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Abstract88

The ocean plays a central role in modulating the Earth’s carbon cycle. Monitoring
how the ocean carbon cycle is changing is fundamental to managing climate
change. Satellite remote sensing is currently our best tool for viewing the ocean
surface globally and systematically, at high spatial and temporal resolutions, and
the past few decades have seen an exponential growth in studies utilising satellite
data for ocean carbon research. Satellite-based observations must be combined
with in-situ observations and models, to obtain a comprehensive view of ocean
carbon pools and fluxes. To help prioritise future research in this area, a workshop
was organised that assembled leading experts working on the topic, from around
the world, including remote-sensing scientists, field scientists and modellers,
with the goal to articulate a collective view of the current status of ocean carbon
research, identify gaps in knowledge, and formulate a scientific roadmap for the
next decade, with an emphasis on evaluating where satellite remote sensing may
contribute. A total of 449 scientists and stakeholders participated (with balanced
gender representation), from North and South America, Europe, Asia, Africa,
and Oceania. Sessions targeted both inorganic and organic pools of carbon in the
ocean, in both dissolved and particulate form, as well as major fluxes of carbon
between reservoirs (e.g., primary production) and at interfaces (e.g., air-sea and
land-ocean). Extreme events, blue carbon and carbon budgeting were also key top-
ics discussed. Emerging priorities identified include: expanding the networks and
quality of in-situ observations; improved satellite retrievals; improved uncertainty
quantification; improved understanding of vertical distributions; integration with
models; improved techniques to bridge spatial and temporal scales of the different
data sources; and improved fundamental understanding of the ocean carbon cycle,
and of the interactions among pools of carbon and light. We also report on priori-
ties for the specific pools and fluxes studied, and highlight issues and concerns
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that arose during discussions, such as the need to consider the environmental
impact of satellites or space activities; the role satellites can play in monitoring
ocean carbon dioxide removal approaches; economic valuation of the satellite
based information; to consider how satellites can contribute to monitoring cycles
of other important climatically-relevant compounds and elements; to promote
diversity and inclusivity in ocean carbon research; to bring together communities
working on different aspects of planetary carbon; to follow an open science ap-
proach; to explore new and innovative ways to remotely monitor ocean carbon;
and to harness quantum computing. Overall, this paper provides a comprehensive
scientific roadmap for the next decade on how satellite remote sensing could
help monitor the ocean carbon cycle, and its links to the other domains, such as
terrestrial and atmosphere.
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1. Introduction157

The element carbon plays a fundamental role in life on Earth. Owing to its158

ability to bond with other atoms, carbon allows for variability in the configuration159

and function of biomolecules such as deoxyribonucleic acid (DNA) and ribonu-160

cleic acid (RNA) that control the growth and replication of organisms. Carbon is161

constantly flowing through every sphere on the planet, the geosphere, atmosphere,162

biosphere, cryosphere, and hydrosphere, in liquid, solid or gaseous form. This163

flow of carbon is referred to as the Earth’s carbon cycle. It comprises of diverse164

chemical species, organic and inorganic, and many processes responsible for165

transformations and flow of carbon among the different reservoirs. Although166

the total amount of carbon on Earth is relatively constant over geological time,167

the carbon content of the component spheres and reservoirs can change, with168

profound consequences for the climate of the planet. Since the establishment169

of the industrial revolution at the start of the 19th century, humans have been170

increasing the carbon content of the atmosphere through the burning of fossil171

fuels and land use changes, trapping outgoing long-wave radiation in the lower172

atmosphere and increasing the temperature of the planet.173

This anthropogenic increase in atmospheric carbon (in the gaseous form of174

CO2) has three principal fates: it can remain in the atmosphere, be absorbed175

by the ocean, or be absorbed by vegetation on land. Estimates for the year176

2020 suggest that just under half of the anthropogenic CO2 emissions currently177

released (10.2±0.8 Gt C yr−1) remain in the atmosphere (5.0±0.2 Gt C yr−1), with178

just over a quarter being absorbed by the land (2.9±1.0 Gt C yr−1) and by the179

ocean (3.0±0.4 Gt C yr−1) (Hauck et al., 2020; Friedlingstein et al., 2022). Our180

ocean therefore plays a major role in regulating climate change. Understanding181

what controls the trends and variability in the ocean carbon sink is consequently a182

major question in Earth Science. Recent work from the Global Carbon project183

suggests estimates of this sink from models (by which we mean to be 3-D,184

prognostic, process-based models) are not in good agreement with observational-185

based evidence (Friedlingstein et al., 2022). Never has it been so urgent to improve186

our understanding of the ocean carbon cycle.187
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Monitoring the ocean carbon cycle is key to improved understanding. His-188

torically, ocean carbon cycle reservoirs and fluxes were monitored using in-situ189

methods, collecting data from ship-based platforms (dedicated research cruises190

and ships of opportunity), moorings and time-series stations (Karl and Winn,191

1991; Raitsos et al., 2014; Bakker et al., 2016; Olsen et al., 2016). Since the192

1970’s satellite observations have been used (Gordon et al., 1980; Shutler et al.,193

2019; Brewin et al., 2021) and recent years have seen the expansion of ocean194

robotic platforms for monitoring ocean carbon cycles (Williams et al., 2015, 2017;195

Gray et al., 2018; Chai et al., 2020; Claustre et al., 2020, 2021), both aiding the ex-196

trapolation of local in-situ measurements to global scale. Each of these platforms197

have advantages and disadvantages, and it is commonly accepted that an approach198

integrating data from all platforms is required. There is also a need to use coupled199

physical and biogeochemical modelling, with the in-situ and satellite data, to200

estimate the pools and fluxes of carbon that are difficult to measure otherwise, at201

the required temporal and spatial scales.202

Satellites play a major role in our global carbon monitoring system. They are203

the only platforms capable of viewing our entire surface ocean and the air-sea204

boundary layer synoptically, at high temporal resolution. Consequently, the use205

of satellites in ocean carbon research has been expanding exponentially over the206

past 50 years (Figure 1a). However, satellite instrumentation can only view the207

surface of the ocean (the actual depth the signal represents varies with wavelength208

and water composition), are constrained to operate in certain conditions (e.g.,209

passive visible systems are limited to cloud-free conditions and low to moderate210

sun-zenith angles) and at certain spatial and temporal scales, and are limited to211

collecting information that can be contained in electromagnetic radiation. To212

make full use of satellite observations for ocean carbon monitoring the remote-213

sensing community needs to work closely with in-situ data experts, physical and214

biogeochemical modellers, Earth system scientists, climate scientists and marine215

policy experts.216

With this in mind, the European Space Agency (ESA) with support from217

the US National Aeronautics and Space Administration (NASA), organised a218
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virtual workshop called "Ocean Carbon from Space" in February 2022, building219

on a successful workshop organised in 2016 (Colour and Light in the ocean from220

Earth Observation; Sathyendranath et al., 2017a; Martinez-Vicente et al., 2020),221

and findings from a wide range of international initiatives (e.g., NASA EXport222

Processes in the Ocean from Remote Sensing (EXPORTS), ESA Ocean Science223

Cluster, ESA Climate Change Initiative (CCI), various European Commission224

Carbon Initiatives (e.g. Copernicus, such as the Ocean Colour Thematic Assembly225

Center (OC TAC) and the Multi Observations Thematic Assembly Center (MOB226

TAC), the Surface Ocean Lower Atmosphere Study (SOLAS), the Blue Carbon227

Initiative, the Global Carbon Project, International Carbon Observing System1).228

The workshop was also part of the Committee on Earth Observation Satellites229

(CEOS) workplan on Aquatic Carbon (CEOS, 2021). The theme of the workshop230

was on ocean carbon, its pools and fluxes, its variability in space and time, and the231

understanding of its processes and interactions with the Earth system. The goal232

of the workshop was to bring leading experts together, including remote-sensing233

scientists, field scientists and modellers, to describe the current status of the field,234

and identify gaps in knowledge and priorities for research. In this paper, we235

synthesize and consolidate these discussions and produce a scientific roadmap236

for the next decade, with an emphasis on evaluating where and how satellite237

remote sensing can contribute to the monitoring of the ocean carbon cycle. With a238

growing human population that is dependent on the blue economy sectors (OECD,239

2016), as well as climate, we envisage this roadmap will help guide future efforts240

to monitor ocean carbon from space.241

1see https://oceanexports.org/; https://eo4society.esa.int/communities/scientists/esa-
ocean-science-cluster/; https://climate.esa.int/en/; https://www.copernicus.eu/en
https://www.thebluecarboninitiative.org/; https://www.globalcarbonproject.org/; https://www.icos-
cp.eu/; https://www.solas-int.org/about/solas.html
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2. Workshop details and approach to capture collective view of the status of242

the field243

2.1. Ocean Carbon from Space Workshop244

The "Ocean Carbon from Space Workshop" (https://oceancarbonfromspace2022.245

esa.int/) was organised by a committee of 15 international scientists, led by ESA246

within the framework of the Biological Pump and Carbon Exchange Processes247

(BICEP) project (https://bicep-project.org) with support from NASA. In addition248

to this organising committee, a scientific committee of 31 international experts on249

the topic of ocean carbon were assembled, who helped structure the sessions and250

review abstracts. These committees initially proposed a series of sessions, target-251

ing 16 themes, covering: the pools of carbon in the ocean (including particulate252

organic carbon, phytoplankton carbon, particulate inorganic carbon, dissolved253

organic carbon, and carbon chemistry, including dissolved inorganic carbon);254

the main processes (including marine primary production, export production,255

air-sea exchanges, and land-sea exchanges); and crosscutting themes (including256

the underwater light field, uncertainty estimates, freshwater carbon, blue carbon,257

extreme events, tipping points and impacts on carbon, climate variability and258

change, and the ocean carbon budget).259

The workshop was widely advertised, through a variety of means, including:260

email distribution lists; through international bodies like the International Ocean261

Colour Coordinating Group (IOCCG) and SOLAS networks; space agencies;262

and through social media platforms. Scientists and stakeholders working in the263

field of ocean carbon were invited to submit abstracts to the 16 themes and to264

participate in the workshop. The organising committee also identified key experts265

in the field who were invited to give keynote presentations.266

A total of 98 abstracts were submitted to the workshop, and based on the267

topics of these abstracts, the workshop was organised into six sessions combining268

various themes as needed, and covering:269

• Primary Production (PP),270

• Particulate Organic Carbon (POC),271
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• Phytoplankton Carbon (C-phyto),272

• Dissolved Organic Carbon (DOC),273

• Inorganic Carbon and fluxes at the ocean interface (IC),274

• Cross-cutting themes with three sessions;275

– Blue Carbon (BC),276

– Extreme Events (EEs),277

– Carbon Budget Closure (CBC).278

The organisation committee identified chairs for each session, and abstracts were279

reviewed by the organisation and scientific committees and assigned to oral or280

e-poster presentations. E-poster presentations were delivered through breakout281

rooms to help promote discussions. Each session included keynote speakers, oral282

presentations and importantly, time for discussing gaps in knowledge, priorities,283

and challenges. There were four poster sessions covering the six themes of the284

workshop. Participants were encouraged to upload their presentations or e-poster285

(under the form of a 1-3 slides presentation) prior to the conference start to286

facilitate knowledge exchange and prepare for workshop discussions.287

The workshop took place from 14th to 18th February 2022, following the288

international day of women and girls in science. Due to COVID restrictions,289

an online format was preferred (using the webex video conferencing software;290

https://www.webex.com), which resulted in a flexible schedule and programme291

designed to accommodate participants from different regions and time zones,292

and flexible working (e.g., child care responsibilities). A total of 449 people293

from a wide geographical spread (Figure 1b) participated. Gender was not asked294

at registration for privacy concerns, but interpretation of registered participants295

suggested around 47 % were female and 53 % male (Figure 1c; acknowledging296

not everyone identifies as female or male), reflecting an increasing participa-297

tion of female scientists in ocean carbon science. Gender balance is important,298

as it has been shown that scientific research is more accurate when gender is299

11



considered, that research teams are more likely to come up with new ideas and300

perspectives, and that at present, men significantly outnumber women in the sci-301

ence, technology, engineering, and mathematics (STEM) workforce (Bert, 2018).302

Orcutt and Cetinić (2019) discuss gender balance in oceanography and provide303

ten useful recommendations on how we can progress towards better gender bal-304

ance. More broadly, increased diversity promotes innovation, productivity, critical305

thinking, creativity, communication, social justice and sustainability (Phillips,306

2014; Johri et al., 2021). Given the importance of improving diversity in Earth307

Sciences, particularly in oceanography where problems have persisted (Garza,308

2021), more members of under-represented groups are needed in the study of the309

ocean carbon cycle. Efforts such as Unlearning Racism in Geosciences (URGE;310

https://urgeoscience.medium.com/) and public celebrations of diversity (e.g.,311

Royal Society celebration of Black science, see https://royalsociety.org/topics-312

policy/diversity-in-science/a-celebration-of-black-science/) will help in this re-313

gard, but more effort is needed.314

2.2. Tools and approaches to capture collective view315

A series of tools and approaches were used to capture the collective view of316

the community and identify the major gaps, challenges, and priorities, that fed317

into this scientific roadmap.318

Firstly, session chairs were asked to prepare statements on the main scientific319

challenges, gaps, and opportunities of their session theme, prior to the start of320

the conference. All presenters (e-poster and oral) were also asked to include one321

slide about knowledge gaps and priorities for next steps on their work over the322

next decade. These statements were then used by session chairs to help structure323

the discussion slot organised at the end of each session. A final discussion session324

was held at the end of the workshop, whereby all session chairs were asked to325

join a panel to identify overarching themes.326

All sessions were recorded through Webex. Throughout the workshop, we327

used Padlet software (https://en-gb.padlet.com), a cloud-based, real-time collabo-328

rative web platform which allowed participants to interact and upload thoughts329

they had on the scientific challenges, gaps, and opportunities for each session,330
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comment on those suggested by the chairs and other participants, all within virtual331

bulletin boards called "padlets". Following the closure of the workshop, session332

chairs were asked to provide a written synthesis of the main outcome of their333

sessions.334

All scientific priorities, challenges, gaps and opportunities identified and335

discussed during the workshop, were organised into:336

• Session-specific themes,337

• Common themes,338

• Emerging concerns and broader thoughts.339

For the reader wanting to focus on recommendations for the entire subject, we340

suggest you go to Section 5 and 6 of the paper. Table 1 provides an overview of341

the session-specific themes of the paper and a guide to navigate this scientific342

roadmap, and Table 2 provides a selection of recently launched and upcoming343

satellite sensors with applications in ocean carbon research and monitoring.344

3. Session-specific theme outcomes345

In the following sections, we begin by providing a brief description of each346

session-specific theme, then briefly highlight the current state of the art, and finally347

focus on the identified priorities, scientific challenges, gaps, and opportunities, to348

be targeted over the next decade. We define these terms according to:349

• Priority: Something that is considered very important and must be dealt350

with before other things,351

• Challenge: Something that requires great effort to be achieved,352

• Gap: Something lacking or missing and required to make progress,353

• Opportunity: A situation that makes it possible to make progress.354
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3.1. Primary production (PP)355

Primary production (photosynthesis) channels energy from sunlight into ocean356

life, converting DIC, in the form of CO2, into phytoplankton tissue (e.g., C-phyto)357

that then fuels ocean food webs. In discussions about the role of phytoplankton in358

the carbon cycle, it is useful to consider the different components of PP. Carbon359

fixed through photosynthesis, before any loss terms are detected, is referred to as360

gross PP. When phytoplankton respiratory losses are subtracted from gross PP, we361

get net PP. When all the losses to PP required to meet the metabolic requirements362

of the entire community are taken away, then we are left with net community363

production. It is also common practice to partition PP into new production (i.e.,364

PP driven by allochthonous nutrient input), and regenerated production (i.e., PP365

sustained by locally available nutrients), with the sum of the two yielding gross366

PP. It is often difficult, if not impossible, to match these exact theoretical and367

conceptual definitions with practical observations, because of the limitations368

of the tools available. But, when dealing with estimates of PP from carbon369

incubation techniques, it is generally accepted that short incubations of about370

one hour are close to gross PP, whereas longer incubations of one day are close371

to net PP. If we adopt this operational definition, then PP calculations that are372

based on photosynthesis-irradiance experiments carried out over periods of one373

or two hours, are treated as gross PP (especially since these measurements are374

typically corrected for dark respiration measured during the experiment), and PP375

measurements that extend over a whole day (24 hours) approach net PP.376

On the other hand, PP estimated, often indirectly, over seasonal time scales377

are close to new production. It is also common in the literature to discuss export378

production, which is that component of PP that is transported below a particular379

depth horizon deep in the water column, and thereby removed from the oceanic380

mixed layer, and hence isolated from interactions with the atmosphere. Export381

production and new production are sometimes treated as being equivalent to382

each other, but in reality, the depth horizon used for computations of export383

production is relevant to discussions of time scales that are applicable, before the384

exported production, or the regenerated carbon and nutrients associated with that385
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production, reappears at the surface. The deeper the depth horizon, the longer the386

time scale of isolation. The time scale associated with that component of export387

production that reaches the bottom of the water column and gets buried there, is388

of the order of millions of years.389

Total net PP is approximately the same on land and in the ocean (∼390

50 Gt C yr−1; Longhurst et al., 1995; Field et al., 1998; Bar-On et al., 2018).391

By removing CO2 from surrounding waters, PP lowers the ambient CO2 concen-392

tration in surface waters, which can potentially lead to a drawdown of CO2 from393

the atmosphere. In doing so, PP can influence climate. The magnitude of any394

climate effect of PP depends, however, on the fate of the phytoplankton produced395

through PP. Only when the reduction in surface ocean pCO2 is maintained over396

time can it lead to a lasting drawdown of CO2. In practice, PP can only have a397

long-term impact on climate when its products are removed from surface waters398

through the ocean’s organic carbon “pumps” (Volk and Hoffert, 1985; Boyd et al.,399

2019). The “biological pump”, whereby organic material is transported to below400

the permanent thermocline is largely driven by “new” production (Dugdale and401

Goering, 1967), i.e., PP driven by allochthonous nutrient input (which is sensitive402

to stoichiometry and nutrient availability). To quantify the effect of ocean PP in403

global carbon cycling and, thereby, climate development, there is therefore a need404

to develop mechanisms to differentiate between total (gross) and new PP in the405

ocean (Brewin et al., 2021).406

3.1.1. State of the art in PP407

Satellite algorithms of PP have a long-established history, dating back over408

40-years, to the time when the first ocean-colour satellite (the Coastal Zone Color409

Scanner, CZCS) became available (Smith et al., 1982; Platt and Herman, 1983).410

Some initial attempts were made to convert fields of chlorophyll-a directly into411

PP (Smith et al., 1982; Brown et al., 1985; Eppley et al., 1985; Lohrenz et al.,412

1988), before approaches based on first principles were established, utilising413

in addition to information on chlorophyll-a concentration, information on bulk414

and spectral light availability (now available through satellite Photosynthetically415

Available Radiation (PAR) products), on the response of the phytoplankton to416
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the available light (parameters of the photosynthesis-irradiance curve), and en-417

vironmental data such as day length (e.g., Platt et al., 1980; Platt and Herman,418

1983; Platt et al., 1990; Platt and Sathyendranath, 1988; Sathyendranath and Platt,419

1989). The first global estimates were computed in the mid-1990’s (Longhurst420

et al., 1995; Antoine et al., 1996; Behrenfeld and Falkowski, 1997a), arriving at421

values of around 50 Gt C y−1, consistent with current estimates (Carr et al., 2006;422

Buitenhuis et al., 2013; Kulk et al., 2020, 2021). Whereas many of the modern423

techniques can differ in implementation, they have been shown to conform to the424

same basic formulation, with the same set of parameters (Sathyendranath and425

Platt, 2007), with some going beyond total PP, and partitioning it into different426

phytoplankton size-classes (e.g., Uitz et al., 2010, 2012; Brewin et al., 2017b).427

For a review of these approaches, the reader is referred to the classical works428

of Platt and Sathyendranath (1993), that of Behrenfeld and Falkowski (1997b),429

Sathyendranath and Platt (2007), Sathyendranath et al. (2020), Section 4.2.1. of430

Brewin et al. (2021), and the recent review of Westberry et al. (2023). For a review431

of operational satellite radiation products for ocean biology and biogeochemistry432

and a roadmap for improving existing products and developing new products,433

see Frouin et al. (2018). The reader is also referred to the huge efforts made by434

NASA over the past 20 years to evaluate and improve these satellite algorithms435

(Campbell et al., 2002; Carr et al., 2006; Friedrichs et al., 2009; Saba et al., 2010,436

2011; Lee et al., 2015). The process of evaluating remote sensing algorithms437

with in-situ data is frequently referred to as "validation" in the remote sensing438

community. NASA PP validation activities have highlighted variations in model439

performance with region and season (root mean square deviations of between 0.2440

to 0.5 in log10 space, when compared with in-situ data), illustrating the importance441

of minimising the uncertainties in model inputs and parameters, and in knowing442

the uncertainties in the in-situ measurements used for validation.443

Following presentations and discussions on PP at the workshop, five key444

priorities were identified. These are summarised in Table 3 and include: 1)445

parametrisation of satellite algorithms using in-situ data; 2) uncertainty estimation446

of satellite algorithms and validation; 3) linking surface satellite measurements to447
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the vertical distribution; 4) trends; and 5) fundamental understanding.448

3.1.2. PP priority 1: Parametrisation of satellite algorithms using in-situ data449

Challenges: Considering that most satellite PP models conform to the same450

principles (Sathyendranath and Platt, 2007), a major challenge to the research451

community is to improve our understanding of the spatial and temporal variability452

in the model parameters, which will be key to improving accuracy of satellite PP453

models (Platt et al., 1992). The continuation of existing sampling campaigns and454

expansion to under-represented regions, is subject to financial support for in-situ455

observations, particularly ship-based research cruises, considering that many PP456

measurements require specialised equipment, not suitable for automation. Given457

the declining fleet of research vessels in many regions (e.g., Kintisch, 2013), new458

solutions are needed, with sustained funding.459

Another challenge is that in-situ data on PP and model parameters are often460

collected in a non-standardised way, with differing conversion factors and proto-461

cols, and differing ancillary measurements, with limited information on the light462

environment, for both the experimental set-ups as well as the in-situ data (Platt463

et al., 2017). There are many ways PP can be measured (see Sathyendranath et al.,464

2019b; Church et al., 2019; IOCCG Protocol Series, 2022), and to convert among465

methods is not straight-forward, especially considering methods measure different466

types of PP (gross, net and new), though some studies have shown promise in this467

regard (e.g., Regaudie-de Gioux et al., 2014; Kovač et al., 2016, 2017; Mattei and468

Scardi, 2021). There is a clear challenge to develop better protocols and standards469

for PP data collection. Recent efforts by the IOCCG have made some progress470

(IOCCG Protocol Series, 2022).471

A further challenge with developing and validating satellite algorithms stems472

from the fact that PP (a time varying rate) is estimated from an instant satellite473

snapshot in time. The time variability of PAR, biomass and the possible variability474

in photosynthetic parameters must be modelled. Meanwhile these all have diurnal475

variability. As a result of many of these challenges, satellite PP algorithms do not476

always agree with one another (Siegel et al., 2023).477

Gaps: Although large efforts have been made in recent years to compile478
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global in-situ datasets of the parameters of the photosynthesis-irradiance curve479

(e.g., Richardson et al., 2016; Bouman et al., 2018), relatively few measurements480

of photosynthesis-irradiance curve parameters exists globally, with many regions481

(e.g., Indian Ocean, Southern Ocean and central Pacific) being under-represented482

(Kulk et al., 2020), and some hard to reach (e.g., Polar seas). Challenges to in-situ483

data collection (e.g. lack of adequate funding) and compilation have meant there484

are very few stations with continuous in-situ measurements of PP and related485

parameters. As the ocean colour time-series approaches a length needed for486

climate change studies (∼40 years; Henson et al., 2010; Sathyendranath et al.,487

