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Abstract
Advanced capabilities planned for the next generation of autonomous and increasingly autonomous air vehicles will include non-traditional com- ponents based on artificial intelligence, machine learning, and complex optimization and planning algorithms. These complex components will be used to provide enhanced safety and high-level decision-making functions. However, there are serious barriers to the deployment of autonomous aircraft in the National Airspace System (NAS). Current civil aviation certification processes are based on the concept that the correct behavior of a system or a component must be completely specified and verified prior to operation. This report from the Autonomy Verification and Validation (V&V) Roadmap and Vision 2045 project presents the most recent effort to build a comprehensive list of verification challenges and needs for au- tonomous aircraft, a roadmap to meet those autonomy V&V needs, the services they can enable, and point to the certification gaps they fill. To accomplish these goals, we assembled a team of world-class researchers from the aerospace industry (Boeing, Collins Aerospace, and General Electric) and academia (University of Michigan, University of Texas, and Massachusetts Institute of Technology) with deep expertise in autonomy, aerospace systems, and assurance of Artificial Intelligence/machine learning systems.
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1 [bookmark: Executive_Summary][bookmark: _bookmark0]Executive Summary
Advanced capabilities are planned for the next generation of autonomous and increasingly autonomous air vehicles. They will include non-traditional compo- nents based on artificial intelligence (AI), machine learning (ML), and complex optimization and planning algorithms. These complex components will need to provide enhanced safety and high-level decision-making functions currently performed by human operators. In addition, the complex components will need to be robust in the presence of failures, adverse conditions, and unexpected situations.
However, there are serious barriers to the deployment of autonomous aircraft in the National Airspace System (NAS). Current civil aviation certification processes are based on the idea that the correct behavior of a system or a component must be completely specified and verified prior to operation. These barriers will delay or prevent the deployment of crucial safety functions and new capabilities that could be of great value to society.
This “Autonomy Verification and Validation Roadmap and Vision 2045” project had multiple goals. They were to build a comprehensive list of verification challenges and needs for autonomous aircraft, to develop a roadmap to meet those needs, to identify the services they can enable, and to point to the certification gaps they fill. To accomplish these goals, a team of world-class researchers was assembled to provide perspective from the aerospace industry (Boeing, Collins Aerospace, and General Electric) and academia (University of Michigan, University of Texas, and Massachusetts Institute of Technology). The team had deep expertise in autonomy, aerospace systems, and assurance of Artificial Intelligence/Machine Learning systems.
The team followed a systematic approach to build the V&V roadmap and vision as presented in this report. We first defined the scope of this roadmap, surveying existing roadmaps from national and international aerospace-relevant organizations. The definition of the scope was based on use cases and autonomous functions in modern autonomous systems. Then 11 technical areas were selected for deep dive exploration: compositional verification, tradeoff of different factors of hybrid systems v&v techniques, machine learning V&V techniques, safety in Human-Autonomy Interaction, runtime assurance, autonomy for contingency planning, dynamic assurance, Unmanned Aircraft System (UAS) Traffic Manage- ment (UTM), Model-Based Systems Engineering (MBSE) for AI/ML, regulatory frameworks and challenges, and certification of AI/ML subsystems. We analyzed the information obtained based on our experience from autonomy and safety- related projects and synthesized the information to build our roadmap and make recommendations.
To build this vision for the aviation community, we leveraged our industry and academia expertise along with valuable inputs from government agencies (Federal Aviation Administration, Air Force Research Laboratory, and Naval Research Laboratory) and AI standards committees. With this balanced team and diversity of inputs, the vision and roadmap are built as an aviation community effort rather than an individual effort. Two workshops were organized to show the

 (
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progress of our roadmap and obtain feedbacks from the Advanced Air Mobility community.
This roadmap is expected to provide guidance and potential directions for future V&V technology development, based on our team’s expertise and experience, national and international research strategies, industrial needs, and certification requirements. Our comprehensive analysis will provide information needed to help guide NASA’s technology investment, planning, and development.



2 [bookmark: _bookmark1]Introduction
In the last decade, new technologies such as Artificial Intelligence (AI) and ma- chine learning (ML) have made dramatic strides, largely due to the development of more robust sensors, powerful acceleration hardware, and new computing models. Industry and government investment in autonomous systems, such as self-driving cars and unmanned air vehicles has led to further advances in new autonomy capabilities. Applications include perception, localization, mapping, planning, and control. However, major challenges have arisen because of the switch to a new design paradigm, i.e., a data-driven learning paradigm, as well as the switch of operations from human pilots to autonomy systems. These chal- lenges include system understanding, formalization, specification, verification & validation (V&V) and certification. Since conventional methods used in aviation applications address system behavior rather than data, they don’t fit well in the new data-driven learning paradigm. Analysis and identification of the challenges, gaps and potential solutions are highly demanded in the development of au- tonomous aviation systems that perform safety-critical functions. In addition, a well-defined roadmap that can guide future investment and standards is critically important to accelerate the development of autonomous aviation systems.

2.1 [bookmark: Goals_and_scope_of_the_project][bookmark: _bookmark2]Goals and scope of the project
The goal of this project was to build a comprehensive list of V&V needs, develop a roadmap to achieve them, identify the services they can enable, and point to the certification gaps they fill. This effort supports NASA’s internal, long range, planning exercises to address technology capability needs and funding plans. Questions that needed to be addressed included:
Q1: What are the new technologies needed to enable increasingly autonomous air services? Each new technology should be accompanied by examples of services it enables.
Q2: What are the limitations of current V&V capabilities with respect to these new technologies? For example, are current testing techniques sufficient for deploying ML-enabled systems? Answers should consider the projected use of these technologies as well as their possible re-use in different contexts (applications, environments, and so on).
Q3: Where do the current certification standards (such as DO-178C) fail to address assurance needs for these technologies or fail to take into account V&V results associated with the new technologies?
Q4: What role can new certification approaches such as Overarching Properties or safety cases play in the certification of increasingly autonomous systems?
Q5: What paradigm shifts in the existing regulations are necessary to implement new certification approaches?




