danish home that appears simultaneously “spacious” and “cozy” because the common room 

has alcoves on either side large enough to hold one to two family members, allowing members to partake in separate 

hobbies without cluttering the common area nor isolating themselves from one another (10). This example translates 

a general observation into a pattern refined by functional assessment, defines the interacting forces balanced by the 

pattern, and provides the context where the solution remains relevant. The process of pattern mining refines 

observation by functional assessment to describe a system of dense internal and weak external force interaction within 

a limiting context. 

Adopting communities may be tempted to script the process of creating patterns. However, Alexander (42) deeply 

opposes this, suggesting “…methods result in the creation of diagrams, not on the diagrams themselves…”. 

Interestingly, the software community is one such example of scripting pattern expression. Doing so has enabled code 

reuse (11) and system design and inspection methodologies (68), but a focus on object and procedure has limited the 

architectural benefit (51) (52) (69). Therefore, works on pattern use should refrain from adopting a procedural focus 

and instead rely on an existing methodology.  

2.6. Synopsis and Research Hypothesis 

Systems Engineering is the art and science of developing an operable system that meets requirements within 

imposed constraints, and as a discipline, is a core competency in technical organizations (3). Responsible for 

translating stakeholder need to an operable system, the systems engineering discipline has been held accountable for 

a lack of elegance in design (5) and costly rework caused by incorrect design decisions made during the concept 

development phase (6). The community has responded by developing experiential training programs to accelerate the 

growth of expert knowledge (3) and producing comprehensive texts for guiding systems development (4). However, 

the individual focus of workforce development programs, the 5-fold cost impact of concept phase decision error (6), 

and the observation that cost overruns exceeding 15% at preliminary design complete are unrecoverable (7) warrant 

additional corrections.  

Based on the observation of operable systems, architectural theory is a system of writing that categorizes the 

aesthetics of a system (8), including the logical arguments of interest to systems engineering including the functional, 

temporal, and behavioral expressions of a system (4) (8). The architectural theory of patterns is one such theory. A 

pattern describes the observable aesthetics of a system based on the functional assessment of forces balanced by the 

refined solution within a context where the forces exist, and the force balance is preserved (41). Documented as an 

object-based diagram (10) (12), the force balances (solutions) are shown as objects, and relationships between objects 

shown as lines (29) (58). By structuring the diagram according to perspectives of the architectural framework, a 

hierarchical network diagram can be produced. The object-based pattern is suited for capture in an object-oriented 

modeling tool such as SysML (70), a Model Based Systems Engineering language. Therefore, by demonstrating the 

utility of architectural theory in harvesting expert knowledge from existing systems and communicating this 

knowledge in an object-oriented system modeling language, the Systems Engineering domain gains the ability of 

describing and capturing expert knowledge from systems with demonstrated operability and performance. By 

archiving, sharing, and accessing this information repository during new development activities, future system 
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engineers will incorporate the combined benefit of modern technology and historically proven design decisions, 

thereby reducing costly rework due to system concept phase error, and implementing the digital engineering strategy.  

3. A Knowledge Development Experiment 

The development of three energy storage devices represents the system of interest for a study of expert knowledge 

using architectural principles. Each of the three devices uses a commercial Lithium Ion technology to convert electrical 

to chemical energy for storage and use as part of NASA’s human spaceflight program. Designed to accommodate 

different energy, mass, and volume constraints, the three batteries use a common electrochemical cell and cell 

packaging schema to enable operation over the life of the powered system. Derived from a heritage approach to battery 

design (71), the three devices incorporate novel advancements that prevent single cell thermal runaway from 

propagating to other cells in the design or the release of flame or spark to the external system. Thermal runaway occurs 

when an internal short circuit results in rapid heat accumulation due to uncontrolled discharge of stored energy 

resulting in the thermolytic decomposition of cell construction materials and the generation of both cell body heat and 

combustion products, or ejecta, released to the internal environment of the battery (72) (73). With no prior experience 

in mitigating thermal runaway, each battery development was performed sequentially using a design-build-test process 

to enable incremental knowledge development and procedure and material reuse. Each of the three batteries are 

operational in low earth orbit. 