2019a), this may impact our ability to verify climate trends in PP detected from488

space (see PP priority 5). There are gaps in coordination at the international489

level that if filled, would greatly benefit the systematic and sustained collection490

of in-situ measurements on PP. Many remote sensing algorithms of PP rely on491

a knowledge of photosynthesis-irradiance curve parameters. Consequently, the492

algorithms are only as accurate as the coverage (both spatial and temporal) of493

these in-situ parameters. They are also likely to be sensitive to climate change, so494

it is important to keep updating the in-situ databases. There is also a strong spatial495

bias (North America and Europe) in existing estuarine in-situ PP measurements496

(Cloern et al., 2014).497

Opportunities: By capitalising on an expanding network of novel and au-498

tonomous in-situ platforms, there are opportunities to improve the quantity of499

measurements of PP, by harnessing active fluorescence-based methods (IOCCG500

Protocol Series, 2022), such as Fast Repetition Rate (FRR) fluorometry (Kolber501

and Falkowski, 1993; Kolber et al., 1998; Gorbunov et al., 2000) and Fluorescence502

Induction and Relaxation (FIRe) techniques (Gorbunov et al., 2020). In fact, vari-503

able fluorescence techniques are increasingly being used to assess phytoplankton504

photosynthesis (see Gorbunov and Falkowski, 2020). There are challenges in505

interpreting these data (Gorbunov and Falkowski, 2020), and differences between506

FRR and 14C PP can be large (Corno et al., 2006). However, as these are op-507

tical measurements that can be collected in real time, they are well suited to508

autonomous platforms (Carvalho et al., 2020). For a recent review on the topic see509
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Schuback et al. (2021). Dissolved oxygen measurements, derived from oxygen510

optode sensors on autonomous platforms, can be used to estimate and quantify511

photosynthesis and respiration rates (Addey, 2022), as well as to quantify gross512

oxygen production that can be used to constrain net PP estimates (Odum, 1956;513

Barone et al., 2019; Johnson and Bif, 2021). Johnson and Bif (2021) used diurnal514

oxygen cycles from BGC-Argo floats to estimate global net PP at 53 Gt C yr−1, by515

assuming a fixed ratio of net to gross PP (as many net PP methods do). As high-516

lighted by the authors, the ratio of net to gross PP, however, varies considerably,517

in ways that are poorly understood. The diurnal oxygen method has also seen518

extensive application in estuarine and other coastal waters (e.g., Caffrey, 2004).519

Such estimates require high temporal resolution sampling, to observe the entire520

daily cycle (both night and day). Open data policies are key to maximising use of521

these datasets.522

A multi-platform approach to combining discrete in-situ measurements, with523

those from autonomous in-situ platforms and satellite data, could offer synergistic524

benefits, providing the different scales of the observations, and differences in525

measurement techniques can be bridged (Cronin et al., 2022). There are also op-526

portunities to encourage and support existing time-series stations (e.g., Bermuda527

Atlantic Time-series Study (BATS), Hawaii Ocean Time-series (HOT), Western528

Channel Observatory (WCO) Station L4, Carbon Retention in a Colored Ocean529

Time-Series (CARIACO), Line P, Porcupine Abyssal Plain, Blanes Bay Microbial530

Observatory, Long Term Ecological Research (LTER) sites, and Stončica) to531

continue to make high-quality in-situ measurements of PP as well as the model532

parameters necessary for implementation of PP and photoacclimation models.533

There are opportunities to use artificial intelligence, such as machine learning,534

to help in this regard (e.g., see Huang et al., 2021), which has proven useful for535

estimating net PP from space in estuaries (Xu et al., 2022). There are oppor-536

tunities to encourage pathways to commercial partnerships and technological537

innovation as science questions call for operational in-situ sensors and platforms,538

to target hard to access or currently unattainable ocean carbon properties and key539

PP parameters.540
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There are opportunities to exploit the ability of geostationary platforms541

(e.g.Geostationary Ocean Color Imager (GOCI) and Geosynchronous Littoral542

Imaging and Monitoring Radiometer (GLIMR)), to resolve diurnal variability543

in light (PAR) and biomass. Such sensors are also able to gather considerably544

more data for a given region than polar orbiting satellites (Feng et al., 2017). By545

building on the international community engagement of the "Ocean Carbon from546

Space" workshop, and that of other international initiatives (e.g., IOCCG), there547

are opportunities to formulate priorities for funding, and to create the necessary548

coordinating bodies, to address the challenges and gaps identified above.549

3.1.3. PP priority 2: Uncertainty estimation of satellite algorithms and validation550

Challenges: Assessment of satellite-based PP estimates is currently challeng-551

ing, owing to the sparsity of in-situ data on PP and model parameters (limited in552

spatial and temporal coverage and by costs), differences in the methods used for553

in-situ data collection, differences in scales of in situ and satellite observations,554

and a lack of availability of independent in-situ data to those used for model555

tuning. Standard oceanographic cruises can be affected by extreme weather556

conditions, particularly during fall and winter seasons. As a result, ship-based557

observations are sparse and often biased towards the summer-season.558

Gaps: Validation-based uncertainty estimates of satellite-derived PP products559

are often not readily provided, and it is difficult to quantify model-based error560

propagation methods (e.g., Brewin et al., 2017c). There are gaps in our under-561

standing of the uncertainty in key parameters and variables used for input to PP562

models. Other gaps exist relating to the nature of passive ocean-colour, such as563

data gaps in satellite observations (e.g., cloud covered pixels, and coverage in564

polar regions; Stock et al., 2020).565

Opportunities: We are now at a point where the computational demand566

of formal error propagation methods (going from errors in top-of-atmosphere567

reflectance through to errors in PP model parameters) can be met, such that per-568

pixel uncertainty estimates in satellite PP products could be computed (McKinna569

et al., 2019). There are also opportunities to constrain PP estimates and reduce570

uncertainties through harnessing emerging hyperspectral, lidar (with improved571
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vertical resolution over passive ocean colour) and geostationary sensors, that may572

provide more information on the community composition of the phytoplankton573

and their diel cycles (day-night cycles, a requirement being increased temporal574

resolution), as well as information on the spectral attenuation of underwater575

light, crucial for deriving PP. The synergistic usage of multiple satellites can be576

an opportunity to improve input irradiance products to PP models. There are577

also opportunities to use satellite sensors measuring light in the ultraviolet (UV)578

to improve satellite PP estimates (Cullen et al., 2012; Oelker et al., 2022). For579

improved uncertainty estimation, continuous validation is crucial, as is quantifying580

uncertainties in model parameters. Autonomous platforms and active ocean colour581

remote sensing (lidar) may offer opportunities to help in this regard.582

3.1.4. PP priority 3: Linking surface satellite measurements to the vertical583

distribution584

Challenges: Considering passive ocean-colour satellites only view a portion585

of the euphotic zone (the first penetration depth), resolving the vertical structure586

of all satellite-based carbon pools and fluxes is challenging, but none more so than587

that of PP. There are challenges in the requirements to know vertical variations588

in the phytoplankton biomass (e.g., Chlorophyll-a, hereafter denoted Chl-a), the589

physiological status (e.g., photoacclimation) of the phytoplankton (e.g., through590

the parameters of the photosynthesis-irradiance curve), and the magnitude, angular591

structure, and spectral nature of the underwater light field. For example, due to592

wind-depending wave-induced light focusing, there can be extreme short-term593

variability in PAR near the surface, with irradiance peaks > 15 times the average594

(Hieronymi and Macke, 2012) in visible, UV-A and UV-B spectral ranges, with595

implications for phytoplankton photosynthesis.596

Gaps: Our understanding of this vertical variability is impeded by the sparsity597

of in-situ observations on vertical structure. Ideally, we require observations at the598

equivalent spatial and temporal scale to that of the satellite data, for successfully599

extrapolating the surface fields to depth. There are also gaps in vertical physical600

data, and in their uncertainties, at equivalent scales to the satellite observations,601

such as the mixed-layer depth.602
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Opportunities: There are future opportunities to improve our basic under-603

standing of vertical structure by tapping into existing and planned arrays of604

autonomous in-situ platforms, such as the global array of Biogeochemical (BGC)605

- Argo floats (Johnson et al., 2009; Claustre et al., 2020; Cornec et al., 2021;606

Addey, 2022) and also the physical Argo array for fields of mixed-layer depth607

and sub-surface temperature, with the help of statistical modelling (e.g., Foster608

et al., 2021). Other technologies are also expected to improve understanding of609

vertical structure, such as moorings and ice tethered and towed undulating plat-610

forms (Laney et al., 2014; Bracher et al., 2020; Stedmon et al., 2021; Von Appen611

et al., 2021). These platforms may help us improve our understanding of the612

vertical distribution of parameters and variables relevant for PP modelling, such613

as chlorophyll (acknowledging potential vertical changes in fluorescence quantum614

yield efficiency), backscattering and light. Future satellite lidar systems will be615

capable of viewing the ocean surface up to three optical depths, improving the616

vertical resolution of ocean colour products.617

3.1.5. PP priority 4: Trends618

Challenges: Detecting trends in PP is a major challenge to our research619

community. A recent report by the Intergovernmental Panel on Climate Change620

(IPCC, 2019) expressed low confidence in satellite-based trends in marine PP.621

Gaps: The reasons the IPCC report cited this low confidence were related622

to the fact that the length of satellite ocean colour record is not sufficient yet for623

climate change studies, and the lack of corroborating trends in in-situ data (see624

PP priority 1) (IPCC, 2019). Additionally, there are gaps in uncertainty estimates625

for satellite-based products (see PP priority 3), needed to quantity the significance626

of any such trends.627

Opportunities: To meet these challenges, and fill these gaps, there has been628

significant work over the past decade to create consistent and continuous satellite629

records for climate research (e.g., Sathyendranath et al., 2019a). As we approach630

the point at which the length of satellite ocean colour record will be sufficient for631

climate change studies, we can build on this work and harness these systems that632

have been put in place, merging future ocean colour sensors with current and past633
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sensors (e.g., Yang et al., 2022a). There are also opportunities to bring satellite634

data and models together, for example, using data assimilation, to improve our635

confidence and understanding of PP trends (e.g., Gregg and Rousseaux, 2019) and636

understand variability in PP and photoacclimation. There are also opportunities637

to gain insight into the impacts of climate change on PP, by studying short-term638

extreme events (see Section 4.2 and Le Grix et al., 2021).639

3.1.6. PP priority 5: Fundamental understanding640

Challenges: At the workshop, participants also identified some major chal-641

lenges relating to our fundamental understanding of marine PP. These included:642

the need to understand better the relationships among PP, phytoplankton com-643

munity structure and physical-chemical environment (e.g. nutrient availability);644

understand better feedbacks between physics and biology and how biology affects645

the carbon cycle; understand better the fate of PP (e.g., secondary and export pro-646

duction); and understand better the interactions among the different components647

of the Earth System and how they influence marine primary productivity. As648

stated earlier, for carbon cycle studies, there is a clear requirement to go beyond649

PP and strive to quantify new production and net community production (e.g.,650

Tilstone et al., 2015; Ford et al., 2021, 2022a,b).651

Gaps: There are gaps in in-situ observations that if filled could help meet652

some of these challenges (see PP priority 1). Additionally, meeting some of653

these challenges may require higher spatial and temporal resolution products654

than currently available, for example, to study diurnal variability. The need for655

higher spatial and temporal resolution data also limits our ability to estimate PP656

in coastal and inland waters, impeding our understanding of land-sea interactions657

(Regnier et al., 2022) (see Section 4.1 for links to Blue Carbon).658

There are also gaps in satellite information on datasets relevant to photochem-659

ical reactions, mostly activated by UV light, impacting PP through photodegra-660

dation of phytoplankton and the formation of UV absorbing compounds. High661

spectral resolution data from satellite are also needed to improve PP modelling662

(Antoine and Morel, 1996). Should such datasets become available, they will663

require validation. Equipping autonomous platforms with hyperspectral sensors664
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could provide help in this regard (see priority 3). There are gaps in our under-665

standing of controls on PP in the ocean by viruses and other microbes (Suttle666

et al., 1990).667

Opportunities: With greater emphasis placed on an Earth system approach,668

to meet the challenges of the United Nations (UN) Ocean Decade, there are now669

more opportunities for collaborative interdisciplinary research, which may help to670

unify the integration of PP across interfaces, bringing together PP on land and in671

the ocean. For example, there have been promising developments in tidal wetland672

gross PP algorithms (Feagin et al., 2020). With increasing computation power,673

there are also opportunities to merge/nest regionally tuned models for larger scale674

estimates of PP. A shift from high performance computing to quantum computing675

could lead to significant progress in this direction, as well as incorporation of676

input data streams from molecular biology.677

There are opportunities to harness novel algorithms and satellites (e.g.678

Sentinel-5P, Sentinel-5, Sentinel-4, Plankton, Aerosol, Cloud, ocean Ecosys-679

tem (PACE), see Table 2) that can provide enhanced information on the spectral680

composition of underwater light field (e.g., for the retrieval of diffuse underwater681

attenuation (Kd) of UV and short blue light for Tropospheric Monitoring Instru-682

ment (TROPOMI) (Sentinel-5P) see Oelker et al., 2022). There is also potential683

to go beyond the one waveband (490 nm) Kd products, as currently provided684

operationally, to multi and hyperspectral Kd products, building on the capabilities685

of S3-OLCI next generation missions and older generation satellites like the686

Medium Resolution Imaging Spectrometer (MERIS), that have a suit of bands687

in the visible range. Especially considering improved data storage and transfer688

capabilities. There are also opportunities to use satellite instruments covering689

the UV spectral range to give insight on the presence of UV absorbing pigments690

and types of coloured dissolved organic matter (CDOM), which may provide691

important information on photodegradation processes. Active-based lidar systems,692

capable of viewing further into the water column, at day and night and at low sun693

angles, and geostationary platforms, may offer opportunities to fill gaps in our694

understanding of PP.695
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3.2. Particulate Organic Carbon (POC)696

POC can be defined functionally as the organic carbon in a water sample that697

is above 0.2 µm in diameter (taken as the formal boundary between dissolved698

and particulate substances). Globally, it is thought to be in the region of 2.3 -699

4.0 Gt C in size (Stramska, 2009; CEOS, 2014; Galí et al., 2022), with around700

0.58 - 1.3 Gt C in the upper mixed layer (Evers-King et al., 2017; Galí et al., 2022).701

It is among the most dynamic pools of carbon in the ocean, and turns over at a702

higher rate than any organic carbon pool on Earth (Sarmiento and Gruber, 2006).703

It can be separated into living (e.g., phytoplankton, zooplankton, bacteria) and704

non-living (e.g., detritus) organic carbon material.705

3.2.1. State of the art in POC706

Satellite remote-sensing of POC focuses typically on the use of ocean colour707

data, and is among the more mature satellite ocean carbon products, with the708

first satellite-based algorithm developed in the late 90’s (Stramski et al., 1999).709

Current algorithms include those that are: based on empirical band ratio or band-710

differences in remote-sensing reflectance wavelengths; backscattering based;711

backscattering and chlorophyll based; based on estimates of diffuse attenuation712

(Kd); and based on a two-step relationship between diffuse attenuation and beam713

attenuation. It is worth acknowledging the inherent optical property (IOP)-,714

chlorophyll-, and Kd-based algorithms involve first deriving these inputs from715

remote-sensing reflectance. For a recent review of these algorithms the reader716

is referred to Section 4.1.3.1. of Brewin et al. (2021). The empirical algorithm717

that links POC in the near-surface ocean to the blue-to-green reflectance band718

ratio described in Stramski et al. (2008) has been used by NASA to generate the719

standard global POC product from multiple satellite ocean colour missions, and in720

some ESA POC initiatives (Evers-King et al., 2017). These standard algorithms721

provided a tool for estimation of global and basin-scale reservoirs of POC in722

the upper ocean layer (e.g., Stramska and Cieszyńska, 2015). Recently, a new723

suite of ocean colour sensor-specific empirical algorithms intended for global724

applications was proposed by Stramski et al. (2022) with a main goal to improve725
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POC estimates compared to current standard algorithms in waters with very726

low POC (ultraoligotrophic environments, < 0.04 mg m−3) and relatively high727

POC (above a few hundred mg m−3). Intercomparison and validation exercises728

have suggested the performance of satellite POC algorithms is comparable to, or729

even better than, satellite estimates of chlorophyll-a (Evers-King et al., 2017),730

among the more widely used ocean colour products. The high performance in731

satellite POC is perhaps related to POC representing the entire pool of organic732

particles (rather than just phytoplankton, as with Chl-a). However, a recent study733

highlighted significant inconsistencies between satellite-retrieved POC and that734

estimated from BGC-Argo float data at high-latitudes during the winter season735

(Galí et al., 2022).736

Six priority areas of POC were identified, that will be discussed separately737

in this section, including: 1) in-situ measurement methodology; 2) in-situ data738

compilation; 3) satellite algorithm retrievals; 4) partitioning into size; 5) vertical739

profiles; and 6) biogeochemical processes and the biological carbon pump. Table740

4 summarises these priorities, and their challenges, gaps and opportunities.741

3.2.2. POC priority 1: In-situ measurement methodology742

Challenges: The current filtration-based methodology that uses glass-fiber743

filters (nominal porosity typically around 0.7 µm, through the effective pore size744

of glass-fibre filters is thought to be substantially smaller; Sheldon, 1972) for745

retaining particles and measuring POC does not include all POC-bearing particles,746

and hence does not determine the total POC. In particular, some fraction of747

submicrometer POC-bearing particles is missed by this method (e.g., Nagata,748

1986; Taguchi and Laws, 1988; Stramski, 1990; Lee et al., 1995), and these749

small-sized particles can make significant contribution to total POC (e.g., Sharp,750

1973; Fuhrman et al., 1989; Cho and Azam, 1990). Glass-fibre filters are also751

subject to cell leakage and can cause breakage of cells due to the combined effects752

of pressure sample loading, and needle-like microfiber ends (IOCCG Protocol753

Series, 2021). Other sources of possible underestimation of total POC include754

the loss of POC due to the impact of pressure differential across the filters (but755

see Liu et al., 2005) and an underrepresentation of the contribution of relatively756
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rare large particles associated with a limited filtration volume (e.g., Goldman and757

Dennett, 1985; Bishop, 1999; Gardner et al., 2003; Collos et al., 2014; McDonnell758

et al., 2015). Thus, it is very important to report volumes filtered together with759

POC concentrations. Differences in filter type, particle settling in bottles, and760

breakage or leakage of phytoplankton and other cells, are other issues that can761

cause errors in filtration-based methods.762

Optical remote sensing (including ocean colour measurements from space) is763

driven by all particles suspended in water, including particles which are missed764

and/or underrepresented by the current filtration-based POC methodology (Davies765

et al., 2021). Thus, there is a mismatch between in-situ POC measurements766

through filtration and optical measurements that serve as a proxy of POC. The767

missing portion of POC unaccounted for by the current filtration based POC768

methodology is important to both the ocean biogeochemistry and ocean optics769

that underlies ocean colour measurements from space.770

While standardisation of POC methodology is generally desirable, there are771

important interpretive challenges that must be recognized during the standardis-772

ation process. In particular, while the recommendation to use DOC-absorption773

correction to the standard filtration-based method will result in correction for774

one known source of overestimation of the fraction of total POC that is strictly775

retainable on the filters (Moran et al., 1999; Gardner et al., 2003; Cetinić et al.,776

2012; Novak et al., 2018; IOCCG Protocol Series, 2021), the issue of known777

sources of underestimation of total POC remains unresolved.778

The fractional contributions to POC associated with differently-sized particles779

and/or different types of particles (e.g., different groups or species of microorgan-780

isms) are difficult to quantify and remain poorly known for natural polydisperse781

and heterogenous assemblages of suspended particles.782

Gaps: The current POC standard method does not account for both the artifi-783

cial gains and losses of POC during collection of particles by filtration (Gardner784

et al., 2003; Turnewitsch et al., 2007; IOCCG Protocol Series, 2021). With the785

exception of size-based filtration (which has known limitations), no experimental786

capabilities exist to partition total POC of natural particulate assemblages into787
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contributions by different size fractions and/or different types of particles which788

play different roles in ocean biogeochemistry and carbon cycling. Another im-789

portant gap is the lack of a certified reference material (CRM) for POC. A CRM790

allows to estimate the accuracy of POC estimated by different laboratories and by791

the same laboratory in different times and locations. Consequently, a CRM for792

POC, if used by the community, would allow to reduce uncertainties in POC.793

Opportunities: There are opportunities to advance and standardise the mea-794

surement methodology of total POC to provide improved estimates. These795

advancements can be brought about by including the portion of POC that is796

unaccounted for by the current standard filtration-based method. This would797

likely involve developing measurement capabilities aiming at quantification of798

POC contributions associated with differently-sized particles and different particle799

types based on combination of single-particle measurement techniques for particle800

sizing, particle identification, and particle optical properties.801

3.2.3. POC priority 2: In-situ data compilation802

Challenges: There have been significant investments, at regional, federal and803

international scale, into POC data collection (see Figure 1 of Evers-King et al.804

(2017) for a map of global sampling coverage of in-situ POC data), which has805

transformed our understanding of POC in the ocean. But there are challenges in806

using these data for POC algorithm development and validation. The field-based807

datasets are commonly compiled from data collected by different investigators on808

many oceanographic expeditions covering a long period of time. The information809

content available in documentation of various individual datasets is non-uniform810

and does not always contain sufficient details about data acquisition and process-811

ing methodology. This creates a risk that the compiled datasets are affected by812

methodological inconsistencies across diverse subsets of data, including the poten-813

tial presence of methodological bias in some data. The presence of methodological814

bias is generally difficult to identify given the range of environmental variability,815

especially when available details on data acquisition methods are limited and/or816

there is a lack of replicate measurements (a CRM would help in this regard, see817

POC priority 1). Thus, indiscriminate use of data for the algorithm development818
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and validation analyses is not advisable. These issues pose significant challenges819

for assembling high-quality field datasets that meet the standards and objectives of820

algorithm development or validation analyses including, for example, the process821

of data quality control based on predefined set of inclusion and exclusion criteria822

and assurance of environmental representativeness of datasets assembled for the823

analysis of specific algorithms (e.g., global vs. regional; Stramski et al., 2022).824

Best practices for data quality control have been improved significantly following825

the recent publication of the IOCCG Particulate Organic Matter (POM) protocol826

(IOCCG Protocol Series, 2021)827

The common validation strategy that relies on comparisons of field-satellite828

data matchups is not by itself sufficient to ensure rigorous assessment and under-829

standing of various sources of uncertainties in satellite-derived POC products.830

The deviations between field and satellite data matchups can occur for various831

reasons such as spatial-temporal mismatch of data, uncertainties in both satellite832

and in-situ measurements, atmospheric correction, and performance skills of the833

in-water algorithm itself. In addition, the number of available data matchups is834

often limited in various environments.835

Gaps: While the documentation of data acquisition and processing methods836

is often limited, especially in historical datasets, there are no standardised best-837

practice guidelines to ensure consistency in data quality control and synthesis838

efforts when larger datasets are compiled from various individual subsets of839

data. There are also regions within the world’s oceans, such as polar regions and840

the Indian Ocean, where concurrently collected field data of POC and optical841

properties are scarce, including the lack of temporal coverage over the entire842

seasonal cycle.843

Opportunities: Further efforts related to POC algorithm development and844

validation can benefit from careful scrutiny of historical and future data to min-845

imize the risk of using biased data and ensure that the analyses are conducted846

using data with consistently high quality and are accompanied with sufficiently847

detailed documentation on data acquisition and processing methods. These ef-848

forts can be facilitated through further improvements and standardisation of best849
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practices for documentation, quality control, sharing, and submission of data into850

database archives. Such practices are expected to lead to better data quality, data851

interpretation, and uncertainty assessments (IOCCG Protocol Series, 2021).852

There is a need to continue field programs in which concurrent POC and853

optical data are acquired across diverse environments including those that have854

been severely under-sampled in the past.855

3.2.4. POC priority 3: Satellite algorithm retrievals856

Challenges: There can be a high level of complexity and variability of water857

optical properties and water constituent composition including POC-bearing858

particles, especially in coastal regions and inland waters (where non-algal particles859

are more prevalent), which are highly susceptible to land effects and re-suspension860

of sediments from shallow bottom. This makes it very difficult to develop a unified861

approach to provide reliable POC retrievals from optical remote sensing along862

the continuum of diverse optical/biogeochemical environments from open ocean863

to coastal and inland water bodies.864

Standard global POC products are generated indiscriminately with respect to865

optical water types or the optical composition of water. Hence, this product is866

generated for a wide range of environmental situations, including the conditions867

outside the intended scope of global algorithms, which implies unknown and po-868

tentially large uncertainties. An inter-mission consistency of POC satellite-based869

products is required to support long-term climate data records. To successfully870

harness new satellite geostationary and hyperspectral data (e.g., GLIMR, PRe-871

cursore IperSpettrale della Missione Applicativa (PRISMA), PACE), there are872

challenges associated with appropriate atmospheric correction schemes, that can873

deal with large solar zenith and viewing angles for geostationary sensors, and874

spectral consistency for hyperspectral sensors.875

Gaps: The current routine process of generating standard global POC products876

from global empirical algorithms either lack the mechanistically-based flags877

associated with ocean properties or optical water types to prevent the application878

of algorithms beyond their intended use, or where flags do exist, their usage is879

often not clarified and they are often not accurate. Clear and accurate flags are880
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needed to guide users on product uncertainties and applications. The need for881

appropriate flags to prevent the use of algorithms outside their scope is broadly882

relevant, for example, it applies also to regional algorithms (McKinna et al.,883