Q6: How will the assurance of cyber-physical-human systems need to change to accommodate shifting roles and responsibilities between humans and automation? What new technologies will be required to assure anticipated systems architectures? How will we account for the implicit contributions to safety that are provided by humans in today’s systems?
To shape the scope of the project, various use cases in the autonomy area were identified and discussed, together with the enabling autonomous functions. The use cases covered different areas including healthcare, environment, sustainability, system and operation safety, and human impacts. The autonomous functions included basic functions, functions in different flight phases and functions related to interactions. More details can be found in Section 4.

2.2 [bookmark: The_team][bookmark: _bookmark3]The team
The team consisted of industry, academia, and government advisory members.
NASA advisory team: Guillaume Brat (NASA Program Manager), Aaron Dutle, Adrian Agogino, Alwyn Goodloe, Paul Miner
Core Technical team: 6 teams
Boeing: Huafeng Yu (Principle Investigator), Chad McFarland (Program Manager)
University Of Michigan: Ella Atkins, Prashin Sharma
Collins Aerospace: Darren Cofer
GE Research Michael Durling, Baoluo Meng, Christopher Alexander, Szabolcs Borgyos
Massachusetts Institute of Technology: Chuchu Fan, Kunal Garg
The University of Texas at Austin: Ufuk Topcu, Georgios Bakirtzis
Boeing advisory team: Benjamin Ivers, Matthew Moser, Christina Westover, Joseph Brinker, Steve Beland, Gordon Putsche, William Bosworth
External advisory team: 3 teams
FAA: George Romanski, Trung Pham, Ritesh Ghimire, Mike Vukas, Liz Brandli, Srini Mandalapu
AFRL: Kerianne Hobbs
NRL: Ramesh Bharadwaj

2.3 [bookmark: Our_approach][bookmark: _bookmark4]Our approach
The team adopted a systematic technical approach to build the V&V roadmaps. The tasks were to define the project scope, survey the existing roadmaps of global aerospace-relevant organizations, identify and analyze select autonomy and safety-related projects, and synthesize the information to:




· identify use cases and autonomous functions,
· summarize state-of-the-art technologies,
· identify technical gaps,
· build the roadmap, and
· make recommendations.
The vision was built on the collective expertise of industry researchers at Boeing, Collins Aerospace, and GE research, and from academic researchers at the Uni- versity of Michigan, University of Texas at Austin, and Massachusetts Institute of Technology. The team also considered inputs and feedback from government agencies (e.g., Federal Aviation Administration, Air Force Research Laboratory, and Naval Research Laboratory) and AI & autonomy standard committees. The collective perspectives from government, industry, and academia in this report’s vision and roadmap was an aviation community effort, which is important for the future realization of increasingly autonomous systems in the National Airspace. The roadmap is expected to provide guidance and potential direction for future autonomy V&V technology and tool development. The roadmap is based on the team’s expertise and experience, global research strategies, industrial needs, and certification requirements. The survey, analysis, evaluation, and synthesis help to reduce potential risks in the technology investment, planning, and development due to the currently ambiguous vision of autonomy V&V technologies. The roadmap helps to reduce technical uncertainties and fill gaps
for technology acceleration.



2.4 [bookmark: Outline_of_this_report][bookmark: _bookmark5]Outline of this report

	Topic area
	Section

	Findings
	Findings and Recommendations

	Use cases
	Use cases and autonomous functions

	
Verification techniques
	Compositional verification

	
	Tradeoff of different factors of hybrid systems
V&V techniques

	
	Machine learning V&V techniques

	Human-autonomy in-
teraction
	Safety in Human-Autonomy Interaction

	
Runtime techniques
	Runtime Assurance

	
	Autonomy for Contingency Planning

	
	Dynamic assurance

	New applications and techniques
	UAS Traffic Management (UTM) for UAS

	
	Model-Based Systems Engineering (MBSE) for
AI/ML

	Certification
considerations
	Regulatory frameworks and challenges

	
	Certification of AI/ML subsystems

	Summary sections
	Summary of the challenges

	
	Summary of the roadmap for autonomy V&V
techniques

	Conclusion
	Conclusion





3 [bookmark: Findings_and_Recommendations][bookmark: _bookmark6]Findings and Recommendations
The commercial aerospace industry is entering a period where great change is anticipated. Forces from business, technology, and society are creating a demand for aircraft and aircraft systems with increasing levels of autonomy and advanced capabilities. Environmental factors include:
· Recovery and continued increase of demand for commercial air travel
· Supply chain demands for shipping goods and materials by cargo carriers
· New demands for transportation (both speed and capacity) in high-density urban areas
· Emergence of new or non-traditional aircraft manufacturer, especially for smaller platforms (both manned and unmanned)
· Shortage of trained pilots for the foreseeable future
There has been much focus on new operational capabilities being developed in response to these forces. New aircraft and systems have been demonstrated with increasing levels of automation and autonomy enabling new aircraft operations and functions. NASA’s vision for Advanced Air Mobility (AAM) encompasses these new operations and capabilities.
However, as this report will describe, many assurance challenges remain to be solved for the new aircraft and systems under development. These will be barriers to innovation and to the eventual deployment of the AAM vision if not addressed through the needed research and technology development. Innovation in the commercial aerospace domain must always keep safety in the foreground.
Many of the new capabilities envisioned will depend upon AI/ML technologies to support autonomous operations and to implement advanced aircraft functions. Both autonomous operations and AI/ML-based airborne systems are outside the scope of current assurance frameworks. Over the time horizon addressed by this study, there will be demand for new verification technologies and associated certification guidance, as well as increased familiarity (and hopefully acceptance) of AI/ML-based systems where they are shown to meet safety requirements.
Key findings and recommendations from the study are highlighted here, with further details to be found in the rest of the report. Throughout the report we consider capability and enabling technology needs in the short-term (1-5 years), mid-term (6-10 years), and long-term (11-20/25 years, or around 2045 as suggested by the report title). We consider new autonomy capabilities, the technology enablers required by those capabilities, and the assurance or V&V research priorities to address challenges presented by those new technologies.
Some major autonomy capabilities, services, and operational needs identified are:
· Increasingly autonomous aircraft will be required in the commercial air transport and cargo transport domains, largely in response to pilot short- ages but also to reduce costs. This will manifest itself on a spectrum that