Adapting the heritage design (71) to accommodate a single cell catastrophic failure event required mechanistic 

discovery as field failure rarely allows diagnostic study (74). Beginning with the development of a reliable failure 

initiation method and a rudimentary understanding of the failure scenario, a small group of government and 

commercial experts used an iterative and recursive design, build, and test approach to develop a functional prototype 

(75). Once the prototype was seen to perform successfully, the design was refined to ensure specification and standard 

compliance before validation and verification testing. The battery and project performance metrics of Fig. 1 indicate 

knowledge generation in the form of design improvement (adjacent cell temperature reduction) and work effort (cost 

and schedule reductions) for increasingly complex battery design (increasing energy density). Although each battery 

required a unique approach to preventing failure propagation due to differences in mass, volume, and energy 

requirements, the sequential nature of the development activity enabled continual refinement and adaptation of 

geometry, materials, and energy management methods to deliver increasingly energy dense and higher performance 

batteries at increasing lower development cost and schedule. 

 
Fig. 1. Performance Trends over Three Sequential Development Activities 
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Lessons learned during the development activity have been described as guidelines or rules for achieving similar 

performance in multicell, lithium-ion batteries (76) (77). Sharing the guidelines with two partner organizations of 

differing design experience provided a practical opportunity for assessing the effectiveness of rule-based knowledge 

transfer. While one organization had pioneered the use of commercial lithium ion in multicell aerospace batteries, the 

other had no prior experience in battery design but a rich history in spacecraft design. With access to the same written 

materials and personnel, the two organizations independently developed an energy storage solution. The organization 

experienced in battery design delivered a functional device that achieved the failure propagation prevention with little 

to no rework, while the organization with less experience required an additional design cycle to correct issues not 

related to the failure propagation prevention guidelines. Although the evidence is anecdotal, the result highlights a 

potential weakness of rule-based knowledge capture and transfer systems. Without a comprehensive description or 

experiential knowledge-based context, rule-based knowledge transfer is incomplete. The goal of this work is to 

demonstrate and validate a knowledge harvesting and description technique that does not depend on physical 

description to enable a knowledge-based interpretation of rules, guidelines, and lessons learned.  

4. A Framework for Continued Research 

This writing provides a conceptual description of expert knowledge, architecture, and architectural theory; explores 

the precedence of adopting architectural theory in an engineering domain; and, introduces a practical knowledge 

generation experiment. The literature explored in this work exposed both a great need for describing expert knowledge, 

and a notable trap for the application of the architectural theory of patterns in an engineering domain. Motivated by a 

desire for legacy planning and a goal of accelerating knowledge transfer in a learning organization, continued research 

in expressing expert knowledge must abide by theoretical principles if the postulated benefits are to be realized. 

Furthermore, as exemplar descriptions of compliant knowledge capture exercises were not found, so to documentation 

methods for object-oriented modeling of compliant expressions were not identified. To avoid the physical expression 

bias of preceding domain adoption, enable the recommended (4) (78) but often overlooked (79) logical expression, 

and enable both archival and reuse of knowledge expressions rich in contextual description, new methods will be 

required. The following questions are postulated as a framework for continued research in expressing expert 

knowledge with architectural theory:   

 

• How are regions of dense interacting forces described from physical composition (engineering drawing)? 

• How does the pattern miner ensure the pattern is useful without the benefit of expert knowledge? 

• Is the pattern inclusive of each device of the experimental system even though external constraints may differ? 

• Does the Enterprise Architecture provide a suitable framework for the pattern mining process? 

• Is the description extensible to archival techniques such as a pattern library or a Reference Architecture? 

• Does the pattern contain metadata suitable for sorting or searching in a pattern library? 

• How can the pattern be used to advance knowledge / inform future decision? 

5. Conclusions 

Inspired by observed performance gains in battery and team performance during the development of an increasingly 

complex novel energy storage system design, this work explores available literature in the areas of knowledge, 

architecture, and architectural theory to define concepts, identify the role of an architectural framework, and identify 

an expert knowledge expression methodology. The literature review identified the role of design patterns in technical 

architecture, but did identify practical or demonstrative examples of adoption in the systems engineering domain nor 

identify exemplar documentation methodologies. A framework for continued research aimed at filling the identified 

void is provided in the form of several research questions.  
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