2019).884

There is a lack of advanced algorithms based on adaptive approaches that in-885

corporate mechanistic principles on the interaction of light with water constituents886

and associated optical water typologies, but the workshop saw the emergence887

of such methods, which is a promising sign. For example, algorithms that dis-888

criminate the water bodies based on varying composition of organic and mineral889

particles are required to enable reliable POC retrievals across diverse environ-890

ments including the optically-complex coastal water bodies (Loisel et al., 2007;891

Woźniak et al., 2010; Reynolds et al., 2016).892

Opportunities: Recent development of a new suite of empirical satellite893

sensor-specific global POC algorithms provide the opportunity for further testing,894

validation, analysis of inter-mission consistency, and ultimately an implementation895

of next-generation algorithms for routine production of a refined global POC896

product (Stramski et al., 2022).897

The analysis of POC reservoir and its spatial-temporal dynamics is expected to898

be enhanced by increased availability and use of geostationary and hyperspectral899

satellite data (e.g., GLIMR, PRISMA, PACE) along with in-situ data.900

3.2.5. POC priority 4: Partitioning into size901

Challenges: The particle size distribution (PSD) is an important link between902

ecosystem structure and function on the one hand, and optical properties on903

the other, as it affects both. Phytoplankton cell size is a key trait, and size904

fractions are closely related to functional types (Le Quéré et al., 2005; Marañón,905

2015). Monitoring the size distribution of particles in the ocean can provide906

information on how carbon flows through the marine food-web, and how much907

carbon is exported out of the euphotic zone, both useful for carbon management908

strategies. One of the most challenging, yet important tasks moving forward909

is to develop understanding of the different functional and/or size partitions of910

POC. Bulk POC does not give a full picture of the ecosystem or its role in911

31



biogeochemical cycles. In addition, empirical POC satellite algorithms assume912

certain relationships between POC and optical properties. These relationships913

can change if basic characteristics of the POC change, such as its particle size914

distribution (PSD) or the fraction of total POC due to living phytoplankton. For915

example, the POC-specific backscattering coefficient can change if the PSD of916

POC changes, and the POC-specific absorption spectra can change if the living917

carbon:POC ratio changes (e.g., Stramski et al., 1999; Loisel et al., 2001; Balch918

et al., 2010; Woźniak et al., 2010; Cetinić et al., 2012; Reynolds et al., 2016;919

Kostadinov et al., 2016; Johnson et al., 2017; Koestner et al., 2021; Kostadinov920

et al., 2022).921

Notwithstanding the operational limitations of what constitutes POC and dis-922

solved substances within the submicrometer size range, the particle assemblages923

in the near surface ocean are exceedingly complex, which makes this challenge924

particularly difficult to address. In addition, both forward and inverse modelling925

of the optical properties of the ocean entirely from first principles are not feasible926

currently. The range from truly dissolved substances to particles such as large927

zooplankton and beyond span many orders of magnitude in size and are governed928

by different optical regimes, which makes it difficult, for example, to identify,929

quantify, and separate the various sources of optical backscattering in the ocean930

(Stramski et al., 2004; Clavano et al., 2007; Stemmann and Boss, 2012).931

In terms of functional fractions, POC can be considered to consist of phyto-932

plankton, heterotrophic bacteria, zooplankton, and organic detritus (of marine933

or terrestrial origin). In terms of size fractions, ideally the PSD of POC and its934

various functional components should be measured in situ. There are theoretical935

considerations indicating that the marine bulk PSD, spanning several orders of936

magnitude in size, can follow, to first approximation, a power-law with a certain937

slope (e.g., Kerr, 1974; Kiefer and Berwald, 1992; Jackson, 1995; Rinaldo et al.,938

2002; Brown et al., 2004; Hatton et al., 2021). The power-law approximation of939

marine PSD was used in numerous studies involving experimental data of PSD940

(e.g., Bader, 1970; Sheldon et al., 1972; Jackson et al., 1997; Jonasz and Fournier,941

2007; Buonassissi and Dierssen, 2010; Clements et al., 2022) and satellite-based942
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estimation of PSD (Kostadinov et al., 2009, 2010, 2016, 2022). However, there943

is a challenge associated with the use of power-law approximation because ma-944

rine PSDs commonly exhibit some features across different size ranges, such as945

distinct peaks, shoulders, valleys, and changes in slope, which can result in signif-946

icant deviations of PSD from a single-slope power function. Such deviations were947

demonstrated in many measurements of PSD in different oceanic environments948

(e.g., Jonasz, 1983; Risović, 1993; Bernard et al., 2007; Reynolds et al., 2010;949

White et al., 2015; Organelli et al., 2020; Reynolds and Stramski, 2021).950

Finally, optically complex coastal waters present an additional challenge in951

that allochthonous and autochthonous sources of POC may be mixed, for example,952

due to riverine input, making the task of separating POC by functional fractions953

with known or assumed optical properties or PSD more challenging.954

Gaps: There is a dearth of concurrent data on POC, PSD and carbon data for955

the components that make up the POC (e.g., phytoplankton carbon). This is a956

major limiting factor for satellite algorithm development.957

Opportunities: There is an opportunity to exploit upcoming hyperspectral958

and polarization remote-sensing data. For example, the degree of linear polariza-959

tion may provide information on the bulk refractive index of particles (Zhai and960

Twardowski, 2021). However, to do so requires efforts directed toward progress961

in basic research into how POC is partitioned into its various components. It962

is important to include measurements of PSD in future POC field campaigns963

globally, and in the compilation of global, quality-controlled datasets for algo-964

rithm development. Further studies of non-parametric descriptors of PSD are965

desirable because they offer superior performance compared with the power law966

approximation for representing the contributions of different size fractions to PSD967

across a wide diversity of marine environments (Reynolds and Stramski, 2021).968

Satellite-based approaches to monitoring zooplankton (e.g. Strömberg et al., 2009;969

Basedow et al., 2019; Behrenfeld et al., 2019; Druon et al., 2019) could further aid970

in partitioning out the contribution of zooplankton to POC. Additionally, there are971

opportunities to harness multi-scale observational approaches (e.g., combining972

satellites with ocean robotics) for improved monitoring of POC size fractions973
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(Sauzède et al., 2015, 2016; Claustre et al., 2020).974

3.2.6. POC priority 5: Vertical profiles975

Challenges: Whereas vertical profiles of POC can be estimated from in-situ976

optical sensors (in particular, backscattering sensors and transmissometers) de-977

ployed on autonomous in-situ platforms, the performance of present optical-based978

POC algorithms is hampered by limited understanding and predictability of varia-979

tions in the characteristics of particulate assemblages and their relationships with980

optical properties throughout the water column. There is a strong requirement to981

promote fundamental research to better quantify and understand the relationships982

between variable vertical profiles of POC (and characteristics of the POC such983

as PSD, functional and size fractions) and the optical signal detectable from984

satellites.985

Gaps: One of the most frequently asked questions posed by users of ocean986

colour remote sensing data (e.g., modellers) is what the satellite sensor actually987

“sees”, in particular how deep the satellite sensor probes the water column in988

terms of variable near-surface vertical profiles of retrieved data products such as989

POC. For passive ocean colour, due to the double trip light must take through990

the water column between the ocean surface and a given depth (downwelling991

radiance and then upwelling radiance), the source of the water-leaving optical992

signal reaching the satellite is heavily weighted to the near-surface layers of the993

ocean. Early research from the 1970s demonstrated that ∼90 % of the water-994

leaving signal comes from one e-folding attenuation depth, i.e., the layer defined995

by 1/Kd, where Kd is the wavelength-dependent diffuse attenuation coefficient996

for downwelling irradiance (Gordon and McCluney, 1975). There is a need997

to expand on this research and develop POC-specific understanding, including998

the effects of vertical profiles of variables going beyond just bulk POC, namely999

POC partitioned by functional and/or size fractions (see POC priority 4). The1000

diurnal evolution of the characteristics of POC vertical profiles also needs careful1001

consideration. At present, there is an uneven distribution of vertical in-situ profiles1002

of POC globally, with the southern hemisphere poorly covered compared with1003

the northern hemisphere.1004
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Opportunities: There are opportunities to advance basic research into improv-1005

ing our understanding of the relationships between POC and optical properties,1006

such as the particulate backscattering coefficient, that are potentially amenable1007

to measurements from autonomous in-situ platforms such as BGC-Argo floats.1008

Artificial Intelligence (AI) may help in this regard (Claustre et al., 2020). Such1009

research is expected to guide development of new sensors and algorithms (e.g.,1010

scattering sensors that include polarization) which will ultimately provide more1011

reliable estimations of POC throughout the water column from autonomous1012

systems. There are opportunities for synergy among satellite, models and au-1013

tonomous platforms to create 3D and 4D fields of POC (Claustre et al., 2020).1014

Future active-based satellite lidar systems will penetrate further into the water col-1015

umn improving vertical resolution of variables like the backscattering coefficient,1016

a proxy for POC (Jamet et al., 2019).1017

3.2.7. POC priority 6: Biogeochemical processes and the biological carbon1018

pump1019

Challenges: It is estimated that around 80 % of the carbon that is exported1020

through the ocean biological carbon pump (BCP) is in the form of POC, and the1021

remainder is transported downward as DOC via vertical mixing and advection1022

(Passow and Carlson, 2012; Legendre et al., 2015; Boyd et al., 2019). The vertical1023

export of POC is challenging to quantify, and believed to result from several1024

biological and physical processes, of which gravitational POC sinking is thought1025

to be the largest component (Boyd et al., 2019). For a fixed fluid viscosity and1026

density, gravitational sinking speed is a function of particle size, composition,1027

and structure (Laurenceau-Cornec et al., 2020; Cael et al., 2021). The distribution1028

of these properties in the particle population results to a large extent from the1029

functioning of the upper-ocean ecosystem. Therefore, overcoming the challenges1030

related to the satellite retrieval of POC mass (POC priority 3), size distribution1031

(POC priority 4), and vertical distribution (POC priority 5), as well as particle1032

properties (e.g., composition), is key to improved understanding and prediction1033

of the BCP.1034

Quantifying the global vertical POC export flux is a major challenge, as the1035
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range of current estimates (ca. 5-15 Gt C yr−1; Boyd et al., 2019) remains similar1036

to the ranges quoted in the 1980’s (Martin et al., 1987; Henson et al., 2022).1037

Improved ability to estimate the concentration and fluxes of POC (gravitational1038

sinking, but also other pathways like the migrant pumps and physical pumps)1039

would also benefit the study of trace element cycling (Conway et al., 2021) and1040

deep-ocean ecosystems that rely on POC export. Current methods to measure1041

gravitational POC export are work-intensive and do not allow for high spatial-1042

temporal coverage, nor do they cover other pathways of carbon export, such1043

as the migrant and mixing pumps, that contribute to a large portion of carbon1044

export (Boyd et al., 2019) and change the sequestration times of exported carbon.1045

Moreover, they often rely on simplified assumptions (steady-state vertical profiles,1046

negligible effects of horizontal advection, to name just a few) whose validity1047

is not always tested or subjected to sensitivity analyses (Buesseler et al., 2020).1048

Therefore, empirical (e.g., remote-sensing based) and prognostic models of gravi-1049

tational POC export rely on in-situ measurements that are inherently uncertain1050

and have sparse spatial-temporal coverage.1051

Gaps: There is a sparsity of in-situ data on vertical fluxes of POC, meaning our1052

understanding of the relationship between upper-ocean biogeochemical properties1053

and vertical POC fluxes is very uncertain. This impedes our ability to represent1054

POC flux in empirical and mechanistic models of the BCP. Large-scale estimates1055

of vertical POC export usually focus on the average (climatological) state of1056

the ocean, but interannual variations and their drivers (e.g., the role of physical1057

forcing) remain poorly known (Lomas et al., 2022), and because of data sparseness1058

there is a risk of confounding spatial and temporal variability.1059

Although shallow seas and continental slope areas are thought to play an1060

important role in the global POC cycle, there are large gaps in understanding,1061

as the sources and fate of POC in these areas remain difficult to monitor and1062

quantify owing to the presence of optically complex environments, the higher1063

abundance of inorganic particulate materials and the potentially larger role of1064

lateral advection (Arístegui et al., 2020). Finally, gaps in understanding of the1065

role of zooplankton diel vertical migration (DVM) (e.g., Bianchi et al., 2013a,b;1066
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Boyd et al., 2019) and the associated biogenic hydrodynamic transport (BHT)1067

(e.g., Wilhelmus et al., 2019), mean these processes are rarely incorporated into1068

ocean biogeochemical models.1069

Opportunities: Sampling from autonomous platforms (BGC-Argo, gliders,1070

moorings, etc.) can provide the spatial-temporal resolution needed to refine our1071

understanding of the BCP, complementing more detailed shipborne observations1072

and the synoptic surface view obtained from satellites. For example, "optical1073

sediment traps” mounted on BGC-Argo floats (Bishop et al., 2004; Estapa et al.,1074

2017) can record a nearly-continuous proxy of vertical POC fluxes in the ocean1075

interior.1076

Merging of these various data streams using statistical techniques (e.g., ma-1077

chine learning; Sauzéde et al., 2020) can allow for refined estimates of the BCP,1078

reducing the sampling bias associated with shipborne measurements. These com-1079

plementary data streams can be further used to constrain mechanistic models1080

of the BCP, for example, through data assimilation and parameter optimization1081

(Nowicki et al., 2022). These approaches will improve quantification of the fluxes1082

that form the BCP, help identify knowledge gaps and eventually spur progress1083

in process-level understanding. Ongoing efforts are aimed at improving under-1084

standing of the effects of DVM and BHT on the biological pump, through a1085

synergy of remote-sensing (e.g., Behrenfeld et al., 2019), laboratory studies, and1086

biogeochemical modelling.1087

Although the framework drafted above is conceptually valid for the study of1088

continental shelves, these areas require higher-resolution observations and models1089

that can resolve their larger heterogeneity and a wider array of transport and1090

transformation processes. Therefore, such areas would benefit from dedicated1091

regional process studies and monitoring from geostationary satellites and other1092

airborne sensors.1093

3.3. Phytoplankton Carbon (C-phyto)1094

The living pool of POC can be partitioned into components associated with1095

living phytoplankton cells and other types of carbon (e.g., zooplankton, detritus,1096
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fecal pellets). C-phyto is a particularly important pool of POC owing to its role1097

in marine PP and providing food to the majority of the marine ecosystem. It has1098

been estimated that the pool is around 0.78 - 1.0 Gt C in size (Falkowski et al.,1099

1998; Le Quéré et al., 2005), but despite its small size (relative to terrestrial plants,1100

which is in the order to 450 Gt C, see Bar-On et al., 2018) it contributes around1101

50 Gt C yr−1 in PP (equivalent to terrestrial plants, see Section 3.1).1102

C-phyto is key to establishing the carbon-to-chlorophyll ratio (important for1103

understanding phytoplankton physiology and their adaptation to light, nutrient1104

and temperature changes), to compute PP using carbon-based models (Behren-1105

feld et al., 2005; Sathyendranath et al., 2009), and to assess the contribution of1106

photophysiology to the phytoplankton seasonal cycle (Bellacicco et al., 2016).1107

High temporal C-phyto data allows for determination of carbon-based growth and1108

loss rates in phytoplankton (e.g., Sathyendranath et al., 2009; Zhai et al., 2010;1109

Behrenfeld and Boss, 2014). C-phyto has also been innovatively used to assess,1110

at the sea-air interface, the export of organic matter towards the atmosphere in the1111

form of aerosols (O’Dowd et al., 2004; Fossum et al., 2018).1112

3.3.1. State of the art in Phytoplankton Carbon1113

A number of algorithms have been developed to derive C-phyto from ocean1114

colour observations (see Bellacicco et al. (2020) and reference therein, and Section1115

4.1.3.2. of Brewin et al. (2021)). The approaches used can be grouped broadly1116

into: i) backscattering-based approaches (e.g., Behrenfeld et al., 2005; Martínez-1117

Vicente et al., 2013; Graff et al., 2015); ii) chlorophyll-based approaches(e.g.1118

Sathyendranath et al., 2009) some with use of models of photoacclimation and1119

physiology parameters (e.g., Jackson et al., 2017; Sathyendranath et al., 2020);1120

and iii) size-class-based approaches (e.g., Kostadinov et al., 2016, 2022; Roy1121

et al., 2017). These approaches can also be grouped according to their product1122

(PSD, size class or taxonomic class) or the optical properties used to derive1123

them (Chl-abundance based, backscatter, absorption, radiance) (Mouw et al.,1124

2017). Each approach relies on the covariation between optical properties or POC,1125

and a proxy of phytoplankton concentration such as Chl-a, phytoplankton light1126

absorption or size distribution. Satellite environmental data, such as light or sea-1127
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surface temperature (SST), have been shown to help improve satellite retrievals of1128

the chlorophyll-a concentration of different phytoplankton groups (Ward, 2015;1129

Brewin et al., 2015a, 2017a; Moore and Brown, 2020; Xi et al., 2021; Sun et al.,1130

2023), and recently also for retrievals of diatom carbon concentration (Chase1131

et al., 2022).1132

One of the biggest challenges in retrieving C-phyto from ocean colour obser-1133

vations is separating the contributions of organic detritus, or non-algal particles1134

(NAP), and living phytoplankton cells to the optical properties, such as the par-1135

ticle backscattering, and to the particle size distributions, particularly in turbid1136

or coastal waters. It is assumed that phytoplankton (and co-varying material)1137

control the backscattering signal in the open ocean (Dall’Olmo et al., 2009; Or-1138

ganelli et al., 2018), an assumption used in Case-1 water models (e.g., Morel and1139

Maritorena, 2001). However, the variation of NAP horizontally, vertically, and1140

temporally is considerable in many parts of the ocean (Bellacicco et al., 2019,1141

2020) in size and concentration (Organelli et al., 2020). Recent efforts have been1142

made to improve C-phyto estimates from satellite-based particle backscattering1143

by accounting for variability in NAP (e.g., Bellacicco et al., 2020).1144

Each of the proposed approaches have advantages and disadvantages, and1145

can be improved with knowledge on the optics-to-carbon conversion factors (that1146

can inform the Chl-a to C ratio), using in-situ C-phyto datasets (e.g., Martínez-1147

Vicente et al., 2017), and through reduced uncertainties in satellite-derived inputs1148

of relevant quantities (i.e., backscattering, Chl-a, and particle size distribution).1149

Currently, no method has extended the global estimation of C-phyto to below the1150

ocean surface where many biogeochemical interactions occur.1151

During the workshop, three key priority areas of C-phyto were identified, that1152

will be discussed separately in this section, and include: 1) in-situ data; 2) satellite1153

algorithm retrievals; and 3) vertical structure. Table 5 summarises these priorities,1154

and their challenges, gaps and opportunities.1155

3.3.2. C-phyto priority 1: In-situ data1156

Challenges: Measuring C-phyto in-situ is notoriously difficult and no stan-1157

dard method exists and any measurements are likely to have high uncertainties.1158

39



A major challenge for communities working in this field is to improve in-situ1159

methodologies for quantifying C-phyto and to measure or estimate photoacclima-1160

tion model parameters. A couple of methods exist to directly measure C-phyto.1161

One of them entails the separation of living phytoplankton particles from non-1162

living (detrital) particles and the subsequent elemental measurement of those1163

particles (Graff et al., 2012, 2015). Another, older method (Redalje and Laws,1164

1981), requires incubation experiments in which the sample cells are labelled with1165

14C, and the specific activity of Chl-a is measured at the end of the experiment as1166

well as the total particulate 14C activity. The direct measurement methodology1167

of Graff et al. (2012, 2015) is largely biased towards nano and pico-sized phyto-1168

plankton particles detected by flow cytometry, whereas the method of Redalje1169

and Laws (1981) depends on Chl-a being sufficiently high for the incubation1170

experiments. It is important that these direct methods are incorporated into exist-1171

ing programs. C-phyto may also be indirectly measured by applying empirical1172

relationships that relate cell biovolume to C-phyto (Menden-Deuer and Lessard,1173

2000; Lomas et al., 2019). These empirical relationships are largely attributed to1174

micro-sized phytoplankton (diatoms and dinoflagellates) and are limited to either1175

a select number of laboratory cultures or a specific region in the global ocean.1176

Standardization of phytoplankton carbon data submission using emerging in-situ1177

techniques (such as the Imaging FlowCytobot) is also challenging (Neeley et al.,1178

2021).1179

Gaps: As a direct result of this challenge, one of the largest gaps for de-1180

riving C-phyto from space is the paucity of global in-situ C-phyto data (and1181

C-phyto community composition), to develop and validate models and algorithms.1182

Coincident in-situ observations of both phytoplankton community composition,1183

by flow cytometry, microscopy or the more recent method of imaging-in-flow1184

cytometry (e.g., Imaging Flow Cytobot (IFCB), FlowCam) with bio-optical and1185

radiometric measurements are critical for establishing relationships among phy-1186

toplankton type, size, pigments and optical signatures. Only limited number of1187

field data sets (e.g., NASA’s EXPORTS campaign, and the Atlantic Meridional1188

Transect Programme (AMT)) contain these coincident measurements, leading to1189
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a lack of understanding of their temporal or spatial variability. Moreover, few1190

measurements are taken below the surface ocean (see C-phyto priority 3).1191

Additionally, there are very few consistent C-phyto surface time-series data1192

sets available. Time series data sets with clear uncertainties are critical to1193

understanding of spatio-temporal variability in C-phyto, community composi-1194

tion and coincident optical properties. Existing time-series studies that include1195

these measurements are limited (e.g., Martha’s Vineyard Coastal observatory,1196

https://nes-lter.whoi.edu/).1197

Opportunities: There is an opportunity to enlarge and explore data collected1198

at so-called "in-situ supersites". In-situ supersites are sampling sites in which1199

manual or automated, coincident measurements of bio-optical, biogeochemical,1200

and/or biological measurements, are collected regularly as part of a time series1201

program. These sites are typically co-located with satellite measurements and can1202

be used to improve and/or validate satellite algorithms. Such sites already exist1203

and include, for example, the Martha’s Vineyard Coastal Observatory (MVCO),1204

located in Edgartown, Massachusetts, USA. At this observatory, hydrographic1205

(salinity, temperature), meteorological and biological measurements are collected1206

in real-time. What makes the data from this observatory particularly powerful1207

is the inclusion of an IFCB that collects particle and plankton images approxi-1208

mately every 20-minutes. In conjunction with regular ship-based measurements1209

through the Northeast Shelf LTER (NES-LTER) program as well as satellite-based1210

observations, not only are these data instrumental to advancing algorithms to1211

retrieve phytoplankton taxonomy, but they also advance our understanding of how1212

climate variability impacts phytoplankton communities and, ultimately the food1213

web (Hunter-Cevera et al., 2021). Moreover, phytoplankton observations can be1214

used to derive estimates of C-phyto, which are necessary for the development1215

and validation of C-phyto algorithms by linking C-phyto to measured optical1216

properties and considering the diversity and variation of phytoplankton and other1217

optical constituents. Other sites, such as the Palmer Station Antarctic LTER and1218

the BATS station have included regular observations of phytoplankton taxonomy1219

and bio-optics as part of their sampling strategies and these data may also be1220
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used for C-phyto estimations and algorithm development (Casey et al., 2013;1221