incrementally removes human pilots from the aircraft. This will begin (in the short-term) with reduced crew operations (RCO) to remove redundant or backup air crew currently required for long-haul flights. This will be followed (mid-term) by single pilot operations (SPO), likely supported by a ground-based supervisor covering multiple aircraft. Ultimately (long-term) these aircraft will fly autonomously without any onboard crew.
· Urban Air Mobility (UAM) or Air Taxi operations will exhibit a similar trend, largely driven by cost. While short-term deployments will still require fully trained commercial pilots, the mid-term vision is to rely instead on a less capable but licensed operator supported by increased onboard automation and ground-based supervisors. The long-term vision would replace the human operator by fully autonomous aircraft systems to reduce cost and allow more passenger capacity. Furthermore, scalability of the UAM vision to make it broadly accessible by the flying public requires full autonomy to reduce costs.
· Small UAS used for package delivery, law-enforcement, construction and inspection will need to be fully integrated with other aircraft in the NAS (short-term)
These capabilities will rely on new technologies for their implementation, many of which are based on or make use of AI/ML technologies:
· As aircraft progress towards increasing levels of autonomy, there will be greater reliance on contingency management systems, especially to deal with loss of communication (causing an unplanned shift to full autonomy). This includes the use of run-time assurance architectures to limit unexpected or unsafe behavior from an AI/ML system (short to mid-term).
· Systems will need to handle human/machine interface issues. This includes pilot alertness monitoring (short-term), with shift of control authority if the pilot is incapacitated (mid-term).
· Distributed management and coordination of airspace will need to account for new vehicle types and varying levels of autonomy (mid to long-term).
· Autonomous landing, taxiing, and sense-and-avoid systems will rely on vision-based perception and decision making (mid to long-term)
· Aircraft will include (onboard) advanced systems for distributed planning, deconfliction, and flight authorization (near to mid-term)
· One of the benefits of machine learning is to be able to learn from new data collected during operations, resulting in improved performance (and safety) over time. Examples of this exist in the automotive domain, but the assurance challenges associated with online learning mean that this will remain a long-term goal for commercial aerospace.




Based on the timeline of these technology needs, we can identify the following research priorities. Short-term research priorities include:
· Open case studies demonstrating how ML-based systems or components can be developed to satisfy the emerging certification guidance help to remove uncertainty, establish expectations, and improve communication among stakeholders (applicants and regulators). This is analogous to an effort undertaken for formal methods assurance tools and certification guidance following publication of DO-333 [1].
· Test generation and coverage metrics should be developed for ML-based systems (neural networks in particular) to provide a replacement for the structural coverage and model coverage metrics used in traditional software systems. A test completeness metric that is effective for fault-finding and provides confidence in the absence of unintended behaviors could then be considered for incorporation in ML certification standards.
· Run-time assurance (RTA) can be used to limit or prevent unintended behaviors in some systems and might be used to address scalability limits for systems beyond the capabilities of current analysis tools. Case studies should be developed to show demonstrate RTA can be incorporated into the design of real systems, showing how specific objectives of current and new certification guidance are satisfied.
Mid-term research priorities include:
· New methods and tools are needed to show the completeness and rep- resentativeness of training and verification datasets with respect to the operational design domain (ODD) of ML-based systems.
· Run-time assurance architectures containing many different ML-subsystems, monitors, and mitigation actions or controllers will be needed to build large complex systems. New methods are needed to show that interactions among monitors and mitigation actions are not in conflict. These methods will need to be integrated with current standards and certification practices for design and safety analysis.
· New methods, languages, and tools and needed for specifying requirements for vision-based systems. This could include scenario-based methods for ODD specification, validation, and coverage. These methods, languages, and tools will need to support completeness/representativeness objectives for datasets, verification of functional correctness, absence of unintended function.
· Research is needed to dramatically improved the scalability of formal analysis tools (for property verification, robustness, and reachability). This may include combinations of exact and approximate analysis methods.




There are many potential long-term research directions supporting the ad- vanced capabilities and technologies we can envision for 2045. They include the following:
· Trustworthy vision systems based on ML may require a completely new approach. Neuro-symbolic AI integrates neural and symbolic mechanisms to address complementary strengths and weaknesses of each, resulting in a robust system capable of reasoning, learning, and cognitive modeling. Neuro-symbolic or “hybrid AI” research may eventually lead to vision systems whose behavior can be reasoned about using symbolic methods.
· The ability to safely incorporate online learning into an ML-based sensing or control system is another long-term term goal. Dynamic or incremental assurance methods that produce (and assessing) assurance evidence during system operation are one promising direction toward this goal.



[bookmark: I_USE_CASES][bookmark: _bookmark7]Part I
USE CASES
4 [bookmark: Use_Cases_and_Autonomous_Functions][bookmark: _bookmark8]Use Cases and Autonomous Functions
With the fast development of autonomous systems, in the air or on ground, more interesting and useful autonomy uses cases emerge. In this report, use cases provide scope and context that we identify autonomy verification & validation challenges, potential solutions and future research directions.

4.1 [bookmark: Autonomy_use_cases][bookmark: _bookmark9]Autonomy use cases
In healthcare, typical use cases include pharmacy delivery and first aid. In environment and sustainability, wildfire suppression, environment monitoring and fuel consumption efficiency receive increasing attractions. To improve system and operations safety, safer autonomous operations and autonomous aircraft inspection are important examples of use cases. Considering human impacts, reduced crew operations and equity (service gaps) are good examples.
Figure 1 shows some typical use cases in popular autonomy applications.