Nardelli et al., 2022). Similarly, at the Acqua Alta Oceanographic LTER site1222

(AAOT; www.ismar.cnr.it), located in the Gulf of Venice (Mediterranean Sea),1223

several essential ocean variables (EOVs) including phytoplankton taxonomy have1224

been collected for decades (Acri et al., 2020) and these observations have been1225

recently empowered with an IFCB for continuous measurements. AAOT is also1226

an AERONET and HYPERNET site and used for CAL/VAL activities of OCR1227

satellites (Concha et al., 2021). Moving forward, we must empower additional1228

observatories, such as those used for water quality assessment, and expand the1229

range of data they collect, to strive towards the collection of the entire size spec-1230

trum of phytoplankton required for satellite C-phyto algorithms (e.g., microscopy,1231

imaging-in-flow cytometry, flow cytometry). Supersite measurements could even1232

be complemented by dedicated mesocosm experiments that will help to improve1233

the mechanistic understanding of the relationship between C-phyto and optical1234

properties. In addition, these data sets can be used to derive reliable uncertainties1235

in in-situ C-phyto data. A future network of these supersites could be established1236

to be representative of global scales, and not only collect data at the surface but1237

also throughout the euphotic zone and beyond.1238

Another opportunity is to improve the global distribution of optical property1239

measurements used as input of C-phyto algorithms by empowering validation1240

through continuous underway optical measurements (e.g. Slade et al., 2010;1241

Brewin et al., 2016; Rasse et al., 2017; Burt et al., 2018) and autonomous mobile1242

platforms such as BGC-Argo profiling floats and Lagrangian drifters (e.g., Abbott1243

et al., 1990; Boss et al., 2008; Sauzède et al., 2016; Bisson et al., 2019; Xing1244

et al., 2020). For the latter, these robotic platforms allow the acquisition of optical1245

data with limited spatial and temporal bias, as they also collect data in remote1246

regions, even during meteorological conditions that are unfavourable for ship-1247

based sampling (Organelli et al., 2017). Optical data from these platforms, or1248

similar technologies, have been used to derive bulk properties, such as diffuse1249

attenuation (Kd), Chl-a, CDOM and POC, and are a source of sub-surface data,1250

complementary to the surface data from satellites. As hyperspectral data can1251
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help resolve estimates on the composition (type and size) of phytoplankton1252

(Chase et al., 2013; Liu et al., 2019), integrating autonomous instrumentation with1253

hyperspectral capabilities (Jemai et al., 2021; Organelli et al., 2021) can provide1254

insight into phytoplankton composition in the illuminated part of the water column1255

(Bracher et al., 2020). Efforts to enlarge the optical multi-platform data acquisition,1256

and to develop protocols for the derivation of high-quality C-phyto data sets, must1257

be taken since these have the potential to fill the gap of C-phyto information below1258

the first optical depth and provide information on phytoplankton photoacclimation1259

(see C-phyto priority 3). Additionally, there maybe future possibilities to connect1260

genetic level information, and at the particle/organismal level, with phytoplankton1261

carbon properties (Braakman et al., 2017).1262

3.3.3. C-phyto priority 2: Satellite algorithm retrievals1263

Challenges: Backscattering is an optical property that has been linked to1264

C-phyto. However, particle backscatter includes all particles, not just phytoplank-1265

ton and it is challenging to separate phytoplankton from non-living particles,1266

without complementary information such as microscopic or flow cytometric data.1267

Additionally, we should strive to increase the accuracy of backscattering retrievals1268

from space, itself a challenging task. Correcting the remote sensing reflectance1269

for Raman scattering prior to semi-analytical retrievals has shown some promise1270

for improving quality of back-scattering retrievals (Westberry et al., 2013; Lee1271

et al., 2013; Pitarch et al., 2019).1272

Chl-a, both satellite-derived and in situ, is often used in models that relate1273

particle backscatter to C-phyto through empirical relationships. However, the1274

uncertainties within these empirical relationships are increased by the influence of1275

phytoplankton composition and the physiological state of phytoplankton driving1276

photoacclimation, i.e., the adjustment of Chl-a in response to light, particularly in1277

the surface ocean, and uncertainties in Chl-a measurements. In addition, in low1278

phytoplankton biomass regions, such as in the subtropical gyres, uncertainties in1279

both satellite retrieved optical properties and Chl-a can be large.1280

Gaps: There is a gap in our mechanistic understanding of how optical proper-1281

ties link to C-phyto, considering the diversity of phytoplankton composition and1282
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their physiological state, and the other optically significant substances that can1283

have an impact on the optical properties.1284

Each of the methods, models and algorithms, have uncertainties, either in-1285

herent or owing to the input data, which are infrequently reported. As such,1286

there are gaps in our knowledge of the accuracy of our models and algorithms1287

to derive C-phyto, which includes uncertainties associated with direct or indirect1288

measurements of in-situ C-phyto.1289

Opportunities: There are opportunities to produce long time-series of C-1290

phyto data using merged ocean-colour datasets (e.g., OC-CCI (https://www.1291

oceancolour.org), GlobColour (https://www.globcolour.info), and Copernicus1292

Marine (https://marine.copernicus.eu); Maritorena et al., 2010; Sathyendranath1293

et al., 2019a; Kostadinov et al., 2022), or by adapting algorithms to operate on1294

different ocean colour sensors that cover different time spans (e.g., since 19791295

until today; Oziel et al., 2022). These products should include pixel-by-pixel1296

uncertainties. C-phyto satellite algorithms may be improved by using synergistic1297

information on the abundance and composition of the different optical components1298

(phytoplankton, NAP, CDOM), which may lower the uncertainties in C-phyto1299

retrievals.1300

There are also opportunities to improve C-phyto products by exploring the1301

combined use of satellite data with ecosystem modelling. Directly using satellite1302

Chl-a or phytoplankton community-specific Chl-a for evaluation or assimilation1303

in (coupled-ocean-) biogeochemical models could be a promising avenue for1304

deriving C-phyto (IOCCG, 2020). Other exciting avenues of research include1305

combining models of photoacclimation with size-based approaches (Sathyen-1306

dranath et al., 2020), that can be reconciled with models of PP, meaning the1307

carbon pools and fluxes are produced in a consistent manner.1308

3.3.4. C-phyto priority 3: Vertical structure1309

Challenges: Considering the difficulties in measuring C-phyto in situ (see1310

C-phyto priority 1) is it very challenging to collect, aggregate and produce an1311

in-situ dataset that is representative of entire euphotic depth and beyond at global1312

scale, required for understanding distributions in C-phyto.1313
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Gaps: Since current satellite ocean colour techniques are limited to passive1314

radiometry which only delivers information from the first optical depth, the1315

collection of in-situ C-phyto data for validation of satellite products has been1316

largely limited to discrete water sampling at surface depths. For a complete1317

understanding of the role of C-phyto in the ocean carbon cycle, it is imperative that1318

we extend measurements deeper into the water column, encompassing the entire1319

euphotic zone. Parametrisations have been developed to extrapolate the satellite1320

ocean colour fields on the first optical depth to derive the chl-a concentration1321

(Morel and Berthon, 1989) or the contribution of phytoplankton size classes (Uitz1322

et al., 2006) for the entire euphotic depth. Similarly, approximations based on in1323

situ data sampling of the vertical profile of phytoplankton carbon are needed.1324

Opportunities: There are potential opportunities to use autonomous plat-1325

forms such as BGC-Argo floats (Claustre et al., 2020), undulating profilers1326

(Bracher et al., 2020) and moorings (Von Appen et al., 2021), together with1327

satellite passive (ocean colour) and active (lidar) remote-sensing and modelling1328

(e.g. through data assimilation), to help reconstruct, via techniques like artificial1329

intelligence, the 4D view of C-phyto, to better observe phytoplankton biomass1330

dynamics below the ocean surface (e.g., Brewin et al., 2022). Quantum computing1331

may help in this regard.1332

3.4. Dissolved Organic Carbon (DOC)1333

DOC is ubiquitous in the ocean and represents a considerable reservoir of1334

carbon, at around 662 Gt C, approximately the size of the atmospheric CO2 pool1335

(Hansell et al., 2009). Marine DOC is also a dynamic carbon component, that ful-1336

fills important biogeochemical and ecological functions, and connects terrestrial1337

landscapes (Anderson et al., 2019), freshwater and marine ecosystems and the1338

atmosphere (Carlson and Hansell, 2015; Anderson et al., 2019). Continuously1339

and accurately quantifying DOC stocks and fluxes in the ocean is critical to our1340

understanding of the global role of DOC and its susceptibility to change.1341
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3.4.1. State of the art in DOC1342

In recent years, synoptic monitoring of DOC has been attempted using optical1343

techniques and Earth Observation. A wide range of methods have been trailed,1344

mainly empirical, including linear regressions, artificial neural network algorithm,1345

random forest classification, and gradient boosting. These approaches typically1346

estimate DOC concentration using single or multiple variables, including: remote-1347

sensing reflectance, remotely-sensed CDOM absorption coefficients, sea-surface1348

salinity, SST, chlorophyll-a concentration, and modelled mixed layer depths. For1349

an in-depth review of the status of DOC monitoring, the reader is referred Section1350

4.1.2. of Brewin et al. (2021) and the recent review of Fichot (Under Review).1351

Four key priorities were identified following presentations and discussions at1352

the workshop. These are summarised in Table 6 and include: 1) temporal coverage1353

of the coastal ocean; 2) understanding the relationship between CDOM and DOC;1354

3) identification of sources and reactivity; and 4) vertical measurements.1355

3.4.2. DOC priority 1: Spatial and temporal coverage of the coastal ocean1356

Challenges: The remote sensing of DOC in the surface ocean is facilitated1357

by the optical detection of CDOM (the coloured component of dissolved matter),1358

particularly in the coastal ocean, where DOC and CDOM can be tightly correlated1359

(Ferrari et al., 1996; Vodacek et al., 1997; Bowers et al., 2004; Fichot and Benner,1360

2012; Tehrani et al., 2013). In such cases, the detection of DOC from space relies1361

on the optical detection of CDOM absorption coefficients, ag(λ), from remote-1362

sensing reflectance, followed by the estimation of DOC from ag(λ). However, as1363

coastal regions are highly dynamic and heterogenous, quantifying DOC stocks and1364

fluxes require satellite optical monitoring systems with high temporal and spatial1365

coverage, and accurate atmospheric correction (e.g., separating the contribution of1366

Rayleigh scattering in the atmosphere is particularly important for DOC retrievals;1367

Juhls et al., 2019), both of which are challenging. High latitudes, where high1368

loads of DOC are transported from rivers into the sea (e.g., Arctic rivers, Baltic)1369

are difficult to view using passive ocean colour satellites in winter months.1370

Gaps: At present, accurate estimates of DOC stocks and fluxes in coastal1371
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environments are severely limited by the temporal coverage of existing ocean-1372

color satellites. Current satellites offer revisit times of about five times per week,1373

at best (though this depends on latitude and time of year). More appropriate1374

revisit times for nearshore coastal waters would need to be an order of magnitude1375

higher (e.g., ideally 3-5 times per day) to adequately capture the dynamics of1376

DOC and facilitate the accurate estimation of DOC fluxes across the boundaries1377

of coastal systems. This is especially important for the nearshore regions of the1378

coastal ocean which can be strongly influenced by tides, currents, and rivers.1379

Opportunities: With the advent of geostationary ocean-colour satellites, such1380

as GOCI and the upcoming hyperspectral NASA GLIMR, capable of imaging1381

multiple times daily, there are exciting opportunities to address these challenges1382

and gaps at regional scales (e.g., see Huang et al., 2017). NASA’s GLIMR1383

(launch expected in 2027) will help quantify DOC stocks and fluxes in coastal1384

environments of the continental USA and in targeted regions of coastal South1385

America (e.g., Amazon River outflow, Orinoco River Outflow) by providing1386

multiple observations per day (hourly), at around 300 m resolution. Reflectances1387

from GLIMR will also be hyperspectral (10 nm resolution) across the UV-NIR1388

range (340 -1040 nm) and will therefore provide the opportunity for improved1389

accuracy of DOC concentration retrievals. We recommend continuing efforts1390

towards deploying additional geostationary and hyperspectral satellites to improve1391

the lack of good temporal coverage in other coastal regions around the world.1392

High spatial resolution satellites (such as Sentinel-3 and Sentinel-2/Landsat), and1393

potential future constellations of Cubesats (e.g., SeaHawk/HawkEye; Jeffrey et al.,1394

2018), may also help in this regard.1395

3.4.3. DOC priority 2: Understanding and constraining the relationship between1396

CDOM and DOC1397

Challenges: Improvements in satellite CDOM absorption retrievals are1398

needed, with uncertainties in algorithms often higher than other IOPs derived1399

from ocean colour data (Brewin et al., 2015b). The relationships between DOC1400

and CDOM absorption, commonly used to quantify stocks of DOC in coastal1401

regions, tends to be variable seasonally and across coastal systems (Mannino1402
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et al., 2008; Massicotte et al., 2017; Cao et al., 2018). Furthermore, the dynamics1403

of CDOM and DOC are largely decoupled in the open ocean (Nelson and Siegel,1404

2013), making the accurate remote sensing of DOC concentration challenging in1405

much of the open ocean.1406

Gaps: There are gaps in our understanding of the relationship between DOC1407

and CDOM absorption coefficients that need to be addressed, for example, rela-1408

tionships are likely to depend on the type of river system studied, and its optical1409

constituents. There are also gaps in our understanding of the various physical1410

and biogeochemical processes that impact differently CDOM absorption and1411

DOC, depending on DOC quality (e.g., Miller and Moran, 1997; Tzortziou et al.,1412

2007; Helms et al., 2008). This will improve our understanding of regional and1413

seasonal variability in the relationship among these variables, and consequently1414

improve DOC estimates from space. Additionally, there is a lack satellite UV and1415

hyperspectral data for resolving DOC and its composition.1416

Opportunities: We recommend the community work towards improving this1417

understanding through a combination of the following four efforts.1418

• Utilise the spectral slope of CDOM absorption, S 275−295, to constrain the1419

variability between CDOM and DOC in the ocean and improve empirical1420

algorithms. In river-influenced coastal systems, S275−295 has been shown1421

to be a useful parameter to constrain the variability between CDOM and1422

DOC (Fichot and Benner, 2011; Cao et al., 2018). It has also been shown1423

that this parameter can be retrieved empirically with reasonable accuracy1424

from ocean colour, therefore providing a means to improve DOC retrievals1425

(Mannino et al., 2008; Fichot et al., 2013, 2014; Cao et al., 2018). Future1426

studies could look into developing similar approaches for other regions1427

of the ocean. Retrievals of S275−295 requires very accurate atmospheric1428

correction, which is challenging in coastal waters.1429

• Develop mechanistic models of the processes regulating the relationship1430

between CDOM and DOC, by integrating new insight on the effects of pho-1431

tobleaching. Recent efforts have quantified and included in biogeochemical1432
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models (e.g., Clark et al., 2019) the effects of photobleaching on CDOM1433

absorption coefficient spectra, which in turn, may improve our ability to1434

constrain the relationship between CDOM and DOC (Swan et al., 2013;1435

Zhu et al., 2020). Similar efforts should be conducted for understanding1436

other processes such as the marine biological net production of DOC. A1437

quantitative appreciation of these processes is also critical to understand1438

the influence of climate-driven change on the relationship between CDOM1439

and DOC.1440

• Harness opportunities to acquire high-quality field measurements of DOC1441

and CDOM absorption across different seasons and marine environments.1442

This could be achieved by tapping into field campaigns that collect IOPs1443

and apparent optical properties (AOPs) for satellite validation, and perform1444

additional concurrent sampling for DOC. Many field datasets include mea-1445

surements of CDOM absorption coefficients but lack DOC measurements.1446

It should be noted, however, that while many labs have the capability to1447

measure CDOM, much fewer labs can measure DOC. Coordinated efforts1448

should therefore be considered to ensure that CDOM and DOC are mea-1449

sured together as often as possible. This could be aided by the development1450

of semi-automative methods to measure DOC, that could be used alongside1451

similar techniques for measuring CDOM absorption (e.g., Dall’Olmo et al.,1452

2017), which could facilitate the development of improved satellite DOC1453

algorithms.1454

• Harnessing new satellite sensors for CDOM and DOC retrievals. For exam-1455

ple, consideration in the allocation and characteristics of spectral wavebands1456

for DOC studies has also gone into the development of NASA’s PACE mis-1457

sion (Werdell et al., 2019). Harnessing optical water type frameworks for1458

algorithm selection, may also lead to better separation of NAP-CDOM1459

absorption. Within the ESA project Sentinel-5-P for Ocean Colour Prod-1460

ucts (S5POC), Kd at three wavelengths (UV-AB, UV-A and short blue)1461

were developed (Oelker et al., 2022), which could help provide insight on1462
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the sources of CDOM. Additionally, there is potential to exploit the high1463

spectral resolution of TROPOMI (e.g., the filling of the Fraunhofer lines by1464

Fluorescent Dissolved Organic Matter (FDOM)) to acquire information on1465

the sources of DOM.1466

3.4.4. DOC priority 3: Identification of source and reactivity1467

Challenges: To quantify the cycling, fate, and impacts of DOC in the ocean,1468

requires identifying specific pools of DOC of different sources and reactivity.1469

This is particularly true for the coastal ocean. There is likely to be large gradients1470

in the sources and reactivity of DOC as we transition from inland waters to coasts1471

and the open ocean.1472

Gaps: Although fluorescence excitation-emission matrix methods have been1473

used as an in-situ optical indicator of dissolved organic matter (DOM) origin and1474

reactivity (Mopper and Schultz, 1993; Kowalczuk et al., 2013), there has been1475

few studies assessing whether the DOM fluoresced signal can be detected from1476

remote-sensing reflectance.1477

Opportunities: We recommend the community puts efforts towards assess-1478

ing whether the fluorescence of DOC and CDOM, originating from specific1479

sources (e.g., riverine, effluent), can have a measurable influence on remote-1480

sensing reflectance. Recent and upcoming hyperspectral sensors (e.g., TROPOMI,1481

GLIMR, PRISMA, PACE, see Table 2) have (or will have) improved signal-to-1482

noise ratio, as well as enhanced spectral information in the UV-visible range,1483

and adequate spatial resolution, that could facilitate detection of the fluorescence1484

signature of certain pools of DOC and CDOM (Wolanin et al., 2015; Oelker et al.,1485

2022; Harringmeyer et al., 2021). Such efforts can be facilitated with radiative1486

transfer simulations (e.g., Hydrolight, www.hydrolight.info, and SCIATRAN,1487

https://www.iup.uni-bremen.de/sciatran/). However, fluorescence signature of1488

DOC is currently not well understood, and we require a better quantitative knowl-1489

edge of the fluorescence quantum yield matrix of DOC and CDOM and how it1490

varies with specific DOM sources (Wünsch et al., 2015).1491

Active remote-sensing approaches based on laser-induced fluorescence could1492

also potentially facilitate the sourcing of DOM in the surface ocean. Airborne1493

50



laser-based measurements of DOM have been used in the past, but these only used1494

a single excitation-emission wavelength pair and were used to specifically measure1495

DOC (Hoge et al., 1993; Vodacek, 1989). The use of multiple, carefully chosen1496

excitation-emission wavelength combinations could potentially help identify1497

specific pools of DOM with unique fluorescence signatures.1498

3.4.5. DOC priority 4: Vertical measurements1499

Challenges: The remote sensing of CDOM and DOC is limited to surface1500

measurements. Accurately extrapolating these measurements to depth requires1501

understanding of vertical variability. At present, depth variability is generally1502

assumed or estimated using empirical or statistical approaches (e.g., neural net-1503

works) trained with field observations (Mannino et al., 2016).1504

Gaps: Approaches that extrapolate surface DOC and CDOM to depth require1505

extensive in-situ datasets (vertical profiles) of DOC and CDOM, representative of1506

a wide range of conditions. Though efforts have been made in this regard (Nelson1507

and Siegel, 2013; Hansell, 2013), gaps exist for many regions and seasons.1508

Opportunities: In-situ measurements from autonomous platforms like BGC-1509

Argo equipped with DOM-fluorescence sensors can provide valuable informa-1510

tion about the depth-dependency of DOM in the ocean (Claustre et al., 2020).1511

BGC-Argo radiometric measurements in the UV can also be used to get CDOM1512

absorption proxies (Organelli et al., 2017; Organelli and Claustre, 2019). Re-1513

cently, projects such as AEOLUS COLOR (CDOM-proxy retrieval from aeOLus1514

ObseRvations), have focused on developing UV-lidar-based techniques to retrieve1515

sub-surface information about CDOM in the ocean (Dionisi et al., 2021). The1516

ESA AEOLUS mission is a UV-lidar (355 nm) mission originally designed for the1517

retrieval of atmospheric properties, but the UV capabilities of this active sensor1518

provides an opportunity to retrieve in-water properties of CDOM. We recommend1519

that the community continue to explore original ideas to improve the detection1520

of CDOM and DOC below the surface. There are also opportunities to harness1521

mechanistic modelling approaches (physical and biogeochemical modelling) to1522

improve estimation of DOC dynamics at depth (Mannino et al., 2016).1523
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3.5. Inorganic carbon and fluxes at the ocean interface (IC)1524

Unlike organic carbon, consisting primarily of organic compounds such as1525

lipids, proteins and nucleic acids, inorganic carbon consists of simple compounds1526

such as carbon dioxide, bicarbonate, carbonate and carbonic acid. Inorganic1527

carbon in the ocean can be partitioned into dissolved (DIC) and particulate1528

(PIC) form. Although these two could be treated separately in a review of this1529

nature, they are intimately linked, considering DIC can be transferred to PIC1530

through biological (e.g., planktonic fixation and osmoregulation) or abiotic (e.g.,1531

aragonite) formation of calcium carbonate (CaCO3), and PIC to DIC through1532

the dissolution of CaCO3. These processes impact the CO2 concentration of the1533

water, its alkalinity and pH.1534

Relative to DIC, PIC is a small pool of carbon at around 0.03 Gt C (Hopkins1535

et al., 2019), but annual production is considered highly variable and estimated1536

to be of the order 0.8-1.4 Gt C y−1 (Feely et al., 2004). PIC is present in the1537

form of particulate CaCO3, with coccolithophores, pteropods, foraminifera and1538

PIC-containing sediments, thought to be the main sources of PIC in the ocean1539

(Schiebel, 2002; Feely et al., 2004; Buitenhuis et al., 2019). Despite its biological1540

growth the formation of PIC has the net-effect of shifting the carbonate chemistry1541

towards higher CO2 in the water and decreasing its pH (Zeebe and Wolf-Gladrow,1542

2001; Rost and Riebesell, 2004; Zeebe, 2012). The reader is referred to the recent1543

review of Neukermans et al. (2023), for a more detailed description of our current1544

understanding of the influence of PIC production on carbon cycling.1545

In contrast, DIC constitutes the largest pool of carbon in the ocean, at around1546

38,000 Gt C (Hedges, 1992), and connects carbon in the ocean with the atmo-1547

sphere and with the land. CO2 dissolves in seawater and reacts with water to1548

form carbonic acid (H2CO3). Carbonic acid is unstable and dissociates into bi-1549

carbonate (HCO−3 ), carbonate (CO2−
3 ) and protons (H+). The equilibrium among1550

these forms controls ocean pH. From a biological viewpoint the gaseous quantity1551

of CO2 in seawater, pCO2, is modulated by photosynthesis (PP) and respiration1552

(mineralization) which is captured within net community production estimates.1553

The flux or movement of CO2 between ocean and atmosphere is often de-1554
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scribed using a formation first described by Liss and Slater (1974), which can be1555

expressed as Flux= kK0(pCO2,w − pCO2,a) (Wanninkhof, 2014); where k is the1556

gas transfer velocity (equivalent to the inverse of the resistance to gas transfer), K01557

is the constant of solubility of gas, and (pCO2,w−pCO2,a) is the difference between1558

the CO2 partial pressures in the ocean and the atmosphere (∆pCO2), respectively1559