[image: Graphical user interface

Description automatically generated with medium confidence]

[bookmark: _bookmark10]Figure 1: Examples of autonomy/advanced air mobility use cases.

These use cases will be used in the following sections to show the challenges, state of the art techniques and solutions, and our recommendations.

4.2 [bookmark: Autonomous_functions][bookmark: _bookmark11]Autonomous functions
Based on previous use cases, more specific autonomous functions are identified to further shape the scope of our effort. We are interested in autonomous functions in safety-critical applications. Some typical autonomous functions include perception and information fusion, mapping and localization, planning and decision making, control, coordination and teaming, contingency planning,




integrated vehicle health management (IVHM). These functions are considered as basic functions to enable autonomy.
If different phases in the autonomous system operations are also consid- ered, autonomous taxiing, autonomous takeoff, autopilot, detect and avoid, autonomous landing, and emergency landing are important functions in these phases.
With or without onboard/remote pilot(s), communications and interactions are critical factors to consider for autonomous systems. Interaction with other systems, human autonomy interaction, human factors, interaction with traffic management, etc., are the functions for interactions at different levels.
Figure 2 shows typical autonomous functions at different levels.
[image: Diagram

Description automatically generated]
[bookmark: _bookmark12]Figure 2: Autonomous functions to enable autonomy use cases.


4.3 [bookmark: Basic_autonomous_functions_enabled_by_AI][bookmark: _bookmark13]Basic autonomous functions enabled by AI
In autonomous systems, AI can be used in basic autonomous functions, including perception, localization, planning and control, etc.. Figure 3 shows more details of the various AI algorithms/models that can be used in different autonomous functions.
In perception, according to the type of sensors, output data from the sen- sors are very different, for instance, point clouds from LIDAR, images/videos from camera. According to the type and format of sensor data, different AI algorithms/models are used. Many of them are deep neural networks (DNN) based, which are good fit for high dimensional data and feature extraction.
In localization, planning and control, many traditional AI methods are also used in addition to DNNs, for example, particle filters and search algorithms.




Reinforcement learning are widely used in many planning and control applica- tions.
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[bookmark: _bookmark14]Figure 3: Basic autonomous functions enabled by Artificial Intelligence.


4.4 [bookmark: Beyond_Autonomy/AAM_Use_Cases_and_Functi][bookmark: _bookmark15]Beyond Autonomy/AAM Use Cases and Functions
Previous use cases and autonomous functions help define the scope and challenges of autonomy V&V techniques we want to address in this project. In the following sections, we will consider more aspects progressively: safety assurance techniques, human-autonomy interaction, runtime techniques, new autonomy applications and techniques, standards and guidance, and certification and regulations.



[bookmark: II_VERIFICATION_TECHNIQUES][bookmark: _bookmark16]Part II
VERIFICATION TECHNIQUES
5 [bookmark: Compositional_Verification][bookmark: _bookmark17]Compositional Verification
Compositionality is a property of a system’s behavior, whereby the behavior is predictable by the combination of the behaviors of its parts and the combi- nation preserves properties emerging from the parts [2]. Composition, in this understanding, is a stronger property than, for example, modularity and relies on ensuring, formally, quasi-formally or even informally, that different types of interfaces are compatible. Such interfaces can take the form of bottom-to- top horizontal composition, the classical understanding of composition due to Frege [3], and top-to-bottom vertical composition with other models, which address new types of composition as systems become increasingly complex [4].
Compositional verification refers to the theories, technologies, and tools to verify subsystem components by parts. Compared to verification that produces guarantees for the whole system, compositional verification scales with system complexity and allows us to create modular and verified subsystem components.

5.1 [bookmark: Why_do_we_need_compositionality_in_learn][bookmark: _bookmark18]Why do we need compositionality in learning for engi- neering systems?
Learning algorithms offer tremendous capabilities in systems that are hard to model or work in a priori unknown environments. However, significant barriers remain to their deployment in safety-critical engineering applications. Verifying systems that embed learning artifacts is difficult, particularly for monolithic end-to-end learning approaches. For example, many model-free reinforcement learning algorithms output only the learned policy and its estimated value function, rendering them opaque for verification purposes. The difficulty is compounded in engineering application domains, in which systems require overly complicated and often impractical reward functions to synthesize the desired behavior and are subject to an excessive amount of operational and contingency scenarios. In such applications, the typically poor data efficiency and failure to generalize beyond their training regime pose additional obstacles to the wide adoption of learning algorithms.
The above challenges raise two fundamental questions in integrating learning in engineering systems: How do we build complex engineering systems we can trust? And, how can we get guidance from that to reliably integrate learning artifacts into engineering systems and, in particular, into networked systems? Engineering design principles have long prescribed system modularity to reduce the complexity of individual subsystems. By creating well-defined interfaces between subsystems, system-level requirements may be decomposed into component-level ones. Conversely, each component may be developed and tested independently, and the satisfaction of component-level requirements




may then be used to assure compliance with the system-level requirements. Additionally, such compositionality has the potential to improve data efficiency and enable the reuse of subsystems outside the intended context for the overall system. Incorporating such compositionality into the training and implementation of learning artifacts is a crucial step toward widespread deployment.

5.2 [bookmark: Gaps_and_challenges_in_compositionality_][bookmark: _bookmark19]Gaps and challenges in compositionality for AI
The key gaps and challenges in compositionality are:
· Lack of formal semantics for interface theories between engineering design and learned components.
· Weak modularity and interroperability between learned components.
· Scarcity of methods and tools that compositionally verify system designs.
· Incorporating physics with learning.