(see Woolf et al., 2016, for discussion on how best to derive ∆pCO2). Ocean1560

temperature, and to a less extent salinity, is a strong modulator of the solubility of1561

CO2 in seawater (Takahashi et al., 2009) and is thus an important parameter for1562

influencing oceanic pCO2 variability. k is often parameterised as a function of1563

wind speed and temperature (e.g., Schmidt number; Wanninkhof, 2014).1564

3.5.1. State of the art in inorganic carbon and air-sea fluxes1565

Methods to remotely sense PIC have focused on individual or multi-spectral1566

band optical detection of coccolithophores (Gordon et al., 2001; Balch et al., 2005;1567

Mitchell et al., 2017), with some using time series to improve data consistency1568

(Shutler et al., 2010). Due to their unique optical signature (when the plankton1569

dies coccoliths are detached causing the water to appear spectrally white), coccol-1570

ithophore blooms have been mapped via satellite ocean colour since the launch of1571

NASA’s CZCS satellite sensor (Holligan et al., 1983; Brown and Yoder, 1994) and1572

the Advanced Very High Resolution Radiometer (AVHRR) in 1978 (Groom and1573

Holligan, 1987; Smyth et al., 2004; Loveday and Smyth, 2018). The challenges of1574

detection include: detecting coccolithophores and their associated PIC at low con-1575

centrations (or prior to their coccoliths becoming detached), during bloom events,1576

in the presence of bubbles (e.g., in the Southern Ocean; Randolph et al., 2014),1577

and to remove the effects of suspended particulates that exhibit similar spectral1578

properties in shelf seas (Shutler et al., 2010). Laboratory and field observations1579

(Voss et al., 1998; Balch et al., 1999, 1996; Smyth et al., 2002) have informed1580

PIC algorithm development for determining calcite concentrations by relating1581

coccolithophore abundance and morphology to PIC concentrations. Currently1582

NASA Ocean Biology Distributed Active Archive Centre (DAAC) distributes1583

a PIC concentration product that merges Balch et al. (2005) and Gordon et al.1584

(2001), and there is also a developmental PIC product available (Mitchell et al.,1585
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2017).1586

DIC and other key carbonate system variables (e.g., total alkalinity (TA),1587

pH, and pCO2) are more challenging to determine from satellite observations1588

as they do not have a unique spectral signature. However, alkalinity is strongly1589

conservative with salinity so this has led to the development of many regional1590

relationships to predict TA from salinity (e.g., Cai et al., 2010; Lefévre et al.,1591

2010) and DIC from salinity and temperature (e.g. Lee et al., 2006), as well as1592

global relationships using a suite of physical and chemical variables (e.g., Sasse1593

et al., 2013) and their application to satellite remote sensing has been identified1594

(Land et al., 2015). For example, total alkalinity has been estimated using the1595

strong relation with sea surface salinity (SSS) which in the last decade has been1596

measured by different satellites, such as ESA’s Soil Moisture and Ocean Salinity1597

satellite (SMOS; Reul et al., 2012), NASA/Comision Nacional de Actividades1598

Espaciales (CONAE) Aquarius (Lagerloef et al., 2013), and NASA’s Soil Moisture1599

Active Passive satellite (SMAP; Tang et al., 2017). More recently, efforts to1600

combine physical and optical satellite ocean observations with climatological1601

and re-analysis data products has opened the door to remote estimation of the1602

complete marine carbonate system via regional and global relationships as well as1603

new machine learning methods and carbonate system calculation packages (e.g.,1604

Land et al., 2019; Gregor and Gruber, 2021).1605

Large scale air/sea flux estimates typically make use of the Surface Ocean1606

CO2 ATlas (SOCAT, https://www.socat.info/index.php/data-access/; Bakker et al.,1607

2016) and/or global climatologies of surface seawater pCO2 using data interpo-1608

lation/extrapolation and neural network techniques (e.g., Takahashi et al., 2009;1609

Rödenbeck et al., 2013; Landschützer et al., 2020) to produce spatially and tem-1610

porally complete fields. These pCO2 fields can be coupled with satellite retrievals1611

of SST, wind speed, and other variables, to calculate the air-sea CO2 flux (e.g., as1612

demonstrated with the FluxEngine toolbox; Shutler et al., 2016). A key parameter1613

for the calculation of the air-sea CO2 fluxes is the xCO2 fraction in air. Global cov-1614

erage of atmospheric CO2 estimates is available from multiple satellite missions1615

(e.g., Greenhouse gases Observing SATellite (GOSAT) 2009-present, Orbiting1616

54



Carbon Observatory-2 (OCO-2) 2014-present, and OCO-3 2019-present). Satel-1617

lite observations have been combined with model output to estimate pCO2 and1618

air-sea flux (e.g., Arrigo et al., 2010) and estimates of pCO2 and air-sea flux have1619

been achieved solely from satellite observations (e.g., Ono et al., 2004; Borges1620

et al., 2009; Lohrenz et al., 2018). It is also possible to calculate seawater pCO21621

from observations of TA and DIC and using marine carbonate system calculations1622

(e.g., Humphreys et al., 2022). For a more in-depth review of status of using1623

satellite remote sensing for determining inorganic carbon and fluxes at the ocean1624

interface, the reader is referred to Shutler et al. (Submitted).1625

Modelling studies can also help inform satellite approaches. They have been1626

used to evaluate the drivers of the marine carbonate system (e.g., Lauderdale1627

et al., 2016) and examine potential impacts of extreme and compound events1628

(e.g., Salisbury and Jönsson, 2018; Burger et al., 2020; Gruber et al., 2021).1629

Seawater pCO2 and air-sea CO2 fluxes can also be estimated using dynamic ocean1630

biogeochemical models (Hauck et al., 2020) and data-assimilation-based models1631

(e.g., Verdy and Mazloff, 2017). Estimating the Circulation and Climate of the1632

Ocean Darwin model (ECCO-Darwin) (Carroll et al., 2020, 2022) is one such1633

example which is initialised with a suite of physical variables, biogeochemical1634

properties and also TA and DIC from datasets such as Global Ocean Data Analysis1635

Project (GLODAP). It assimilates a combination of physical and biogeochemical1636

data to produce physically conserved properties. As such models continue to1637

evolve, it will be increasingly possible to use them to assess regional and global1638

scale carbon inventories as well as fluxes and evaluate them with satellite-based1639

products.1640

At the workshop, four priorities were identified in relation to the detection of1641

inorganic carbon and the air-sea flux of CO2 from space (summarised in Table1642

7), including: 1) in-situ data; 2) satellite retrievals and mapping uncertainty; 3)1643

models and data integration; and 4) mechanistic understanding of gas transfer.1644

3.5.2. IC priority 1: In-situ data1645

Challenges: Considering many components of inorganic carbon are not di-1646

rectly observable from space, there is a strong reliance on in-situ data. Integrating1647
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in-situ data products with satellite data is challenging, owing to large differences1648

in spatial and temporal resolution. Furthermore, it can be challenging to integrate1649

in-situ datasets from different sources and collaborators, without community1650

consensus on best practices and consistent use of traceable reference materials1651

and consistent standards.1652

Gaps: Improved spatial and temporal coverage of field observations in key1653

regions and times, not only at the surface but also the full water column, is1654

an essential requirement for the development, validation and use of satellite-1655

based IC approaches. Although there are some existing programs to monitor1656

pCO2 from ships (e.g., SOCAT), air-sea CO2 flux assessments are spatially and1657

temporally limited by the extent and number of the in-situ data that underpin1658

them. Additionally, our understanding of long-term changes in pCO2 and fluxes,1659

in key ocean regions (e.g., the Southern Ocean), is limited by a lack of in-situ1660

data time-series stations (Sutton et al., 2019). At present, there is no dedicated1661

framework for sustained, long-term monitoring of seawater pCO2 (particularly in1662

South Ocean which contributes around 40 % of the anthropogenic carbon uptake)1663

which is concerning as without these satellite methods are limited, though some1664

satellite products like wind may still reveal insights into pCO2 dynamics.1665

There are also gaps in our ability to assure consistent quality of these in-situ1666

observations. For example, TA and DIC observations require a certified reference1667

material (Dickson, 2010), that needs to be sustained into the future (at present1668

there is only one laboratory able to produce it). Community-wide agreement on1669

best practices and approaches is needed for measurements that enable accurate1670

estimation of air-sea CO2 fluxes.1671

Opportunities There are opportunities to improve the spatial and temporal1672

resolution of in-situ data through autonomous platforms, such as BGC-Argo floats1673

(Williams et al., 2017; Bittig et al., 2018; Claustre et al., 2020) and autonomous1674

surface vehicles or sail drones (Sabine et al., 2020; Chiodi et al., 2021; Sutton et al.,1675

2021). Furthermore, as technology and instrumentation continues to advance,1676

there are opportunities to develop and integrate new sensors on these platforms,1677

such as exploiting polarimetry to detect PIC (Bishop et al., 2022). There may be1678
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opportunities to extend recent efforts to develop Fiducial Reference Measurements1679

(FRM) for satellite products (e.g., Le Menn et al., 2019; Banks et al., 2020;1680

Mertikas et al., 2020) to in-situ measurements of inorganic carbon. This could1681

help towards generating robust, community-accepted processes and protocols,1682

needed to satisfy issues related to integrating in-situ datasets from different1683

sources.1684

3.5.3. IC priority 2: Satellite retrievals and mapping uncertainty1685

Challenges: Estimating some components of the inorganic carbon cycle1686

in optically-complex water is challenging. For example, current PIC satellite1687

products are global and are not as accurate in environments where other highly1688

scattering materials are present (e.g., coastal shelf seas, but see Shutler et al.,1689

2010, who used of machine learning and computer vision approaches), and can1690

be flagged as clouds. For all inorganic products (including TA and, ∆CO2) there1691

are also trade-offs related to retaining the use of satellite algorithms based on1692

theoretical understanding, and harnessing new powerful empirical (black box)1693

approaches, such as machine learning.1694

Gaps: The lack of pixel-by-pixel uncertainty estimates in the satellite prod-1695

ucts, for all components of the inorganic carbon cycle and carbonate system, is a1696

major gap that needs to be addressed. There is a crucial lack of coincident in-situ1697

observations of PIC concentrations and other highly scattering materials, along1698

with full spectral measurements of specific inherent optical properties for PIC,1699

needed to improve PIC concentration estimates in optically complex water.1700

Opportunities: Plans for improved spatial, spectral and temporal resolution1701

of satellite sensors will likely lead to improvements in IC satellite products.1702

For example, in optically complex waters, hyperspectral satellite data may help1703

differentiate among particles that scatter light with high efficiency, and lead to1704

improved PIC products. Information on light polarisation (e.g. from PACE) may1705

also be useful for improving PIC algorithms. There may be opportunities to1706

harness and build on recent techniques used to map uncertainty in satellite organic1707

carbon products (e.g., Evers-King et al., 2017; Martínez-Vicente et al., 2017;1708

Brewin et al., 2017a; IOCCG, 2019) for the mapping of uncertainty in satellite1709
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inorganic carbon products and flux estimates.1710

3.5.4. IC priority 3: Models and data integration1711

Challenges: Bridging the differences in spatial and temporal scales in data1712

products and models, and differences in units (e.g. what is measured versus1713

what is represented in the models), is a major challenge in producing accurate1714

inorganic carbon and flux products. There are also challenges in extrapolating1715

pCO2 observations to the surface and horizontally (see Woolf et al., 2016).1716

Gaps: Closer collaboration between data generators and modellers is required1717

to improve the development of satellite-based inorganic carbon products for1718

integration into Earth System Models (Cronin et al., 2022).1719

Opportunities: Enhanced computer processing power (e.g., quantum com-1720

puting), and the development of new statistical tools for big data (e.g., machine1721

learning), offer opportunities to improve model and data integration. There are1722

opportunities to improve model products by reconciling model carbon budgets1723

with both satellite and in-situ observations, for example, by constraining the dif-1724

ferent terms within the budget. Increases in the amount of data produced from a1725

range of sources (models, satellites, ships, autonomous platforms, etc.) mean that1726

improved links among biogeochemical, physical, optical and biological data could1727

help improve data products (e.g., Bittig et al., 2018). Additionally, assimilation1728

of these large dataset into models could improve reanalysis products, providing1729

accurate, high resolution pCO2, DIC and TA estimations on local, regional and1730

global scales (Verdy and Mazloff, 2017; Rosso et al., 2017; Carroll et al., 2020,1731

2022).1732

There is a key opportunity to pursue a full and routine integration of in-situ,1733

model, and satellite observations to enable routine assessment of the surface water1734

pCO2, air-sea exchange and the net integrated air-sea flux (or ocean sink) of1735

carbon. This has been highlighted previously and is needed to support policy1736

decisions for reducing emissions (Shutler et al., 2019).1737

3.5.5. IC priority 4: Mechanistic understanding of gas transfer1738

Challenges: Air-sea gas transfer remains a controlling source of uncertainty1739
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within global assessments of the oceanic sink of CO2 (Woolf et al., 2019). Despite1740

significant progress in our ability to measure gas exchange, our mechanistic1741

understanding of gas transfer is incomplete (see Yang et al., 2022b).1742

Gaps: There is a need to move away from wind speed as a proxy for air-sea1743

transfer (Shutler et al., 2019) as many other processes control the transfer includ-1744

ing wave breaking, surfactants and bubbles and new advances in understanding1745

are now being made (e.g. Bell et al., 2017; Blomquist et al., 2017; Pereira et al.,1746

2018). The carbon dynamics and air-sea CO2 fluxes within mixed sea ice regions1747

provides further complexities and are poorly understood (see Gupta et al., 2020;1748

Watts et al., 2022) and these regions are expected to grow with a warming climate1749

which illustrates a major gap in understanding.1750

There are large uncertainties surrounding the influence of near surface tem-1751

perature gradients on air-sea CO2 fluxes (see Watson et al., 2020; Dong et al.,1752

2022), and the role of wave breaking, bubbles and turbulence (see Bell et al.,1753

2017; Blomquist et al., 2017).1754

Opportunities: State-of-the-art flux measurement techniques, such as eddy1755

covariance (see Dong et al., 2021), need to be established as FRM. There are1756

then opportunities to exploit these techniques on novel platforms and to use novel1757

autonomous technologies to improve understanding of air-sea CO2 fluxes. The1758

novel tools should be applied in a range of environments (e.g., low winds, high1759

winds, marginal ice zones) to understand specific processes. For example, the1760

influence of near surface temperature gradients on air-sea CO2 fluxes is currently1761

only theoretical and needs to be quantified/verified by direct observations. Im-1762

provements in wind speed products could aid in better gas transfer (Taboada et al.,1763

2019; Russell et al., 2021), although satellite-derived gas transfer estimates could1764

also be improved if measures other than wind speed are exploited that provide1765

more direct observations of surface structure and turbulence (e.g., sea state or sea1766

surface roughness using radar backscattering observations, see Goddijn-Murphy1767

et al., 2013).1768
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4. Cross-cutting activities1769

4.1. Blue Carbon (BC)1770

Tidal marshes, mangroves, macroalgae and seagrass beds, collectively referred1771

to as BC ecosystems, are some of the most carbon-dense habitats on Earth. Despite1772

occupying only 0.2 % of the ocean surface, they are thought to contribute around1773

50 % of carbon burial in marine sediments, with a global stock size in the region1774

of 10 to 24 Gt C (Duarte et al., 2013). In addition to providing many essential1775

services, such as coastal storm and sea level protection, water quality regulation,1776

wildlife habitat, biodiversity, shoreline stabilization, and food security, they are1777

highly productive ecosystems that have the capacity to sequester vast amounts of1778

carbon and store it in their biomass and their soils (Mcleod et al., 2011). However,1779

their carbon sequestration capacity, carbon storage, and carbon export, depend1780

on many critical processes, including inundation dynamics, sea level rise, air-1781

and water pollution, changes in salinity regimes, and rising temperatures. All1782

of which are sensitive to human impacts and climate change (Macreadie et al.,1783

2019) with coastal ecosystems being a highly active interface between human and1784

natural infrastructures and a complex mix of natural and anthropogenic processes.1785

The role that blue carbon habitats play in regional and global carbon budgets1786

and fluxes is a big focus in carbon research (Mcleod et al., 2011). One of the1787

biggest unknowns and largest sources of uncertainty in quantifying the role these1788

systems play in global carbon budgets and fluxes, is mapping the spatial extent1789

of BC and how it is changing. Satellites can play a major role in this, but an1790

important distinction compared to green carbon (carbon that is contained in living1791

vegetation and soil of terrestrial forest ecosystems; Mackey et al., 2008), is that1792

the carbon is primarily stored below rather than above ground.1793

4.1.1. State of the art in Blue Carbon1794

Remote sensing technologies are increasingly used for studying BC ecosys-1795

tems, owing to their synoptic capabilities, repeatability, accuracy and low cost1796

(Hossain et al., 2015; Pham et al., 2019b; Campbell et al., 2022). Various tech-1797

niques have been utilised for this purpose, including spectral optical imagery,1798
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synthetic aperture radar (SAR), lidar and aerial photogrammetry (Pham et al.,1799

2019a; Lamb et al., 2021). Of these technologies, high spatial resolution, multi-1800

spectral and hyper-spectral optical imagery are used more commonly, with the1801

Landsat time-series thought to be the most widely-used dataset for studying1802

changes in BC remotely over the past decade (Giri et al., 2011; Pham et al., 2019a;1803

Yang et al., 2022c).1804

In recent years, there has been an increasing use of high resolution Sentinel-21805

and Landsat-8/9 imagery for mapping coastal BC, such as tidal marshes (e.g.,1806

Sun et al., 2021; Cao and Tzortziou, 2021) and mangroves (e.g., Castillo et al.,1807

2017). High frequency and high spatial resolution commercial satellites are1808

also increasingly being used for BC research. For example, the PlanetScope1809

constellation, DigitalGlobe’s WorldView-2, and Planet’s RapidEye satellites, are1810

offering new insights into seagrass mapping (Wicaksono and Lazuardi, 2018;1811

Traganos and Reinartz, 2018; Coffer et al., 2020). Despite being challenged1812

by the optical complexity of nearshore coastal waters, and accurate nearshore1813

atmospheric correction (Ibrahim et al., 2018; Tzortziou et al., 2018), submerged1814

aquatic vegetation habitats are now being studied remotely. For example, Huber1815

et al. (2021) used Sentinel-2 data, together with machine learning techniques1816

and advanced data processing, to map and monitor submerged aquatic vegetation1817

habitats, including kelp forests, eelgrass meadows and rockweed beds, in Denmark1818

and Sweden. Optical satellite remote sensing has been increasingly used for1819

mapping benthic and pelagic macroalgae (e.g., Gower et al., 2006; Hu, 2009;1820

Cavanaugh et al., 2010; Hu et al., 2017; Wang et al., 2018; Schroeder et al., 2019;1821

Wang and Hu, 2021), and has highlighted that macroalgae blooms are increasing1822

in severity and frequency (Gower et al., 2013; Smetacek and Zingone, 2013; Qi1823

et al., 2016, 2017; Wang et al., 2019), with implications for carbon fixation and1824

sequestration (Paraguay-Delgado et al., 2020; Hu et al., 2021).1825

International efforts have focused on translating science into policy, man-1826

agement and finance tools for conservation and restoration of blue carbon1827

ecosystems, for example, through the Blue Carbon Initiative (https://www.1828

thebluecarboninitiative.org). Large scale mapping of ecosystem extent, change,1829

61



and attributes such as carbon, is essential for blue carbon prioritisation and im-1830

plementation at global to local scales, and remote sensing plays a key role in1831

this. For example, Goldberg et al. (2020) used satellite observations to help map1832

mangrove coverage and change, and understand anthropogenic drivers of loss.1833

The Global Mangrove Watch global mangrove forest baseline (taken as the year1834

2010) was recently updated (v2.5) and has resulted in an additional of 2,660 km2,1835

yielding a revised global mangrove extent of 140,260 km2 (Bunting et al., 2022).1836

However, this needs to be built upon for BC as different species will have different1837

below-ground biomass. Therefore, the carbon trapping efficiency and carbon1838

uptake needs to be measured and used to calibrate maps of habitat extent. The1839

development of similar tools and baselines for seagrass, salt marsh, and kelp1840

ecosystems is needed. For a recent review on the topic of remote sensing of BC,1841

the reader is referred to Pham et al. (2019a).1842

At the workshop, three priorities were identified in relation to the remote1843

sensing of BC, these are summarised in Table 8 and include: 1) satellite sensors;1844

2) algorithms, retrievals and model integration; and 3) data access and accounting.1845

4.1.2. BC priority 1: Satellite sensors1846

Challenges: Owing to the high temporal variability and heterogeneity of1847

many BC ecosystems (tidal or otherwise), there is a requirement for monitoring1848

at high temporal (hourly) and spatial (tidal) scales. This is challenging with the1849

current fleet of Earth Observing satellites.1850

Gaps: Although Landsat has proven vital for the long-term monitoring of1851

some BC ecosystems (e.g., Ha et al., 2021), there is a lack of long-term satellite1852

datasets for change detection in many BC ecosystems.1853

Opportunities: New sensors and techniques are leading to significant ad-1854

vancements in the spatial and temporal characterization and monitoring of BC1855

ecosystems. New hyperspectral observations (e.g., PACE, GLIMR, PRISMA,1856

DLR Earth Sensing Imaging Spectrometer (DESIS), Environmental Mapping1857

and Analysis Program (EnMAP); NASA’s Surface Biology and Geology (SBG);1858

CHIME) at high to medium resolution and global scale, have the potential to1859

distinguish differences among mangrove, seagrass, salt marsh species, and esti-1860
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mate satellite products relevant to carbon quality. High spatial resolution (3-5 m)1861

imagery from constellations of satellite sensors (e.g., PlanetScope) provides1862

an unprecedented dataset to study vegetation characteristics in BC ecosystems1863

(Warwick-Champion et al., 2022). Multiple images per day from new geosta-1864

tionary satellite instruments (e.g., GLIMR), will allow to capture tidal dynamics1865

in BC ecosystems, and monitor them (e.g., seagrass meadows) under optimum1866

conditions. Additionally, there is scope to build on efforts to develop satellite1867

climate records (e.g., through ESA’s CCI) with a focus on BC, to help develop1868

the long-term data records needed.1869

4.1.3. BC priority 2: Algorithms, retrievals and model integration1870

Challenges: Considering many BC remote sensing approaches are regional,1871

they are not easily applied (or have been tested) at global scale. Owing to the1872

complexity of some of the techniques, uncertainty estimation for carbon fluxes in1873

BC ecosystems is particularly challenging. Regarding the detection of subaquatic1874

vegetation (and some other BC ecosystems), there are large uncertainties in1875

the impact of the atmosphere and water depth on the signal. Considering large1876

quantities of carbon are stored in the sediments of BC habitats, there are challenges1877

to develop direct or indirect satellite techniques to monitor the dynamics of1878

sediment carbon. The lack of models that link carbon storage and cycling in1879

terrestrial and aquatic ecosystems, further challenges our understanding of carbon1880

fluxes and stocks in BC habitats. Sub-pixel variability poses a challenge when1881

monitoring macroalgae using courser resolution satellite data.1882

Gaps: A major gap to improving algorithms and methods, is the limited1883

availability of in-situ data for development and validation. For example, the lack1884

of measurements on rates (e.g., Sargassum carbon fixation and sequestration1885

efficiency) severely limits our ability to quantify large scale BC budgets (e.g., for1886

pelagic macroalgae, see Hu et al., 2021). The lack of basic ecosystem mapping1887

and change detection for seagrasses and kelp forests, limits our ability to extrap-1888

olate these measurements to large scales using remote sensing. The lack of BC1889

ecosystem models limits our ability to quantify full BC carbon budgets (including1890

soil) globally.1891
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Opportunities: With improvements in computation power and statistical1892

analysis of big data (e.g., techniques like machine learning) there is scope to1893

improve satellite algorithms and methods of BC carbon quantification (e.g., Huber1894

et al., 2021). Additionally, fusion of hyperspectral optical and SAR data provides1895

a promising approach for characterization of tidal wetland interfaces, including1896

wetland vegetation characteristics, inundation regimes, and their impact on carbon1897

fluxes. New in-situ monitoring techniques (e.g., drones) are becoming useful to1898

bridge the scales between satellites and in-situ BC monitoring (e.g., Duffy et al.,1899

2018).1900

4.1.4. BC priority 3: Satellite data access and blue carbon accounting1901

Challenges: Existing products and approaches are not easily accessible by1902

users who have limited remote sensing expertise. With the increasing use of com-1903

mercial satellites, there are challenges to ensure cost-effective monitoring using1904

remote sensing techniques to track the progress of rehabilitation and restoration1905

of blue carbon ecosystems.1906

Gaps: There are a lack of products suited to project development and carbon1907

accounting. The remote-sensing science community must work directly with1908

policymakers, conservationists, and others, to ensure advances in such products1909

are tailored to applications and that the tools developed are available broadly1910

and equitably. Products are also now needed on global scales, at higher spatial1911

and temporal resolutions, and in a broader range of ecosystems, to support BC1912

integration into national carbon accounts and to expand the application of carbon1913

financing.1914

Opportunities: There is increasing momentum towards efforts to develop BC1915

habitat mapping portals that are user friendly, for example, see Huber et al. (2021).1916

These developments are needed to support blue carbon based conservation and1917

restoration and have been instrumental in the recent development of blue carbon1918

policy and financing by supporting prioritisation, assessment, and monitoring.1919

4.2. Extreme Events (EEs)1920
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EEs can be defined as events that occur in the upper or lower end of the range1921

of historical measurements (Katz and Brown, 1992). Such events occur in the1922

atmosphere (e.g., tropical cyclones, dust storms), ocean (e.g., marine heatwaves,1923

tsunami’s), and on land (e.g., volcanic eruption, extreme bushfires), affecting1924

marine carbon cycling at multiple spatial-temporal scales (Bates et al., 1998;1925

Jickells et al., 2005; Gruber et al., 2021). With continued global warming in the1926

coming decades, many EEs are expected to intensify, occur more frequently, last1927

longer and extend over larger regions (Huang et al., 2015; Diffenbaugh et al., 2017;1928

Frölicher et al., 2018). Extreme events and their effects on marine ecosystems and1929

carbon cycling can be observed, to some extent, by various methods, including:1930

ships, buoys, autonomous platforms and satellite sensors (e.g., Di Biagio et al.,1931

2020; Hayashida et al., 2020; Le Grix et al., 2021; Wang et al., 2022). Here, we1932

first provide a broad overview of the current state of the art in the topic, before1933

highlighting the priorities identified at the workshop.1934

4.2.1. State of the art in Extreme Events1935

Extremely high temperatures and droughts due to global warming are expected1936

to result in more frequent and intense wildfires and dust storm events in some1937

regions (Huang et al., 2015; Abatzoglou et al., 2019; Harris and Lucas, 2019).1938

Aerosols emitted from wildfire and dust storms can significantly impact marine1939

biogeochemistry through wet and dry deposition (Gao et al., 2019), by supplying1940

soluble nutrients (Schlosser et al., 2017; Barkley et al., 2019), especially essential1941

trace metals such as iron (Jickells et al., 2005; Mahowald et al., 2005, 2011)1942

which can also enhance the export of carbon from the photic zone to depth1943

(Pabortsava et al., 2017). The record-breaking Australian wildfire that occurred1944

between September 2019 and March 2020 was evaluated using a combination of1945

satellite, BGC-Argo float, in-situ atmospheric sampling and primary productivity1946

estimation (Li et al., 2021; Tang et al., 2021; Wang et al., 2022). The wildfire1947

released aerosols that contained essential nutrients such as iron for growth of1948

marine phytoplankton. These aerosols were transported by westerly winds over1949

the South Pacific Ocean and the deposition resulted in widespread phytoplankton1950

blooms. Severe dust storms, observable from space, in arid or semi-arid regions1951
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can also transport aerosols to coastal and open ocean waters increasing ocean1952

primary productivity (Gabric et al., 2010; Chen et al., 2016; Yoon et al., 2017).1953

Volcanic eruptions can also fertilise the ocean. The solubility and bioavailabil-1954

ity of volcanic ash is thought to be much higher than mineral dust (Achterberg1955

et al., 2013; Lindenthal et al., 2013), and can act as the source of nutrients and/or1956

organic carbon for microbial plankton, and influence aggregation processes (Wein-1957

bauer et al., 2017). The first multi-platform observation (using SeaWiFS images1958

and in-situ data) of the impact of a volcano eruption was provided by Uematsu1959

et al. (2004), who observed the enhancement of primary productivity caused1960

by the additional atmospheric deposition from the Miyake-jima Volcano in the1961

nutrient-deficient region south of the Kuroshio. Lin et al. (2011) observed ab-1962

normally high phytoplankton biomass from satellite and elevated concentrations1963

of limiting nutrients, from laboratory experiments, caused by aerosol released1964

by the Anatahan Volcano in 2003. The eruption of Kı̄lauea volcano triggered a1965

diatom-dominated phytoplankton bloom near Hawaii (Wilson et al., 2019). More1966

recently, the eruption of Hunga Tonga–Hunga Ha’apai ejected about 400,0001967

tonnes of SO2, threw ash high into the stratosphere, and caused a catastrophic1968

tsunami on Tonga’s nearby islands (Witze, 2022). Detailed observations on its1969

biochemical effects have yet to be reported.1970

Using satellite data with in-situ observations, and profiling floats, recent re-1971

search showed remarkable changes during marine heatwaves (MHWs) in the1972

oceanic carbon system (Long et al., 2021; Gruber et al., 2021; Burger et al., Ac-1973

cepted) and phytoplankton structures (Yang et al., 2018; Le Grix et al., 2021), that1974

are linked to background nutrient concentrations (Hayashida et al., 2020). MHWs1975

(and cold spells) are defined as prolonged periods of anomalously high (low)1976

ocean temperatures (Hobday et al., 2016), which can have devastating impacts on1977

marine organisms and socio-economics systems (Cavole et al., 2016; Wernberg1978

et al., 2016; Couch et al., 2017; Frölicher and Laufkötter, 2018; Hughes et al.,1979

2018; Smale et al., 2019; Cheung et al., 2021). MHWs and cold spells are caused1980

by a combination of local oceanic and atmospheric processes, and modulated1981

by large-scale climate variability and change (Holbrook et al., 2019; Vogt et al.,1982
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2022). As a consequence of long-term ocean warming, MHWs have become1983

longer-lasting and more frequent, and have impacted increasingly large areas1984

(Frölicher et al., 2018; Oliver et al., 2018). Satellite and autonomous platforms1985

have been used to study MHWs in many regions, including: the Mediterranean1986

Sea (Olita et al., 2007; Bensoussan et al., 2010), the East China Sea (Tan and1987

Cai, 2018), NE Pacific (Bif et al., 2019), the Atlantic (Rodrigues et al., 2019),1988

Western Australia (Pearce and Feng, 2013) and the Tasman Sea (Oliver et al.,1989

2017; Salinger et al., 2019).1990

Tropical cyclones (called hurricanes or typhoons in different regions) are1991

defined as non-frontal, synoptic scale, low-pressure systems over tropical or sub-1992

tropical waters with organized convection (Lander and Holland, 1993). They1993

can bring deep nutrients up into the photic zone and lead to changes in the1994

local carbon system by cooling the sea surface (Li et al., 2009; Chen et al.,1995

2017; Osburn et al., 2019). Satellite data are often used for studying tropical1996

cyclones, however, it is difficult to obtain clear images shortly after typhoons due1997

to extensive cloud cover (Naik et al., 2008; Hung et al., 2010; Zang et al., 2020).1998

Combining satellite observations with Argo float and biogeochemical models is1999

increasingly being used to understand biological impacts of tropical cyclones2000

(Shang et al., 2008; Chai et al., 2021). D’Sa et al. (2018) have reported intense2001

changes in dissolved organic matter dynamics after Hurricane Harvey in 20172002

and then reported changes in particulate and dissolved organic matter dynamics2003

and fluxes after Hurricane Michael in 2018 (D’Sa et al., 2019), highlighting2004

the importance of using multiple satellite data with different resolutions as well2005

as hydrodynamic models. Using the constellation of Landsat-8 and Sentinel-2006

2A/2B sensors, Cao and Tzortziou (2021) showed strong carbon export from2007

the Blackwater National Wildlife Refuge marsh into the Chesapeake Bay and2008

increase in estuarine DOC concentrations by more than a factor of two after the2009

passage of Hurricane Matthew compared to pre-hurricane levels under similar2010

tidal conditions.2011

The impacts of marine compound events, defined as extremes in different2012

hazards that occur simultaneously or in close spatial-temporal sequence, are being2013
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increasingly studied (Gruber et al., 2021). The dual or even triple compound2014

extremes such as ocean warming, deoxygenation and acidification, could lead2015

to particularly high biological and ecological impacts (Gruber, 2011; Zscheis-2016

chler et al., 2018; Le Grix et al., 2021; Burger et al., Accepted). The increasing2017

prevalence of extreme Harmful Algae Blooms (HAB) have been linked with ex-2018

treme events, and satellites play a major role in their monitoring and management2019

(IOCCG, 2021). Although EEs have emerged as a topic of great interest over the2020

past decade, our understanding of their impacts on the marine ecosystems and2021

ocean carbon cycle remains limited.2022

At the workshop, three priorities (summarised in Table 9) were identified in2023

relation to understanding impacts of EEs on the ocean carbon cycle: 1) in-situ2024

data; 2) satellite sensing technology; and 3) model synergy and transdisciplinary2025

research.2026

4.2.2. EEs priority 1: In-situ data2027

Challenges: In-situ observations are essential to monitor EEs, especially2028

considering some EEs are hard to monitor from space (e.g., clouds with tropical2029

cyclones or volcanic eruptions) and require ground truthing, owing to challenges2030

around satellite retrievals (e.g., atmospheric aerosols with dust events and volcanic2031

eruptions). In some cases, EEs can be close to the valid range of measurements2032

retrieved by satellites. Considering the temporal scales of EEs, their sporadic2033

occurrence, and hazardous environments, they are extremely challenging and2034

sometimes dangerous to monitor in-situ using ship-based techniques.2035

Gaps: At present there are major gaps in the availability of in-situ observations2036

of EEs. This severely limits our understanding of their impact on the ocean2037

carbon cycle. Gaps are even greater in subsurface waters. Long time-series2038

measurements with high frequency resolution are also essential to provide robust2039

baselines against which extremes can be detected and attributed.2040

Opportunities: With an expanding network of autonomous in-situ platforms2041

(Chai et al., 2020), we are becoming better positioned to monitor EEs. It will be2042

important that these networks of autonomous in-situ platforms have fast response2043

protocols that can be implemented soon after an extreme event takes place, so2044
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valuable data are collected and not missed. It is also essential that funding2045

continues, at the international level, to support these expanding networks of2046

autonomous platforms.2047

4.2.3. EEs priority 2: Satellite sensing technology2048

Challenges: Monitoring EEs from space requires suitable temporal and spatial2049

coverage to track the event, which varies depending on the nature and location2050

of the event. Some events require high temporal and spatial coverage, which2051

challenges current remote sensing systems. Other challenges exist, for example,2052

dealing with cloud coverage during tropical cyclones, or retrievals in the presence2053

of complex aerosols (e.g., volcanic eruptions).2054

Gaps: High temporal and spatial resolution data are required for monitoring2055

some EEs. There are gaps in satellite data for some EEs (e.g., clouds). Algorithms2056

for satellite retrievals during some EEs (e.g., volcanic eruptions) require detailed2057

knowledge on the optical properties of the aerosols present. Long time-series2058

remote sensing data are needed for baselines against which extremes can be2059

monitored.2060

Opportunities: Synergistic use of different long-term, high-frequency and2061

high-resolution, remote sensing data may allow better insight into extreme events2062

and their development. For example, combining ocean colour products from2063

ESA’s OC-CCI (e.g., Sathyendranath et al., 2019a) and the National Oceanic and2064

Atmospheric Administration (NOAA) Climate Data Record Programme (e.g.,2065

Bates et al., 2016). The increased spectral, spatial and temporal resolution of2066

the satellite sensors and platforms would help to improve understanding of the2067

response of phytoplankton community (Losa et al., 2017) and their diel cycles to2068

extreme events, and HAB detection, for example, with NASA’s PACE mission2069

(Werdell et al., 2019) and the Korean geostationary GOCI satellite platform (Choi2070

et al., 2012). There are opportunities to derive indicators of EEs for determining2071

good environmental status of our seas and oceans, for example, for use in the2072

EU Marine Strategy Framework Directive and the Oslo and Paris (OSPAR)2073

Conventions EEs and pollution monitoring.2074
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4.2.4. EEs priority 3: Model synergy and transdisciplinary research2075

Challenges: Owing to gaps in observational platforms (both satellite and2076

in-situ observations) and the transdisciplinary nature of EEs, there is a need to2077

utilise Earth System Models (ESMs) for understanding EEs and projecting future2078

scenarios, and to bring together communities from multiple fields.2079

Gaps: Reliable projections of extreme events require higher spatial resolution2080

ESMs, with improved representation of marine ecosystems. ESMs ideally need2081

to include prognostic representations of EEs processes, and improvements are2082

needed in coupling with land via aerosol emissions and deposition due to fires2083

or due to dust. Transdisciplinary research on the impact of extremes on marine2084

organisms and ecosystem services is needed to close knowledge gaps.2085

Opportunities: With enhancements in computation power and improvements2086

in ESMs and data assimilation techniques, there is likely to be an increasing use2087

of ESMs for understanding EEs, and especially marine compound events. To2088

promote cross-disciplinary research, support is needed for collaborative projects2089

and digital platforms, to make data digestible to non-experts (e.g., Giovanni2090

(https://giovanni.gsfc.nasa.gov/giovanni/), MyOcean https://marine.copernicus.2091

eu/access-data/myocean-viewer)).2092

4.3. Carbon Budget Closure (CBC)2093

Quantifying the ocean carbon budget and understanding how it is responding2094

to anthropogenic forcing is a major goal in climate research. It is widely accepted2095

that the ocean has absorbed around a quarter of CO2 emissions released anthro-2096

pogenically, and that the ocean uptake of carbon has increased in proportion to2097

increasing CO2 emissions (Aricò et al., 2021). Yet, our understanding of the pools2098

of carbon in the ocean, the processes that modulate them, and how they interact2099

with the land and atmosphere, is not satisfactory enough to make confident predic-2100

tions of how the ocean carbon budget is changing. Improving our understanding2101

requires a holistic and integrated approach to ocean carbon cycle research, with2102

monitoring systems capable of filling the gaps in our understanding (Aricò et al.,2103

2021). Satellites can play a major role in this (Shutler et al., 2019).2104
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4.3.1. State of the art in Carbon Budget Closure2105

Each year, the international Global Carbon project produces a budget of2106

the Earth’s carbon cycle (https://www.globalcarbonproject.org/about/index.htm),2107

based on a combination of models and observations. In a recent report (Friedling-2108

stein et al., 2022), for the year 2020, and for a total anthropogenic CO2 emission of2109

10.2 Gt C y−1 (±0.8 Gt C y−1), the oceans were found to absorb 3.0 Gt C y−1 (±0.42110

Gt C y−1), similar to that of the land at 2.9 Gt C y−1 (±1.0 Gt C y−1). Building on2111

earlier reports (e.g., Hauck et al., 2020), this latest report highlighted an increasing2112

divergence, in the order of 1.0 Gt C y−1, between different methods, on the strength2113

of the ocean sink over the last decade (Friedlingstein et al., 2022), with models2114

reporting a smaller sink than observation-based data-products (acknowledging2115

that observation-based data-products are heavily extrapolated). Results from2116

this report suggest our ability to predict the ocean sink could be deteriorating.2117

Understanding the causes of this discrepancy is undoubtedly a major challenge.2118

Possible causes include: uncertainty in the river flux adjustment that needs to be2119

added to the data-products in order to account for different flux components being2120

represented in models and data-products; data sparsity; methodological issues in2121

the mapping of methods used in data-products; underestimation of wind speeds in2122

the climate reanalyses (Verezemskaya et al., 2017), model physics biases; possible2123

issues in air-sea gas exchange calculations; and underestimation of the role of2124

biology in air-sea gas exchange. Or possibly some compound effects of these2125

causes.2126

It is clear satellite data can help in addressing this issue. For example, through2127

assimilation of physical data (temperature, salinity, altimeter) into high resolution2128

physical models, to improve model physics (e.g., Verdy and Mazloff, 2017; Carroll2129

et al., 2020) or ocean colour data assimilation to improve the representation of2130

biology (e.g., Gregg, 2001, 2008; Rousseaux and Gregg, 2015; Gregg et al., 2017;2131

Ciavatta et al., 2018; Skákala et al., 2018). A recent budget analysis using ECCO-2132

Darwin successfully managed to close the global carbon budget "gap” between2133

observation-based products and biogeochemical models (see Carroll et al., 2022).2134

Other ways satellites could help include: by improving observation-based data-2135
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products (e.g. using direct SST skin measurements Watson et al., 2020), through2136

improved estimates or river-induced carbon outgassing and deposition in the2137

sediments, and even through better understanding of the way ocean biology is2138

responding to climate (Kulk et al., 2020; Li et al., 2021; Tang et al., 2021; Wang2139

et al., 2022). On this latter point, whereas it is accepted that biology is critical2140

to maintaining the surface to depth gradient of DIC (estimated to be responsible2141

for around 70 % of it; Sarmiento and Gruber, 2006), the role of biology in ocean2142

anthropogenic CO2 update has been thought to be minor, based on a lack of2143

evidence that the biological carbon pump has changed over the recent (industrial)2144

period, or that any change is sufficient to impact anthropogenic CO2 uptake. An2145

assumption that is now being challenged. It has been shown in ocean models2146

that with a future reduced buffer factor, the CO2 uptake may increase during2147

the phytoplankton growth season (Hauck and Völker, 2015). This ‘seasonal2148

ocean carbon cycle feedback’ leads to an increase of ocean carbon uptake by 8 %2149

globally in a high-emission scenario RCP8.5 by 2100 (Fassbender et al., 2022).2150

Increasing amplitudes of the seasonal cycle of pCO2 can already be determined2151

in pCO2-based data-products (Landschützer et al., 2018).2152

Satellite ocean carbon products have expanded in recent years (CEOS, 2014;2153

Brewin et al., 2021), to the point where some satellite-based carbon budgets maybe2154

feasible in the surface mixed layer. For example, we are now in a position to use2155

satellite data to improve our understanding of how organic carbon is partitioned2156

into particulate carbon and dissolved carbon (DOC), how particulate carbon (PC)2157

is partitioned into organic (POC) and inorganic (PIC) contributions (PC = PIC2158

+ POC), how POC is partitioned into algal (C-phyto) and non-algal portions,2159

and the relationships between phytoplankton carbon (C-phyto) and PP (and net2160

community production), which can give information on turnover times for marine2161

phytoplankton. Considering the continuous ocean-colour record started in 1997,2162

we can begin to develop an understanding how these budgets are changing. This2163

could be extremely useful for evaluating models.2164

Notwithstanding the potential and use of satellite-based carbon budgets, many2165

carbon pools and fluxes are still not amenable from satellite remote sensing,2166
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that satellite ocean observations are limited to the surface ocean, to cloud-free2167

conditions and low to moderate sun-zenith angles (for some systems), have diffi-2168

culties in coastal regions, and in spatial and temporal resolution. Thus to quantify2169

ocean carbon budgets, an integrated approach is required, combining satellite2170

data with other observations (in situ) and with models. A nice demonstration2171

of this is a recent study by Nowicki et al. (2022), who assimilated satellite and2172

in-situ data into an ensemble numerical model of the ocean’s biological carbon2173

pump, to quantify global and regional carbon export and sequestration, and the2174

contributions from three key pathways to export: gravitational sinking of particles,2175

vertical migration of organisms, and physical mixing of organic material. Their2176

analysis demonstrated large regional variations in the export of organic carbon,2177

the pathways that control export, and the sequestration timescales of the export.2178

It also suggested ocean carbon storage will weaken as the oceans stratify, and the2179

subtropical gyres expand due to anthropogenic climate change. It is, perhaps, that2180

mechanisms thought to be understood decades ago about the ocean biological2181

carbon pump have already evolved with climate change.2182

Three priorities were identified at the workshop in relation to carbon budget2183

closure (CBC). These are summarised in Table 10 and include: 1) in-situ data;2184

2) satellite algorithms, budgets and uncertainties; and 3) model and satellite2185

integration.2186

4.3.2. CBC priority 1: In-situ data2187

Challenges: As emphasised throughout previous sections, in-situ data are2188

central to algorithm development and validation of ocean carbon products. Some2189

carbon pools and fluxes are easier to measure in situ than others. Consequently,2190

the quality, quantity and spatial distribution of in-situ measurements vary de-2191

pending on the pool or flux being studied. This makes it challenging for budget2192

computations.2193

Gaps: Very few, if any, datasets exist (or are accessible) on concurrent and co-2194

located in-situ measurements of all the key pools and fluxes required to evaluate2195

satellite or model budgets. Some remote regions that are thought to play a critical2196

role in global budgets, such as the Southern Ocean, are severely under-sampled.2197
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There are gaps in some key measurements in many regions (e.g., for organic2198

carbon budgets, photosynthesis irradiance parameters, see Bouman et al., 2018;2199

Sathyendranath et al., 2020).2200

Opportunities: As technology develops, improved methods are being devel-2201

oped to measure pools and fluxes of carbon in the ocean. Some of these methods2202

(e.g., Williams et al., 2017; Estapa et al., 2017; Bresnahan et al., 2017; Sutton2203

et al., 2021; Bishop et al., 2022) have the potential to be (or have already been)2204

integrated into networks of autonomous platforms, such as gliders and BGC-Argo2205

floats. New methods are also being developed to quantify carbon pools and2206

fluxes from standard biogeochemical measurements on autonomous platforms2207

(e.g., Dall’Olmo et al., 2016; Claustre et al., 2020; Giering et al., 2020; Claustre2208

et al., 2021; Johnson and Bif, 2021). As in-situ data grow with time, it is feasible2209

to quantify properties of carbon budgets from in-situ compilations that can be2210

used to check and constrain satellite or model budgets. For example, empirical2211

relationships among POC, C-phyto, and Chl-a (Sathyendranath et al., 2009), have2212

proven useful in model evaluations of emergent carbon budgets (de Mora et al.,2213

2016).2214

4.3.3. CBC priority 2: Satellite algorithms, budgets and uncertainties2215

Challenges: When closing the ocean carbon budget, it is critical that there is2216

coherence in the satellite data fields we input into the different satellite algorithms,2217

and that uncertainties are available for model propagation. Additionally, and as2218

identified in previous sections, some of the pools and fluxes of carbon require2219

satellite data with higher spatial, temporal, and spectral resolution. There is a2220

need for consistency in algorithms used to quantify budgets (see Sathyendranath2221

et al., 2020), and these algorithms must respect properties of the ecosystem known2222

from in-situ data.2223

In the context of quantifying the ocean carbon budget, the pools and fluxes2224

have to fit together in a consistent way. Therefore, it is important to not only2225

consider the uncertainties in individual products, but to analyse uncertainties in2226

multiple products to identify any discrepancies. This requires that we analyse2227

each of the products in relation to all the other products and see whether they2228
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hold together in a coherent fashion. These checks can also help to constrain those2229

components which are impossible to observe or that are more uncertain.2230

Gaps: Many satellite carbon products lack associated estimates of uncertainty.2231