5.3 [bookmark: The_negligence_of_formal_structure_in_sy][bookmark: _bookmark20]The negligence of formal structure in system design
Engineering practice requires decomposing problems to subproblems, solving those and combining the individual solution to a global solution. However, often there is difficulty in assuring that the subproblems, for example, represented as input-output relationships of black boxes, do not explicitly compose. This lack of interface theories and relational semantics leads designers to assume and hard wire or force subproblems to some compositional structure, regardless of how doing so can lead to unwanted interaction faults. Ensuring compositionality can assist with making precise these interfaces, thereby making manageable the issue of increasing system complexity.
However, to overcome this challenge requires a delicate exploitation of the compositionality feature. By exploitation we mean the systematic refinement and abstraction within and across domains, such as the refinement of a requirement to its desired behavior and vice versa [5]. Achieving this level of fidelity requires both quantitative and artistic interpretations of the act of engineering systems. While there is added effort in designing systems compositionality it leads to some wanted side effects. The first is that of explainability, by totally understanding the parts as well as their relationship to each other we can totally explain the induced behavior of the system, even in cases where we want to reveal some unwanted or unmitigated behavior. Among others this explainability can provide insight into the safety posture of the system early on and allow for efficient design changes to mitigate potential issues before development. Additionally, given that compositionality gives us explicit rules on how to chain subsystems together, it is natural to assert that engineering effort can often be reused, leading to modular system components. Finally, an immediate result of the above two claims is that the mental effort of designing systems that have to achieve increasingly complicated autonomous tasks becomes less complex, since
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Figure 4: The ontology of the SysML standard has three different types of diagrams; behavioral, requirements, and structural (adapted from [6]).

we can zoom-in or zoom-out as needed to understand both design decisions and possible implementation, interchange compatible components, and ultimately consolidate expert input within a compositional structure.
SysML is a well thought-out ontology to understand the segmentation of different types of compositional methods in the context of MBSE (Fig. 4). SysML is based on diagrams, these diagrams are static and have a scarcity of simulation capabilities. Nevertheless, the structural interpretation of system design can be generalized based on the classes and types of diagrams found in the standard; requirements, behaviors, and structures. For clarity consider
structures to relay architectural information of the system under design. While
not currently formally defined precisely in the SysML standard, we claim that each singular type of diagram ought to have a precise notion of composition, i.e., how the syntax corresponds to the semantics of the model. In addition, the relationship between types, i.e., requirements, behaviors, and architectures must also have a precise notion of composition in the form of abstraction and refinement with feedback. We can be more or less formal in our compositional framework overall, it is reasonable to expect that even informal methods can assist with scalability, reusability, and modularity in system design. However,
to verify properties—any of the -ilities [7]—we care about we need to specify
requirements, behaviors, and architectures in a formal language.

5.4 [bookmark: Overcoming_the_curse_of_behavioral_emerg][bookmark: _bookmark22]Overcoming the curse of behavioral emergence
The opposing force to compositionality is that of emergent phenomena. A compositional model of a particular system must be sufficient to tell us how the behavior of the whole is produced by the behavior of their parts and connections between parts [9, 10, 11]. It would be impossible to manage emergent phenomena
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Figure 5: In scientific inquiry, the value of the model is how well it matches the system. In engineering design, the value of a system is how well it matches the model (adapted from Dexler [8]).

and it is the case that often they are desired to achieve a particular behavior. However, the point of compositionality is not to eradicate emergence but rather to control it. Controlling emergence through means of compositionality requires us to add more information to models that are well understood. For example, that in a controls model we will require the use of trivial functions for sensor and controller even though we already know how to calculate the overall behavior without them (by using the standard equations for dynamical behavior in those systems). That is what we mean by controlling emergent effects, not removing or reducing but rather being further mathematically explicit when needed to retain compositional properties in our models. Compositional thinking will be of particular interest in further increasing autonomous system capabilities, while making sure that those systems adhere to societal and technical requirements, for example, security [12].
As stated before, system composition can be horizontal or vertical [13]. Horizontal composition refers to fully understanding the behavior of one domain, such as control models or distributed networks, as rising from the composition of parts. Instead, vertical composition refers to the relationship between domains of discourse, such as the relationship of dynamical behavior through control algorithms with the desired values and requirements set by stakeholders. Both horizontal and vertical composition assist with managing emergent properties.
Managing emergence in system design requires exploiting compositionality (Fig. 5). This comes from the recognition that the engineering of systems allows us to be more or less strict with choosing the design of systems to verify component interactions compositionally. In contrast, in physical systems like the earth, we have no way to control unwanted behaviors because behaviors




emerge naturally. Therefore, in designing autonomous systems, we can exploit compositionality to ensure that the systems we deploy will not cause us harm. In particular, exploiting compositionality allows us to precisely define and develop systems by their parts. This means that the black box behavior of a system can always be opened and the connection between components inside have some meaningful sense with components with other black boxes in system design.

5.5 [bookmark: Usecases_of_compositionality_in_AI][bookmark: _bookmark24]Usecases of compositionality in AI
Reinforcement learning (RL) algorithms offer tremendous capabilities in systems that work with unknown environments. However, there remain significant barriers to their deployment in safety-critical engineering applications. Autonomous vehicles, manufacturing robotics, and power systems management are examples of complex application domains that require strict adherence of the system’s behavior to stakeholder requirements. However, the verification of RL systems is difficult. This is particularly true of monolithic end-to-end RL approaches; many model-free RL algorithms, for instance, only output the learned policy and its estimated value function, rendering them opaque for verification purposes. The difficulty of verification is compounded in engineering application domains, which often require large observation and action spaces, and complicated reward functions.
How do we build complex engineering systems we can trust? Engineering design principles have long prescribed system modularity as a means to reduce the complexity of individual subsystems [14, 15]. By creating well-defined interfaces between subsystems, system-level requirements may be decomposed into component-level ones. Conversely, each component may be developed and tested independently, and the satisfaction of component-level requirements may then be used to place assurances on the behavior of the system as a whole. Building RL systems that incorporate such engineering practices and guarantees is a crucial step toward their widespread deployment. In particular there is a need for the following thrusts [16]:
1. Automatic decomposition of task specifications. We are interested in finding an optimal set of parameters, develop methods to automatically decompose the task specification into subtask specifications, thereby allowing for independent learning and verification of the subsystems.
2. Learning to satisfy subtask specifications. Any RL method should be able to learn subsystem policies, so long as the learned policies satisfy the relevant subtask specification. Subtask specifications must provide an interface between subsystems, allowing for the analysis of their compositions. In particular, there must be a guarantee that if each of the learned subsystem policies satisfies its subtask specifications, a composition of them exists satisfying the specifications on the overall task.
3. Iterative specification refinement. However, if some of the subtask specifications cannot be satisfied by the corresponding learned policies, sampling- based estimates of their behavior ought to be used to update the high-level model. In particular, compositional RL algorithms naturally lead to capabilities