The uncertainties for individual products are also needed when combining mul-2232

tiple products to assess carbon budgets. Considering the importance of model2233

parameters in satellite algorithms, more work is needed to improve estimates of2234

uncertainties in model parameters and look towards dynamic, rather than static,2235

assignment of parameters in carbon algorithms. From an Earth system perspective,2236

increasing emphasis needs to be placed on harmonising satellite carbon products2237

across different planetary domains, and evaluating the impact of using different2238

input climate data records.2239

Opportunities: With the development of consistent and stable climate data2240

records, with associated estimates of uncertainty (e.g., ESA CCI), we are now2241

in a good position to utilise coherent satellite data fields as input to ocean car-2242

bon algorithms. The development of new satellite sensors, with higher spatial,2243

temporal and spectral resolution, will lead to improved satellite algorithms and2244

more confident carbon budgets. New approaches and statistical techniques (e.g.,2245

machine learning) are becoming available, and offer potential to get at pools and2246

fluxes of carbon from satellite that were previously not feasible to monitor from2247

space.2248

4.3.4. CBC priority 3: Model and satellite integration2249

Challenges: A major challenge in bringing satellite observations together2250

with models, is dealing with the contrasting spatial scales in the two types of2251

datasets. Quantifying carbon budgets through data integration also requires2252

appreciation of the different temporal scales that the pools and fluxes operate2253

on. This is particularly true from an Earth system approach, considering the2254

timescales of carbon cycling differ among the ocean, land and atmosphere.2255

Gaps: Successful integration of satellite carbon products with models requires2256

accurate uncertainties in the satellite observations and model simulations. These2257

are often not available. Greater emphasis is needed on model diversity, which2258

should help increase confidence in carbon budgets and improve understanding.2259
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Opportunities: There are opportunities to harness new developments in data2260

assimilation to help constrain carbon budgets, through the use of new satellite2261

biological products (e.g. community structure, Ciavatta et al., 2018; Skákala et al.,2262

2018) and advancements in optical modules for autonomous platforms (Terzić2263

et al., 2019, 2021), or through combined physical and biological data assimilation2264

(Song et al., 2016; IOCCG, 2020). There is scope to harness developments in ma-2265

chine learning to help combine data and models, for example, bridging different2266

spatial scales in the satellite and model products. Future enhancements in com-2267

putation power (e.g., quantum computing) should lead to better representations2268

of spatial scales in models (e.g., sub-mesoscale processes), improving carbon2269

budgets.2270

5. Common themes2271

Figure 2 shows a word cloud produced using all the priorities identified across2272

the nine themes of the workshop. It illustrates the dominant themes and subthemes2273

emerging from all priorities identified. Commonalities among the nine themes of2274

the workshop, include:2275

• In-situ data. It is strikingly clear from this analysis the importance of2276

in-situ data, for algorithm development and validation, for extrapolation2277

of surface satellite fields to depth, for parametrisation and validation of2278

ESMs, and for constraining estimates of the carbon budget. It is critical2279

that the international community continues investing in the collection of2280

in-situ data, in better data protocols and standards, community-agreed upon2281

data structure and metadata, more intercomparison and intercalibration2282

exercises, the development of new in-situ methods for measurement of2283

carbon, and in the expanding networks of autonomous observations, that2284

have the potential to radically improve the spatial and temporal coverage of2285

in-situ data. There are clear challenges with respect to compiling large in-2286

situ datasets from different sources, using different methods and protocols,2287

for algorithm development and validation, that need to be addressed. It is2288
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important that the in-situ, satellite and modelling community communicates2289

prior to collecting data, to ensure the data collected will be useful for the2290

entire community.2291

• Satellite algorithm retrievals. For all pools and fluxes of carbon, contin-2292

ued development of satellite algorithms and retrieval techniques is critical2293

to maximise the use of satellite data in carbon research. New satellites2294

are being launched in the near future, with new capabilities and improved2295

spatial, temporal and spectral resolution (see Table 2). Micro- and nano-2296

satellites (CubeSats; Schueler and Holmes, 2016; Vanhellemont, 2019)2297

have potential to be launched cheaply into low Earth orbit, in large swarms2298

improving spatial and temporal coverage. New advanced statistical methods2299

are emerging (e.g., advancements in artificial intelligence). New satellite2300

data records are appearing, that will provide the much-needed coherence for2301

input to multiple satellite carbon algorithms for budget calculations. Over2302

the coming decades existing missions like Sentinel-3 OLCI, Sentinel-2 MSI2303

and VIIRS, will provide better carbon products with real operational usage.2304

Our community needs to be positioned to harness these opportunities. Satel-2305

lite retrievals of carbon products critically rely on accurate atmospheric2306

correction, and there are challenges around developing new atmospheric2307

correction schemes for emerging sensors (Table 2). Additionally, contin-2308

ued investment is required into basic and mechanistic understanding of2309

the retrieval process, and improvements in retrievals in coastal and shelf2310

sea environments and other optically complex waters, which is crucial for2311

monitoring trends in satellite-based carbon products (e.g., Sathyendranath2312

et al., 2017b).2313

• Uncertainty in data. There is a clear requirement across all themes to2314

provide uncertainty estimates with satellite, in-situ and model products.2315

Continued investment in methods to quantify uncertainty is vital for quanti-2316

fying carbon budgets and change (IOCCG, 2019; McKinna et al., 2019).2317
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• Vertical distributions. One of the major limitations of satellites, is that2318

they only view the surface layer of the ocean. Sub-surface measurements2319

are required to extrapolate the surface fields to depth. Synergy among2320

satellite surface passive fields, satellite active-based sensors (e.g. lidar)2321

that can penetrate further into the water column (Jamet et al., 2019), and2322

the expanding networks of autonomous and in-situ observations, that are2323

viewing the subsurface with ever-increasing coverage, for example, the2324

global network of BGC-Argo floats (Roemmich et al., 2019; Claustre et al.,2325

2020) and Bio-GO-SHIP (https://biogoship.org), is a clear focus for future2326

ocean carbon research.2327

• Ocean models. Many components of the ocean carbon cycle are not di-2328

rectly observable through satellite, and some are even inherently difficult2329

or expensive to measure in situ. To target these hidden pools and fluxes2330

we must turn to models. Models can also help tackle the low temporal2331

and spatial resolution of in situ data and issues around gaps in satellite2332

data. Exploring synergy between satellite observations and models is clear2333

priority for future ocean carbon research (IOCCG, 2020). New develop-2334

ments in data assimilation may help (not only satellites, but growing data2335

sources from autonomous platforms), and integration of radiative transfer2336

into models, such that the models themselves become capable of simulat-2337

ing fields of electromagnetic energy (e.g., Jones et al., 2016; Gregg and2338

Rousseaux, 2017; Dutkiewicz et al., 2018, 2019; Terzić et al., 2019, 2021).2339

We must continue to identify processes poorly represented in models, that2340

can be subsequently improved in future model design. Observing System2341

Simulation Experiments (OSSE) can be used to evaluate the impact of2342

under sampled observing systems on obtained results, or evaluate the value2343

of new observing systems design for optimal sampling strategies.2344

• Integration of data. It is challenging to find an optimal way of combining2345

satellites, models and in-situ observations, to produce best-quality data2346

products. Integrated carbon products are required for near real-time fore-2347
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casting of the biogeochemical ocean carbon cycle. Additionally, they are2348

required for regional or global impact assessments, to assess the multiple2349

stressors (e.g., temperature change, ocean acidification) acting upon the2350

marine ecosystem, and subsequent downstream effects on the carbon cycle2351

(e.g., natural food web, fisheries, etc.). Continued efforts are required to2352

develop methods and strategies to bridge the spatial and temporal scales2353

of the different datasets (Cronin et al., 2022), and statistical methods like2354

machine learning may help in this regard.2355

• Fundamental Understanding. Continued investment is required into im-2356

proving our fundamental understanding of the ocean carbon cycle, and on2357

the interaction between pools of carbon and light. The latter is critical for2358

the development of satellite carbon products. For example, there remains2359

fundamental gaps in our understanding of controls on carbon cycling in the2360

ocean by viruses and other microbes (Middelboe and Lyck, 2002; Worden2361

et al., 2015).2362

6. Emerging concerns and broader thoughts2363

In addition to the common themes, during workshop discussions, other emerg-2364

ing concerns and broader thoughts materialised, including:2365

• Bringing carbon communities together. Considering the need to take a2366

holistic, integrated approach to ocean carbon science (Aricò et al., 2021;2367

Cronin et al., 2022), there is a strong requirement to bring different com-2368

munities together working on different aspects of the ocean carbon cycle,2369

that can often operate in a disparate fashion, including those working in2370

different zones of the ocean (e.g., pelagic, mesopelagic, bathypelagic and2371

abyssopelagic), on the inorganic and organic sides, field and laboratory sci-2372

entists, remote sensing scientists and modellers. Furthermore, and taking an2373

Earth system view, this should also be extended to those working on carbon2374

in other planetary domains (Campbell et al., 2022). We need to improve2375

our understanding of the connectivity between coastal and open-ocean2376
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ecosystems, for example, the potential impact of (large) rivers on oceanic2377

carbon dynamics. A good example is the Observing Air-Sea Interactions2378

Strategy (OASIS), a UN Ocean Decade-endorsed program that has brought2379

together the carbon community to consolidate three interlinked grand ideas2380

centred around: the building of a global in-situ air-sea observing network;2381

the creation of a high temporal and spatial resolution satellite network for2382

measuring air–sea fluxes; leading to improved models and understanding2383

of air–sea interaction processes (Cronin et al., 2022).2384

• The need to maximise use of limited resources. Current funding levels2385

make it challenging to support adequate monitoring of core ocean carbon2386

variables in addition to supporting innovative blue skies science. Increasing2387

overall funding and separating the funding pots for the two activities could2388

help to maximise monitoring and achieve key priorities for blue skies2389

research.2390

• Improved distribution of satellite and model carbon products. Al-2391

though satellite-based carbon products are becoming available, more em-2392

phasis is needed to integrate satellite carbon products, as well as model2393

products, into operational satellite services to ensure end-user access, and2394

make products more user friendly. This requires close dialogue with the2395

user communities.2396

• Working with satellite carbon experts in different planetary domains.2397

More emphasis should be placed on harmonising satellite carbon products2398

across different planetary domains (ocean, land, ice and air). This involves2399

working closer with scientific communities working in the different spheres2400

of the planet (Earth System approach).2401

• Carbon and environmental footprints of research.. Our communities2402

need to start taking more responsibility to monitor and minimise the carbon2403

and environmental footprints of scientific research, and improve how this is2404

managed and controlled (e.g., Achten et al., 2013; Shutler, 2020). Greater2405
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stewardship is needed to document and track the carbon and environmental2406

footprints of researchers, ideally within a transparent and traceable frame-2407

work (e.g., Mariette et al., 2021). The benefits of the priorities identified2408

(e.g., launching of new satellites and collection of more in-situ measure-2409

ments etc.) need to be balanced against their environmental footprint, with2410

a view to identify means by which it can be reduced and mitigated.2411

• Carbon and environmental footprints of space technology. There is an2412

increasing number of satellites being launched into space. Although much2413

of this growth is for internet services, Earth Observation satellites are also2414

increasing in numbers, with increasing amounts of space junk. This raises2415

questions on the environmental impacts of satellites and space technologies2416

more generally throughout their complete lifetimes that have previously not2417

been a concern (from construction, to rocket launch and being placed into2418

orbit and use, de-orbiting and removal) (Shutler et al., 2022).2419

• Use of satellite products for informing ocean carbon dioxide removal2420

(CDR) studies. Satellites will play a role in future monitoring of potential2421

implementations of CDR, for understanding the consequences that some2422

of these proposed mechanism would have on the marine ecosystem (Boyd2423

et al., 2022; National Academies of Sciences, Engineering, and Medicine,2424

2022).2425

• Economic valuation of the satellite based information. Quantifying the2426

value of satellite based information would be useful for a range of applica-2427

tions, including climate and carbon management strategies and solutions2428

(e.g., CDR), and for understanding environmental footprints.2429

• Need to consider how satellites can be used to help monitor cycles of2430

other important climatically-relevant compounds and elements. For2431

example, methane (CH4) emissions have contributed almost one quarter of2432

the cumulative radiative forcings for CO2, CH4, and N2O (nitrous oxide)2433

combined since 1750 (Etminan et al., 2016), and absorbs thermal infrared2434
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radiation much more efficiently than CO2.2435

• Open Science. It is essential that our community follows a transparent,2436

open science approach, promoting data sharing and knowledge transfer, and2437

committing to FAIR principles (https://www.go-fair.org/fair-principles/).2438

Supporting open-access repositories for publications, data and code, and2439

openly available education resources, for the next generations of scientists.2440

• Promote diversity and inclusivity. Geosciences are one of the least di-2441

verse branches of STEM. And while it was positive to see the high gender2442

diversity at this meeting (Figure 1), more is needed to promote the po-2443

sition of the under-represented minorities in our field. There has been a2444

disproportionate impact of climate change on historically marginalized and2445

under-represented community’s worldwide (IOCCG, 2019). System wide2446

changes need to be implemented, where diversity, inclusion, cohesion, and2447

equality across the ocean research (with special emphasis on field safety)2448

are a priority.2449

• Prioritise infrastructure in space-based assets for improved observation2450

of ocean carbon on multiple scales. It is critical we continue to explore new2451

and innovative ways to remotely monitor the pools and fluxes of carbon in2452

the ocean on multiple scales. This requires investment in basic/fundamental2453

research on the interactions among light, water and carbon, and working2454

with a wide network of stakeholders to target and address some of the2455

challenges and gaps highlighted.2456

• Harness the power of quantum computing. Our community should be2457

poised to take advantage of developments in quantum computing, which2458

has the potential to radically change our ability to process and integrate a2459

range of different data (models, satellite and in situ) not possible with high2460

performance computing.2461
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7. Summary2462

We organised a workshop on the topic of ocean carbon from space with the2463

aim to produce a collective view of status of the field and to define priorities2464

for the next decade. Leading experts were assembled from around the world,2465

including those working with remote-sensing data, with field data and with2466

models. Inorganic and organic pools of carbon (in dissolved and particulate2467

form) were targeted, as well fluxes between pools and at interfaces. Cross-2468

cutting activities were also discussed, including blue carbon, extreme events and2469

carbon budgets. Common priorities should focus on improvements in: in-situ2470

observations, satellite algorithm retrievals, uncertainty quantifying, understanding2471

of vertical distributions, collaboration with modellers, ways to bridge spatial and2472

temporal scales of the different data sources, fundamental understanding of the2473

ocean carbon cycle, and on carbon and light interactions. Priorities were also2474

reported for the specific pools and fluxes studied, and we highlight emerging2475

concerns that arose during discussions, around the carbon footprint of research2476

and space technology, the role of satellites in CDR approaches, the economic2477

valuation of the satellite based information, to consider how satellites can be used2478

to help monitor the cycles of other climatically-relevant compounds and elements,2479

the need to promote diversity and inclusivity, bringing communities working2480

on different aspects of ocean carbon together, open science, to explore new and2481

innovative ways to remotely monitor ocean carbon, and harness developments in2482

quantum computing.2483
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Table 1: Overview of the themes of the paper and guide to navigate the manuscript.

Theme Acronym Short description Flux/Stock Global Size/Rate Section Table
Primary Pro-
duction

PP Conversion of inorganic car-
bon (DIC) to organic carbon
(POC) through the process of
photosynthesis.

Flux ∼50 Gt C yr−1 3.1 3

Particulate
Organic Carbon

POC Organic carbon that is above
>0.2 µm in diameter.

Stock 2.3↔4.0 Gt C 3.2 4

Phytoplankton
Carbon

C-phyto Organic carbon contained in
phytoplankton

Stock 0.78↔1.0 Gt C 3.3 5

Dissolved
Organic Carbon

DOC Organic carbon that is <

0.2 µm in diameter.
Stock ∼662 Gt C 3.4 6

Inorganic car-
bon and fluxes
at the ocean
interface

IC Consisting of dissolved in-
organic carbon (DIC, IC <

0.2 µm in diameter), partic-
ulate inorganic carbon (PIC,
IC > 0.2 µm in diameter), and
air-sea flux of IC between
ocean and atmosphere.

Stock
(DIC,PIC),
Flux (air-
sea IC
exchange)

DIC
(∼38,000 Gt C),
PIC (∼0.03 Gt C),
air-to-sea net
flux of anthro-
pogenic CO2

(∼3.0 Gt C y−1)

3.5 7

Blue Carbon BC Carbon contained in tidal
marshes, mangroves,
macroalgae and seagrass
beds.

Stock 10↔24 Gt C 4.1 8

Extreme Events EEs Events that occur in the upper
or lower end of the range of
historical measurements.

– – 4.2 9

Carbon Budget
Closure

CBC How the stock of carbon in
the ocean and elsewhere on
the planet is partitioned.

– ∼650,000,000
Gt C (on Earth)

4.3 10

4698
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Table 2: A selection of recently launched or upcoming satellite sensors with applications in ocean
carbon research and monitoring.

Sensor Description & Reference Pool/flux of carbon
Plankton, Aerosol, Cloud,
ocean Ecosystem (PACE)

PACE will have a hyperspectral Ocean Color In-
strument (OCI), measuring in the UV, visible, near
infrared, and several shortwave infrared bands.
It will also contain two multi-wavelength, multi-
angle imaging polarimeters for improved quantifi-
cation of atmospheric aerosols and ocean particles
(Remer et al., 2019a,b). PACE is scheduled to
launch in 2024 (https://pace.gsfc.nasa.gov).

PP, POC, C-phyto,
DOC, IC, BC, EEs

Geosynchronous Littoral
Imaging and Monitoring
Radiometer (GLIMR)

GLIMR is a geostationary and hyperspectral ocean
colour satellite that will observe coastal oceans in
the Gulf of Mexico, portions of the south-eastern
US coastline, and the Amazon River plume. It
will provide multiple observations (hourly), at
around 300 m resolution across the UV-NIR
range (340 -1040 nm). GLIMR is expected to
be launched in 2027 (https://eospso.nasa.gov/

missions/geosynchronous-littoral-imaging-and-
monitoring-radiometer-evi-5).

PP, POC, C-phyto,
DOC, IC, BC, EEs

Environmental Mapping and
Analysis Program (EnMAP)

EnMAP is a German hyperspectral satellite mis-
sion measuring at high spatial resolution (30 m)
from 420-1000 nm in the visible and near-infrared,
and from 900 nm to 2450 nm in the shortwave in-
frared. It aims to monitor and characterise Earth’s
environment on a global scale. It was launched in
April 2022 (https://www.enmap.org).

PP, POC, C-phyto,
DOC, IC, BC, EEs

FLuorescence EXplorer
(FLEX)

FLEX is a mission designed to accurately measure
fluorescence, and provide global maps of vegeta-
tion fluorescence that reflect photosynthetic activ-
ity and plant health and stress, which is impor-
tant for understanding of the global carbon cy-
cle. FLEX is expected to be launched in 2025
(https://earth.esa.int/eogateway/missions/flex).

BC, EEs

Continued on the next page.
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Table 2: A selection of recently launched or upcoming satellite sensors with applications in ocean
carbon research and monitoring.

Sensor Description & Reference Pool/flux of carbon
Sentinel-4 (S-4) S4 mission consists of an Ultraviolet-Visible-Near-

Infrared (UVN) light imaging spectrometer instru-
ment embarked to be onboard the Meteosat Third
Generation Sounder (MTG-S) satellite. It will pro-
vide geostationary data over European waters and
planned to be launched in 2023 (https://sentinel.
esa.int/web/sentinel/missions/sentinel-4).

IC (air-sea gas inter-
actions)

Sentinel-5 (S-5) S5 mission consists of a hyperspectral spectrometer
system operating in the UV, visible and shortwave-
infrared range. Though focused primarily on re-
trieving information on the composition of the at-
mosphere, it can retrieve information on ocean
colour. Preliminary applications using the precur-
sor mission (S-5p, launched in October 2017), has
demonstrated retrieval of diffuse attenuation (Kd)
in the blue and UV regions. Owing to the hyper-
spectral nature of the instrument, it also has appli-
cations in deriving information on the composition
of the phytoplankton in the ocean (e.g., Bracher
et al., 2017) (https://sentinel.esa.int/web/sentinel/
missions/sentinel-5).

PP, POC, C-phyto,
DOC, IC, EEs

Copernicus Hyperspectral
Imaging Mission for the
Environment (CHIME)

CHIME will provide routine hyperspectral obser-
vations from the visible to shortwave infrared.
The mission will complement Copernicus Sentinel-
2 satellite for high resolution optical mapping.
Planned to be launched in the second half of
this decade (https://www.esa.int/ESA_Multimedia/

Images/2020/11/CHIME).

PP, POC, C-phyto,
DOC, IC, BC, EEs

Continued on the next page.
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Table 2: A selection of recently launched or upcoming satellite sensors with applications in ocean
carbon research and monitoring.

Sensor Description & Reference Pool/flux of carbon
Earth Cloud, Aerosol and
Radiation Explorer (Earth-
CARE)

EarthCARE will contain an atmospheric lidar,
cloud profiling radar, a multi-spectral imager, and
a broad-band radiometer, with the objective to al-
low scientists to study the relationship of clouds,
aerosols, oceans and radiation. It is planned for
launch in 2023 (https://earth.esa.int/eogateway/

missions/earthcare).

PP, POC, C-phyto,
DOC, IC, BC, EEs

Surface Water and Ocean To-
pography Mission (SWOT)

SWOT will contain a wide-swath altimeter that will
collect data on ocean heights to study currents and
eddies up to five times smaller than have been pre-
viously been detectable. It was launched on 16th
December 2022 (https://swot.jpl.nasa.gov/mission/

overview/).

IC, EEs

Satélite de Aplicaciones
Basadas en la Informa-
ción Ambiental del Mar
(SABIA-Mar)

SABIA-Mar was conceived to observe water
colour in the open ocean (global scenario, 800 m
resolution) and coastal areas of South America
(regional scenario, 200 m resolution) and provide
information about primary productivity, carbon cy-
cle, marine habitats and biodiversity, fisheries re-
sources, water quality, coastal hazards, and land
cover/land use. The satellite will carry two push-
broom radiometers covering a 1496 km swath and
measuring in 13 spectral bands from 412 to 1600
nm. SABIA-Mar is scheduled to be launched in
2024 (https://www.argentina.gob.ar/ciencia/conae/

misiones-espaciales/sabia-mar).

PP, POC, C-phyto,
DOC, IC, BC, EEs

Continued on the next page.
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Table 2: A selection of recently launched or upcoming satellite sensors with applications in ocean
carbon research and monitoring.

Sensor Description & Reference Pool/flux of carbon
Surface Biology and Geol-
ogy (SBG)

SGB is being designed to address, via visible to
shortwave imaging spectroscopy, terrestrial and
aquatic ecosystems and other elements of biodi-
versity, geology, volcanoes, the water cycle, and
applied topics of social benefit. In the current ar-
chitecture considered, the instrument payload will
consist of a hyperspectral imager measuring at 30-
45 m resolution in >200 spectral bands from 380 to
2250 nm and a thermal infrared imager measuring
at 40-60 m resolution in >5 spectral bands from
3 to 5 and 8 to 12 microns, with revisit of 2-16
and 1-7 days, respectively. Launch is scheduled
for 2026 (https://sbg.jpl.nasa.gov).

PP, POC, C-phyto,
DOC, IC, BC, EEs

MetOp-SG Multi-Viewing
Multi-Channel Multi-
Polarisation Imaging (3MI)
instrument

3MI is a passive optical radiometer with large
swath (2200 km) dedicated primarily to aerosol
characterization for applications in climate mon-
itoring, atmospheric chemistry, and numerical
weather prediction, but with ocean colour capa-
bility. It will provide multi-spectral (12 spectral
bands from 410 to 2130 nm), multi-polarization
(+60 deg., 0 deg., and -0 deg.), and multi-angular
(14 directions) views of a Earth target at 4 km reso-
lution. The first MetOp-SG A-series satellite car-
rying 3MI will be launched in 2024, the second in
2031, and the third in 2038 (https://earth.esa.int/
web/eoportal/satellite-missions/m/metop-sg).

PP, POC, C-phyto,
DOC, IC, EEs
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Table 3: Priorities, challenges, gaps and opportunities for satellite estimates of primary production
(PP).

Priority Challenges Gaps Opportunities
(1)
Parametri-
sation of
satellite algo-
rithms using
in-situ data

• Representing the spatial and tem-
poral variability of model param-
eters.

• Continued financial support for
in-situ observations.

• Standard conversion factors and
measurement protocols.

• Diurnal variability in parame-
ters and variables assumed (mod-
elled).

• Spatial and temporal gaps in PP
parameters.

• Lack of continuous measure-
ments.

• Better coordination at interna-
tional level required.

• Spatial biases in estuar-
ine/coastal in-situ PP data.

• Active fluorescence-based meth-
ods and oxygen optode sensors
on novel in-situ platforms.

• Synergy across in-situ data
sources (multi-platform sen-
sors).

• Use of artificial intelligence tech-
niques for mapping model pa-
rameters.

• Commercial partnerships and
technological innovation of in-
situ sensors and platforms.

• Exploit geostationary platforms
to resolve diurnal variability in
light and biomass.

• Formulate priorities for fund-
ing (long-term time series, novel
measurements).

(2) Un-
certainty
estimation
and valida-
tion

• Validation of satellite-based pri-
mary production estimates is
challenging.

• Uncertainty estimates satellite-
based products are not readily
provided.

• Gaps in in-situ data for valida-
tion.

• Gaps in our understanding of un-
certainty in key input variables
and parameters.

• Data gaps in satellite observa-
tions.

• Enhanced computational capac-
ity to run models for uncertainty
estimation.

• Use of emerging (hyperspectral,
geostationary, lidar) sensors.

• Validation opportunities with au-
tonomous platforms.

Continued on the next page.
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Table 3. Priorities, challenges, gaps and opportunities for satellite estimates of primary production (PP).
(continued from previous page).

Priority Challenges Gaps Opportunities
(3) Link-
ing surface
satellite mea-
surements
to vertical
distribution

• Resolving vertical structure of
PP, Chl-a, and PAR. • Lack of high spatial-temporal

vertical in-situ data

• Need for better physical prod-
ucts (e.g., mixed-layer depth)
with uncertainties.

• Improve (basic) understanding
of vertical structure.

• Benefit from use of novel in-situ
platforms.

• Benefit from future satellite lidar
systems.

(4) Trends • Difficulty in assessing direction
of change in trends of PP.

• Dealing with noise in non-linear
systems.

• Uncertainty estimates of
satellite-based PP are not
provided.

• Length of satellite record not suf-
ficient for climate change stud-
ies.

• Need for consistent and continu-
ous satellite records for climate
research.

• Assimilation of satellite data
into models.

(5) Fun-
damental
understand-
ing

• Better understand relationships
among PP, community structure
and environment.

• Better understand feedbacks be-
tween physics and biology.

• Understand the fate of PP (i.e.,
secondary and export produc-
tion).

• Better understand the interac-
tions of PP in different compo-
nents of the Earth System.

• Improved quantification of new
production and net community
production from space.

• Need for higher spatial and
temporal resolution products to
study diurnal variability.

• Include inland and coastal wa-
ters.

• Gaps in satellite information on
data sets relevant to photochemi-
cal reactions.

• Better understanding of viral
control on PP.

• Unifying the integration of pri-
mary production across inter-
faces (e.g. land and ocean).

• Regional models/algorithms
with aim to merge/nest models
for larger scale estimates.

• Harness developments in quan-
tum computing.

• Meet challenges of the UN
Ocean Decade.

• Harness novel algorithms and
satellites (hyperspectral, lidar
and geostationary).

• Harness satellite instruments
covering the UV spectral range
for insight into photodegrada-
tion.
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Table 4: Priorities, challenges, gaps and opportunities for satellite Particulate Organic Carbon
(POC) estimates

Priority Challenges Gaps Opportunities
(1) In situ
measurement
methodology

• Inclusion of particles of all sizes
to determine total POC.

• Quantifying contributions of
differently-sized particles and
different particle types.

• Dealing with biases due to DOC
in filters.

• Submicrometer and rare large
particles under-represented in
the standard filtration method.

• No capability to measure contri-
butions of differently-sized parti-
cles and different particle types.

• A lack of a certified reference
material for POC.

• Advance and standardise meth-
ods for improved measurement
of total POC.

• Develop measurement capabili-
ties combining particle sizing,
particle identification, and parti-
cle optical properties.

(2) In situ
data compila-
tion

• Quality control and consistency
across diverse datasets.

• Limitations of satellite-in-situ
data match-ups (e.g., spatial-
temporal scale mismatch, spatial
biases).

• Limitations in documentation of
methods in historical datasets.

• Best-practice guidelines for data
quality control and synthesis ef-
forts.

• Under-sampled environments.

• Improve and standardise best
practices for documentation,
quality control, sharing, and
data submission into permanent
archives.

• Collection of high-quality data
along the continuum of diverse
environments.

(3) Satellite
algorithm re-
trievals

• Unified algorithms for reliable
retrievals from open ocean to
coastal and inland water bodies.

• Global algorithms applied to en-
vironmental conditions outside
the intended scope.

• Satellite inter-mission consis-
tency.

• Atmospheric-correction tailored
to a new ocean colour sensors
(e.g. geostationary and hyper-
spectral).

• Mechanistically-based flags as-
sociated with optical water types
to ensure appropriate application
of algorithms.

• Advanced algorithms (e.g., adap-
tive based on mechanistic princi-
ples) to enable reliable retrievals
across diverse environments.

• Opportunities to harness a
new suite of empirical satellite
sensor-specific global POC
algorithms.

• Use of satellite geostationary
and hyperspectral data in combi-
nation with in-situ data.

Continued on the next page.
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Table 4. Priorities, challenges, gaps and opportunities for satellite Particulate Organic Carbon (POC)
estimates. (continued from previous page).

Priority Challenges Gaps Opportunities
(4) Partition-
ing into size

• Partitioning of POC into particle
size fractions and biogeochemi-
cally important components.

• Characterize the PSD of both to-
tal bulk particle assemblages and
separately the functional frac-
tions.

• Address coastal and other opti-
cally complex water bodies that
may have both autochthonous
and allochthonous contributions
to POC.

• Ability to reliably measure in
situ various fractions is limited,
e.g., separate living vs. non-
living POC.

• Insufficient global PSD measure-
ments and global PSD data com-
pilations.

• A dearth of concurrent data on
POC, PSD and carbon data on
POC components.

• Insufficient knowledge of IOPs
for optics-based partitioning of
POC.

• Support basic research on parti-
cle sizing, particle identification,
and particle optical properties in-
cluding polarization properties.

• Development of light-scattering
polarization sensors for deploy-
ment on autonomous in-situ plat-
forms.

• Emerging techniques to separate
living and non-living POC.

• Support PSD measurements as
part of a suite of basic required
measurements.

• Harness satellite-based ap-
proaches to monitoring zoo-
plankton, for quantifying their
contribution to POC.

Continued on the next page.
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Table 4. Priorities, challenges, gaps and opportunities for satellite Particulate Organic Carbon (POC)
estimates. (continued from previous page).

Priority Challenges Gaps Opportunities
(5) Vertical
profiles

• Reconstructing vertical profiles
using data from space-borne, air-
borne, and in-situ sensors.

• Determining relationship(s) be-
tween remotely-sensed variables
and characteristics of the POC
vertical profile.

• Relationships between optical
variables and POC (e.g., from
sensors on autonomous in-situ
platforms).

• Uneven distribution of in-situ
profiles of POC globally.

• Development of POC algorithms
for in-situ optical data (e.g.,
BGC-Argo) along with improve-
ments of optical sensor technol-
ogy (e.g., polarized scattering
sensors for BGC-Argo).

• Use multiple data (satellite,
BGC-Argo) and model streams
to reconstruct 3D and 4D POC
in the ocean via statistical and
data assimilation techniques.

• Advance basic research to
determine relationships among
remote-sensing reflectance
and other optical variables
and vertical profiles of POC
characteristics (e.g., PSD).

• Harness lidar-based remote sens-
ing.

(6) Biogeo-
chemical
processes
and the
carbon pump

• Quantifying the vertical flux of
POC a major challenge.

• Measurements of gravitational
sinking of POC are work-
intensive and rely on simplified
assumptions.

• Measuring the migrant and mix-
ing pumps is demanding.

• Sparsity of in-situ data on verti-
cal fluxes of POC.

• Interannual variation in vertical
fluxes of POC poorly known.

• Gaps in understanding of POC
fluxes in shallow and shelf seas.

• Gaps in understanding on mi-
grant and mixing pumps.

• Harness autonomous sensors
and emerging observation tech-
niques (e.g., “optical sediment
traps” on BGC-Argo floats).

• Harnessing new statistical ap-
proaches (e.g., machine learn-
ing).

• Constraining prognostic ocean
BGC models using observations
from remote and in-situ au-
tonomous sensors.
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Table 5: Priorities, challenges, gaps and opportunities for satellite phytoplankton carbon (C-phyto)
estimates.

Priority Challenges Gaps Opportunities
(1) In-situ
data • Extremely difficult to measure C-

phyo in situ.

• Challenges quantifying photoac-
climation parameters and their
variability at large scales.

• Challenges around standardiza-
tion of phytoplankton carbon
data submission using emerging
in-situ techniques.

• Gaps in accurate in-situ C-phyto
data.

• Gaps in consistent C-phyto sur-
face time-series data sets.

• Gaps in photo-acclimation pa-
rameters.

• The enlargement and explo-
ration of data analysis of in situ
supersites.

• Empower validation through
autonomous mobile platforms
(e.g., BGC-Argo floats and
Lagrangian drifters).

• Connecting new genetic level
data with phytoplankton carbon
properties.

(2) Satellite
algorithm re-
trievals

• Separating the contributions of
living and non-living particles to
the particle backscattering coeffi-
cient.

• Understanding the influence of
phytoplankton composition and
photoacclimation on the rela-
tionships among Chl-a, particle
backscatter and C-phyto.

• A gap in our mechanistic under-
standing of how optical proper-
ties and particle types link to C-
phyto.

• Uncertainties infrequently re-
ported with satellite C-phyto
products.

• Harness long time-series satel-
lite products.

• Explore the combined use of
satellite data with ecosystem
modelling.

• Combining models of photoac-
climation with size-based ap-
proaches and models of PP,
for consistent carbon pools and
fluxes.

(3) Vertical
structure

• Challenging to collect, aggre-
gate and produce an in-situ
dataset that is representative of
entire euphotic depth and at
global scale.

• Biases towards in-situ C-phyto
data collected at surface depths.

• Lack of methods for extrapolat-
ing the surface satellite C-phyto
products down through the en-
tire euphotic zone.

• Use autonomous platforms such
as BGC-Argo floats and moor-
ings with satellite data and mod-
els to reconstruct the 4D views
of C-phyto.

• Harness developments in quan-
tum computing for data integra-
tion.

166



Table 6: Priorities, challenges, gaps and opportunities for satellite detection of Dissolved Organic
Carbon (DOC).

Priority Challenges Gaps Opportunities
(1) Spatial
and temporal
coverage of
the coastal
ocean

• Quantifying DOC stocks and
fluxes in coastal waters require
data with high temporal cover-
age.

• Atmospheric-correction of
ocean colour data in coastal
waters.

• Viewing high latitudes regions
from space in winter months.

• Estimates of DOC stocks and
fluxes in coastal environments
limited by the temporal coverage
of existing satellites.

• Geostationary ocean-colour
satellites, capable of imaging
multiple times daily.

• Future satellite ocean-colour
constellations may improve
temporal coverage.

(2) Under-
standing and
constraining
the relation-
ship between
CDOM and
DOC

• Improved performance of satel-
lite CDOM absorption retrievals
is required.

• Relationships between DOC and
CDOM absorption tends to be
variable seasonally and across
coastal systems.

• CDOM and DOC are largely de-
coupled in the open ocean.

• High sensitivity to atmospheric
correction (e.g., effects of
Rayleigh scattering).

• Gaps in our understanding of the
relationship between DOC and
CDOM absorption.

• There is a lack satellite UV and
hyperspectral data for resolving
DOC and its composition.

• Reliable atmosphere-correction
is needed for UV and shortwave
visible wavelengths.

• Utilise the spectral slope of
CDOM absorption to constrain
the variability between CDOM
and DOC.

• New insight on the effects of
photobleaching may provide op-
portunities for mechanistic mod-
els of the processes regulating
the relationship between CDOM
and DOC.

• Harness opportunities to acquire
high-quality field measurements
of DOC and CDOM absorption.

• Emerging UV and hyperspectral
satellites will open opportunities
for CDOM and DOC retrievals.

• Harness optical water type
frameworks for algorithms
selection and merging for better
separation of NAP-CDOM
effects.

Continued on the next page.
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Table 6. Priorities, challenges, gaps and opportunities for satellite detection of Dissolved Organic Carbon
(DOC). (continued from previous page).

Priority Challenges Gaps Opportunities
(3) Identi-
fication of
sources and
reactivity

• Challenging to identify specific
pools of DOC of different
sources and reactivity.

• Few studies assessing whether
the DOM fluoresced signal can
be detected from ocean colour.

• Whether the fluorescence of
DOC and CDOM can have a
measurable influence on remote-
sensing reflectance.

• Hyperspectral sensors will pro-
vide improved signal-to-noise ra-
tio, atmospheric corrections, as
well as enhanced spectral infor-
mation in the UV-visible range

• Opportunities with active
remote-sensing approaches
based on laser-induced fluores-
cence.

(4) Vertical
measure-
ments

• Remote sensing of CDOM and
DOC is limited to surface mea-
surements.

• Approaches that extrapolate sur-
face DOC and CDOM to depth
require extensive in-situ datasets
(vertical profiles). Gaps exist for
many regions and seasons.

• Acquiring in-situ measurements
from autonomous platforms like
BGC-Argo equipped with DOM-
fluorescence sensors and radiom-
etry.

• Opportunities with UV-lidar-
based techniques to retrieve
sub-surface information about
CDOM.

• Opportunities to harness mod-
elling approaches to improve es-
timation of DOC dynamics at
depth.
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Table 7: Priorities, challenges, gaps and opportunities for satellite detection of inorganic carbon
(IC) and fluxes at the ocean interface.

Priority Challenges Gaps Opportunities

(1) In-situ
data

• Strong reliance on in-situ data,
as many components of IC are
not directly observable from
space.

• In-situ data of a much coarser
spatial and temporal resolution
when compared with satellite
data.

• In-situ data products are heavily
extrapolated.

• Challenging to integrate in-situ
datasets without community con-
sensus on best practices and ref-
erence materials.

• Better spatial and temporal cov-
erage of field observations re-
quired throughout the water col-
umn.

• Limited in-situ data time-series
stations in key locations.

• Opportunities to improve the
spatial and temporal resolu-
tion of in-situ data through
autonomous platforms.

• Opportunities to extend recent
efforts to develop FRM to inor-
ganic carbon.

(2) Satellite
retrievals and
mapping un-
certainty

• Satellite inorganic carbon esti-
mates in optically-complex wa-
ter are challenging.

• Challenging to retain the theoret-
ical understanding of satellite al-
gorithms, while harnessing new
powerful statistical approaches
(e.g. AI).

• Lack of pixel-by-pixel uncer-
tainty estimates in the satellite
inorganic products.

• Lack of coincident in-situ obser-
vations of PIC, other highly scat-
tering materials, and IOPs, in
optically-complex waters.

• New satellite sensors, with im-
proved spatial, spectral and tem-
poral resolution, may lead to im-
provements in IC satellite prod-
ucts.

• Opportunities to harness and
build on recent techniques used
to map uncertainty.

Continued on the next page.
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Table 7. Priorities, challenges, gaps and opportunities for satellite detection of inorganic carbon (IC) and
fluxes at the ocean interface. (continued from previous page).

Priority Challenges Gaps Opportunities
(3) Models
and data
integration

• Bridging the differences (e.g.,
scales) in data products and mod-
els.

• In-situ, data-driven products are
sensitive to choice of extrapola-
tion method.

• Closer collaboration between
data generators and modellers is
needed.

• Opportunities to harness im-
proved computer processing
power, and new statistical tools.

• Opportunities to improve model
products by reconciling model
carbon budgets with those from
satellite and in-situ products.

• Opportunities to harness an in-
creasing range of data sources to
improve data products, for exam-
ple, data assimilation reanalysis.

• Opportunity for routine integra-
tion of in-situ, model, and satel-
lite observations to enable as-
sessment of the surface water
pCO2, air-sea exchange and the
net integrated air-sea flux of car-
bon.

Continued on the next page.
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Table 7. Priorities, challenges, gaps and opportunities for satellite detection of inorganic carbon (IC) and
fluxes at the ocean interface. (continued from previous page).

Priority Challenges Gaps Opportunities
(4) Mech-
anistic
understand-
ing of gas
transfer

• Mechanistic understanding of
gas transfer is challenged by our
ability to measure and quantify
key processes.

• Large uncertainties surrounding
the influence of near surface tem-
perature gradients on gas trans-
fer.

• Large uncertainty surrounding
the importance of bubbles for air-
sea CO2 fluxes.

• Carbon dynamics and air-sea
CO2 fluxes in mixed sea ice re-
gions are poorly understood.

• Opportunity to establish FRM
status and agree best practice
for eddy covariance air-sea CO2

fluxes.

• Opportunities to exploit state-of-
the-art techniques on novel plat-
forms to improve understanding
of air-sea CO2 fluxes in different
environments such as mixed sea
ice regions.

• Opportunity to quantify the mag-
nitude of near surface temper-
ature gradients on air-sea CO2

fluxes.

• Opportunity to develop/improve
parameterisations that use sea
surface roughness to estimate
air-sea CO2 transfer.

171



Table 8: Priorities, challenges, gaps and opportunities for satellite detection of Blue Carbon (BC).

Priority Challenges Gaps Opportunities
(1) Satellite
sensors

• Requirement for monitoring at
high temporal (hourly) and spa-
tial (tidal) scales.

• A lack of long-term satellite
datasets for change detection in
many BC ecosystems.

• New hyperspectral observations
will lead to improved BC detec-
tion.

• High spatial resolution (3-5 m)
imagery becoming available
from a constellation of commer-
cial satellites.

• Geostationary satellite instru-
ments will meet the require-
ments for high temporal (hourly)
BC monitoring.

• Scope to build on efforts to de-
velop satellite climate records
with a focus on BC.

(2) Al-
gorithms,
retrievals
and model
integration

• Many BC approaches are re-
gional, difficult to go to global
scales.

• Uncertainty estimation for BC
fluxes challenging.

• Difficult to monitor the dynam-
ics of sediment carbon remotely.

• Dealing with sub-pixel variabil-
ity of macroalgae when using
courser resolution satellite data.

• Limited availability of in-situ
data for development and valida-
tion of BC satellite algorithms.

• Lack of BC ecosystem models
limits our ability to quantify full
BC carbon budgets.

• Harness computation power and
statistical analysis of big data.

• Fusion of hyper-spectral optical
and SAR data for characteriza-
tion of tidal wetlands.

• New in-situ monitoring tech-
niques (e.g., drones) are use-
ful to bridge the scales between
satellites and in-situ observa-
tions.

(3) Satel-
lite data
access and
blue carbon
accounting

• Existing products and ap-
proaches are not easily accessi-
ble to non-expert users.

• Challenges to ensure cost-
effective monitoring using
commercial satellites.

• Lack of products suited to
project development and carbon
accounting.

• Products needed at global scales,
at higher spatial and temporal
resolution.

• Increasing efforts to develop BC
habitat mapping portals that are
user friendly.
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Table 9: Priorities, challenges, gaps and opportunities for satellite detection of Extreme Events
(EEs) and their impacts on the ocean carbon cycle.

Priority Challenges Gaps Opportunities
(1) In-situ
data

• Some EEs are challenging and
dangerous to monitor in-situ us-
ing ship-based techniques.

• Major gaps in availability of in-
situ observations of EEs.

• Gaps are greater in subsurface
waters.

• Long time-series in-situ observa-
tions needed for baselines.

• To harness the expanding net-
work of autonomous in-situ plat-
forms.

(2) Satellite
sensing tech-
nology

• Some EEs require high tempo-
ral and spatial coverage, which
challenges current remote sens-
ing systems.

• Dealing with cloud coverage dur-
ing tropical cyclones.

• Satellite retrievals in the pres-
ence of complex aerosols from
volcanic eruptions.

• High temporal and spatial reso-
lution data are required for mon-
itoring some EEs.

• Gaps in satellite data for some
EEs (e.g., clouds).

• Gaps in knowledge on the op-
tical properties of aerosols for
some events.

• Long time-series remote sensing
data are needed for baselines.

• Synergistic use of different long-
term high-frequency and high-
resolution remote sensing data.

• Harness emerging sensors with
increased spectral, spatial and
temporal resolution.

• Opportunities to derive satellite-
based indicators of EEs for deter-
mining good environmental sta-
tus.

(3) Model
synergy and
transdis-
ciplinary
research

• Need to utilise ESMs for under-
standing EEs and projecting fu-
ture scenarios.

• Need to bring communities from
multiple fields together.

• Higher resolution ESMs with im-
proved representation of marine
ecosystems.

• Investment in transdisciplinary
research related to EEs.

• Enhancements in computation
power and improvements in
ESMs and data assimilation tech-
niques.

• Remove knowledge barriers
by promoting and open data
approach cross-disciplinary
research and data access.
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Table 10: Priorities, challenges, gaps and opportunities for using satellite data for Carbon Budget
Closure (CBC).

Priority Challenges Gaps Opportunities
(1) In-situ
data

• Quality, quantity and spatial
distribution of in-situ measure-
ments varies depending on the
pool or flux being studied and
measurement platform used.

• Very few datasets exist on con-
current and co-located in-situ
measurements of all the key
pools and fluxes needed to evalu-
ate model budgets.

• Remote regions that play a key
role in global budgets (e.g.,
Southern Ocean) are severely
under-sampled.

• Gaps in key measurements in
many regions (e.g., photosynthe-
sis irradiance parameters, for or-
ganic carbon budgeting).

• New in-situ technologies be-
ing integrated into networks of
autonomous platforms, for im-
proved carbon measurements.

• Methods being developed to
quantity carbon pools and fluxes
from routine optical autonomous
observations.

• Properties of carbon budgets
can be interrogated using in-situ
compilations to check and con-
strain satellite or model budgets.

(2) Satellite
algorithms,
budgets and
uncertainties

• Coherence in the input satellite
data fields for different satellite
carbon algorithms needed when
computing budgets.

• Some of the pools and fluxes
of carbon require satellite data
with higher spatial, temporal and
spectral resolution.

• There needs to be consistency in
algorithms used to quantify bud-
gets, and these algorithms must
respect properties of the ecosys-
tem we know from in-situ data.

• Uncertainties in individual prod-
ucts are essential to analyse mul-
tiple products to compute the
budgets.

• Products must be evaluated in re-
lation to other products, to see
whether they hold together in a
coherent fashion.

• Many satellite carbon products
lack associated estimates of un-
certainty.

• More work is needed to im-
prove estimates of uncertainties
in model parameters.

• More efforts needed towards dy-
namic, rather than static, assign-
ment of parameters in carbon al-
gorithms.

• Harmonising satellite carbon
products across different plane-
tary domains (ocean, land, ice
and air) is needed.

• Opportunities to harness climate
data records.

• Opportunities to harness emerg-
ing sensors with increased spec-
tral, spatial and temporal resolu-
tion.

• New approaches and statistical
techniques offer potential to get
at pools and fluxes of carbon not
seen from space.

Continued on the next page.
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Table 10. Priorities, challenges, gaps and opportunities for using satellite data for Carbon Budget Closure
(CBC). (continued from previous page).

Priority Challenges Gaps Opportunities
(3) Model
and satellite
integration

• Challenges dealing with the con-
trasting spatial scales in models
and satellite observations.

• Quantifying carbon budgets also
requires appreciation of the dif-
ferent temporal scales that the
pools and fluxes operate on.

• Uncertainties in the satellite ob-
servations and model simula-
tions needed.

• Greater emphasise should be
placed on promoting model di-
versity.

• New developments in data as-
similation can help constrain car-
bon budgets, such as combined
physical and biological data as-
similation.

• Scope to harness developments
in machine learning to help com-
bine data and models.

• Future enhancements in com-
putation power should lead to
better representations of spatial
scales in models.
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Figure 1: (a) Number of documents identified per year (green circles) in chronological order
from a Scopus search (https://www.scopus.com/) using the terms "Ocean carbon satellite" (using
All fields). Blue line represents an exponential fit to the increase in the number of documents
over the past 50 years. (b) Geographical representation of the 449 scientists and stakeholders
who participated in the "Ocean Carbon from Space" workshop in February 2022. (c) Gender
split of the workshop participants. Gender was not asked at registration for privacy concerns,
but interpretation of registered participants suggested around 47 % were female and 53 % male,
acknowledging this interpretation does not consider that not everyone identifies as female or male.
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Figure 2: A word cloud designed to show the dominant themes and subthemes emerging from all
priorities identified. Created using a word cloud generator in Python (https://github.com/amueller/
word_cloud).
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