such as automatic refinement that iteratively can compute subtask specifications, and then can train the corresponding subsystems to achieve them.
4. System modularity: prediction and verification in task transfer. By providing comprehensive interface theories for subtask specification, it ought to be re-usable as components of new high-level models, perhaps even designed to solve different tasks. Furthermore, the subtask specifications themselves should be re-used to perform verification within these new models, without the need for further training.
We have good indicators that these are reasonable goals for compositional verification in AI, such as the longstanding field of hierarchical RL (HRL) [17, 18, 19, 20, 21, 22]. However, to date improvements are necessary to systematically decompose and refine task specifications, allow for the explicit reasoning over the probabilities of events, extend the use of planning-based solution techniques, and provide flexibility in the choice of RL algorithm used to learn subsystem policies. HRL methods use task decompositions to reduce computational complexity, particularly in problems with large state and action spaces [23]. However, they typically focus on the efficient maximization of discounted reward and they require the meta-policy to be learned; no model of the high-level problem is explicitly constructed.
Compositional verification has been studied in formal methods [24, 25], but not in the context of RL. Conversely, recent works have used structured task knowledge to decompose RL problems, however, they do not study how such information can be used to verify RL systems. [26] and [27] both define a task specification language based on linear temporal logic, and subsequently use it to generate reward functions for RL. [28] incorporates RL with symbolic planning models to learn new operators – similar to our subtasks – to aid in the completion of planning objectives. Meanwhile, [29, 30, 31, 32] use reward machines, finite-state machines encoding temporally extended tasks in terms of atomic propositions, to break tasks into stages for which separate policies can be learned. These works all use structured task knowledge to decompose RL problems, however, they do not provide methods for the automated verification and decomposition of task success probabilities, or for the targeted training of subsystems.

5.6 [bookmark: Coupling_physics_and_learning][bookmark: _bookmark25]Coupling physics and learning
Most—if not all—existing methods are oblivious to the underlying system structure. Indeed, many systems, from power networks to robots interacting with their surroundings to large-scale multiphysics systems, involve large numbers of interacting and integrated components. These interactions between subsystems can increase the complexity of the overall system’s dynamics, rendering monolithic approaches to learning—which capture the entire system using a single model learned from data—unsustainable.
One promising approach to coupling physics with learning compositionally is by representing the system of interest, as well as each of its subsystems, as a port-Hamiltonian neural network—a class of deep learning models that use




the port-Hamiltonian systems formalism to inform the model’s structure. More specifically, port-Hamiltonian neural networks parametrize each subsystem’s Hamiltonian function, how it dissipates energy, how it interacts with other subsystems, and how it responds to control inputs. These methods can enforce known properties of the dissipation and interaction terms through the model’s construction.
In particular, port-Hamiltonian systems provide a versatile framework that enables the modeling and analysis of complex networks of interacting subsystems. Conceptually, port-Hamiltonian systems are represented by their Hamiltonian functions, by their energy dissipation terms, and by a mathematical description of the power-conserving interactions of their subsystems, called a Dirac structure. A wide variety of systems, including but not limited to electrical systems, mechanical systems, electromechanical energy conversion, rigid-body dynamics, flexible mechanisms, distributed-parameter systems, and chemical reactors, can be modeled in this framework [33].
In the future it will be crucial to develop methods and tools for learning and composing physics-informed neural network models of networked dynamical systems. The framework ought to model individual subsystems independently and use physics-informed interfaces between these submodels to capture their
interactions. This compositional approach to learning provides a number of benefits and novel capabilities that would not otherwise be possible. Firstly, it simplifies the learning problems to be solved. Submodels are trained on trajectory data generated by relatively simple subsystems. The dynamics of more complex composite systems are then predicted without additional training. Secondly, it provides a modular framework for data-driven modeling. Previously learned component models can be composed in new ways to simulate different composite systems. Finally, it provides a natural way to compose data-driven models with models derived from first principles.

5.7 [bookmark: _bookmark26]Recommendations
Compositionality is an essential part of combating unwanted behavior and managing emergence and has a long trajectory before becoming mature for system synthesis and analysis (Figure 6). As systems become increasingly complex, we will need interface theories and tools to decouple components to create interoperability and modularity. In essence, when systems admit a compositional structure, it is imperative to exploit it to understand better how behaviors emerge from their parts and how, precisely, they influence the whole. Through this analysis and synthesis of AI systems, it is much more likely to reach and navigate the abstraction levels necessary to guarantee behavior under some pre-specified and documented assumptions.
In particular, AI systems can benefit from the application of compositional thinking in the following ways:
· Assume-guarantee reasoning as a first class citizen of system design being controlled partially or fully by AI technology.




· Structural analysis to relate different model views necessary for the correct and certifiable system designs.
· Partial modeling engendered by formal interface theories, making explicit which parts are verifiable and which parts we have to assign trust (in other forms, for example, assurance cases).

[image: Icon

Description automatically generated]
[bookmark: _bookmark27]Figure 6: A roadmap for practical compositional verification.



6 [bookmark: Tradeoff_of_Different_Factors_of_Hybrid_][bookmark: _bookmark28]Tradeoff of Different Factors of Hybrid Systems V&V Techniques
6.1 [bookmark: _bookmark29]Introduction
The authors in [34] summarize the process of verification and validation of CPS through the lens of software engineering phases, namely, modeling, validation, and verification (Figure 7).
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[bookmark: _bookmark30]Figure 7: [34]: CPS verification model engineering process: modeling, validation, verification.

Verification of Cyber-Physical Systems (CPS) and autonomous systems has been studied for more than three decades. Every year, the proceedings of conferences like Computer Aided Verification, Hybrid Systems: Computation and Control, and Tools and Algorithms for the Construction and Analysis of Systems contain several papers with results advancing the state of the art in verification of CPS. In this section, we briefly review the related work on formal verification on CPS and hybrid systems, including modeling, verification tools, and different approaches.

Modeling CPS and Autonomous Systems as Hybrid Systems
One of the most popular method of describing the evolution of a CPS is through a hybrid system formulation, where the continuous evolution of the physical component is described through ODEs, while the discrete communication, data- exchange, control policy update, and other discrete phenomena related to the cyber component of the system are described through difference equation, or a discrete-transition equation (see [35] for a detailed presentation on Hybrid systems).
A switched system is another way of modeling CPS [36]. It generalizes ODEs by allowing the system to be described by a set of ODEs for each mode and a piecewise constant switching signal that defines the operating mode. A switched system model can be seen as a hybrid system in which the switching signal defines the transitions.
The popular models for describing the interactions between physical plants and computing and control units are hybrid automata [37], hybrid input/output




automata [38], and hybrid programs [39, 40]. The major differences among these models are their syntax and the expressiveness of physical environment. Timed automata [41], which are finite automata extended with a finite set of real-valued clocks, were proposed as a sub-class of hybrid automata to model the timing behavior of real-time systems and networks. It has been shown that the verification and reachability problem for timed automata is decidable [41]. The continuous variables of a time automaton are clocks which increase always at rate 1. If we extend the definition of timed automata to allow the continuous variables to increase with different constant speeds, the resulting type of hybrid automaton is called a rectangular hybrid automaton. The reachability problem for a rectangular hybrid automaton is undecidable [42]. In fact, the class of initialized rectangular hybrid automata is a maximal class for which the reachability problem is decidable [43]. Hybrid automata provide a more expressive way to describe the behaviors of continuous variables. Compared with timed automata, in a hybrid automaton, the value of the continuous variables can be described by a set of general ordinary differential equations [44]. The hybrid input/output automata framework proposed in [38] has been extensively used in modeling many CPS such as biological systems [45], robotic cars [46], helicopters [47], spacecraft [48], and mixed-signal circuits [49].

6.2 [bookmark: Verification_and_Validation_Tools][bookmark: _bookmark31]Verification and Validation Tools
Tools like HyTech [50], PHAVer [51], Coho [52], Checkmate [53], Hylaa [54],
HyPro [55], SpaceEx [56], d/dt [57], and ET [58] have targeted and successfully verified linear dynamical and hybrid models. More recently, verification tools such as Flow* [59], NLTOOLBOX [60], iSAT [61], dReach [62], Isabelle/HOL- ODE-Numerics [63] and CORA [64] have demonstrated the feasibility of verifying nonlinear dynamic and hybrid models. These tools are still limited in terms of the complexity of the models and the type of external inputs they can handle, and they require quite often manual tuning of algorithmic parameters. Some of these tools’ approaches for reach set estimation operate directly on the vector field involving higher-order Taylor expansions [62, 59]. However, this method suffers from complexity that increases exponentially with both the dimension of the system and the order of the model. Below is a brief overview of several recent verification tools:
· C2E2: The tool Compare-Execute-Check-Engine (C2E2) [65] is a simulation and verification tool for nonlinear hybrid systems models. It takes as input the model of a hybrid system and a safety property and verifies whether the safety property is satisfied or violated by the model. If satisfied, C2E2 can return reachable sets over-approximations. If violated, C2E2 also presents the counterexample that violates the safety property. The first version of C2E2 as developed in [65] requires that sensitivity (i.e. discrepancy functions) for each mode of the hybrid systems are given by the user as model annotations.
· CORA: The tool COntinuous Reachability Analyzer (CORA) [64] is a




MATLAB-based verification tool using zonotopes for reachability analysis. It can handle hybrid systems with nonlinear continuous dynamics and/or nonlinear differential-algebraic equations. Moreover, it can handle the analysis of uncertain parameters and system inputs.
· dReach: The tool dReach [62] is an SMT-based δ-reachability analysis tool for nonlinear hybrid systems. It checks whether a hybrid system can run into an unsafe region of its state space. dReach picks a single start state in the initial set and attempts to finds a counterexample that reaches the unsafe set. If it succeeds, a (spurious or real) counterexample has been found and the tool finishes. Otherwise, it picks a suitable starting state for the next execution to be processed.
· Flow*: The tool Flow* [59, 66] is a verification tool that computes Taylor model (TM) flowpipes as over-approximations for continuous and hybrid system reachable sets. It can handle nonlinear hybrid systems with un- certainties from the initial set and nondeterministic discrete transitions. It can also decompose large dimensional systems to a network of smaller dimensional system to make the reachability analysis more scalable.
· HyDRA: The tool Hybrid systems Dynamic Reachability Analysis (Hy- DRA) implements flow-pipe construction based reachability analysis for linear hybrid automata. The tool is built on top of HyPro [55], a C++ library for reachability analysis. HyPro provides different implementa- tions of set representations tailored for reachability analysis such as boxes, convex polyhedra, support functions, or zonotopes.
· Hylaa: The tool Hylaa [67, 54] is a verification tool that computes the simulation-equivalent reachable set of states for a hybrid system with linear ODEs. For a given model, Hylaa can compute all the states reached by any fixed-step simulation. However, it does not reason between time steps. Furthermore, time-varying inputs are considered to be constant between time steps [68].
· Isabelle/HOL-ODE-Numerics: The tool Isabelle/HOL-ODE-Numerics [63] is a collection of rigorous numerical algorithms for continuous systems. It is based on Runge-Kutta methods implemented with affine arithmetic. All algorithms of Isabelle are formally verified in the interactive theorem prover Isabelle/HOL: from single roundoff errors to the global approximation scheme is proved correct with respect to a formalization of ODEs in Isabelle/HOL.
· JuliaReach: The tool JuliaReach is a software framework for reachability computations of dynamical systems. It is written in Julia, a high-level language for scientific computing. JuliaReach can handle continuous affine systems using a block decomposition technique presented in [69].
· KeYmaera X: The tool KeYmaera X is a theorem prover and verification tool for differential dynamic logic [39], a logic for specifying and verifying




properties of hybrid systems with mixed discrete and continuous dynamics. KeYmaera X allows users to specify custom proof search techniques as tactics, execute tactics in parallel, and interface with partial proofs via an extensible user interface.
· SpaceEx: The tool SpaceEx is a C++ tool for computing reachability of linear hybrid systems whose continuous and jump dynamics are piecewise affine with nondeterministic inputs [70, 56]. SpaceEx comes with a web- based graphical user interface and a graphical model editor. Its input language facilitates the construction of complex models from automata components that can be combined to networks and parameterized to construct new components.
· XSpeed: The tool XSpeed [71] implements algorithms for reachability analysis for continuous and hybrid systems with linear dynamics. The focus of the tool is to exploit the modern multicore architectures and enhance the performance of reachability analysis through parallel computations.
Simulation-driven Falsification. A noteworthy related approach is simulation- driven falsification, which addresses the problem of finding bugs, but does not aim to prove their absence [72]. The search for bugs is formulated as an op- timization problem, and since this typically works out to be a nonlinear and non-convex problem, stochastic optimization tools are employed to guide the search. The preeminent tool implementing this approach is S-TaLiRo [73]; it has been effectively used to search for bugs in several practical applications [74, 75].

6.3 [bookmark: _bookmark32]Challenges
The authors in [76, 77] conducted online surveys and interviews, and documented some of the main challenges faced by the researchers in the field of CPS verifi- cation and validation. Some of the main challenges in the field of verification and validation are listed below: Modeling: One of the major challenges in CPS verification include obtaining realistic models of a physical system with minimal gap with real-world systems, that allow the usage of currently available compu- tational tools. The interviewees for the survey pointed out that "the models are still immature" and “There is a significant gap between the perceived environ- ment and the modeled environment..". Reliance on simulations: While most research in the field of verification relies and trusts simulation-based verification, some arguments have been raised against relying too much on simulations. In particular, it is noted by some researchers that "good enough" simulators still do not exist, and that high use of in-house simulation is concerning as it can limit reproducibility and generalizability.
The article [78] also lists some of the current challenges with the available verification and validation tools. The articles points the following main challenges. Safety without prior knowledge: CPS verification techniques largely consider the problem of controlling safely given a priori knowledge about the values of safety-relevant quantities. In the real world, these quantities are only known a




posteriori. Thus, robust algorithms and methods should be developed that can guarantee safety and acceptable performance even on regions of state-space that might be missed by verification tools. Predicting behaviors: The authors ask an important question on how to deal with situations when a mismatch between expectation and reality occurs. One approach could be to understand the cause of its incorrect predictions, construct a new model of the world that corrects for these modeling inaccuracies, and then synthesize new provably correct control logic. However, this needs more work and the field is still not as mature.
The survey article [79] also tabulates some existing challenges in the field of verification of autonomous systems. The first major challenge mentioned by the article is Modeling of the physical environment of operation of the autonomous system, which is further complicated by different sensor accuracy, motor performance and component degradation. Similar to [78], it is argued that using models of the environment that are static and assume prior knowledge may limit their effectiveness. The article also points out that often, autonomous system fail or falls short of providing adequate Evidence for Certification and Trust. One aspect of the challenge is that even the regulatory requirements for certain autonomous systems, such as a pilotless aircraft, are still under development. Regulators are more concerned with the evidence of safety, than with the specific methods used to produce the evidence; therefore, determining suitable and robust formal methods for distinct robotic systems remains an open problem. Related to trust is the issue of ethical robotic behaviour. While there is work focused on distinction between ethical and non-ethical choices, they ignore or are incapable of handling the scenarios when no ethical choice is available. It is to be noted that reasoning about ethical behaviour is at least as difficult with robots as it is with humans.
Furthermore, in a multi-robot systems – both homogeneous swarms and heterogeneous teams – provide an interesting challenge to robotic systems. They provide resilient architectures; but their decentralisation brings specific challenges for formal verification. Reconfigurable systems are key to dealing with changing environments and mission goals. However, ensuring that they reconfigure themselves in a safe way is a challenge, and the key focus in the literature

6.4 [bookmark: _bookmark33]Use cases
The Verification and Validation tools are an important aspect of development of autonomous system, particular when the system is safety-critical. As an example, for Safe Autonomous Operations, be it autonomous vehicles (AVs) on the road or autonomous aerial vehicles (AAVs) and Autonomous Unmanned Vehicles (AUVs) in the air, it is necessary that the designed algorithms are verified for correctness and completeness.
One of the most common use-cases of autonomous systems is traffic manage-
ment and coordination of AVs. A major challenge in the verification of safety of AVs is non-predictability of the intent and future actions of the other vehicles on the road. The authors in [80] address this problem by using worst-case possible




behaviors of the other vehicles in the vicinity of the AV and compute a short-time safety set that is verified to be safe using formal methods. The authors in [81] provide a detailed description of formal verification of autonomous systems for Platooning, where the scale of the multi-agent system makes it difficult to both capture the individual autonomous behaviour and to use the formal methods for verification of the overall system due to computational complexity. Such studies and related surveys advocate the case of need for development as well as integration of such tools in regulations and legislation for AVs.
In the field of certification of AUVs, verification tools play a significant role. As pointed out in [82], model-checking methods can be used in tandem with simulations for certification of AUVs (see also [83]). Building on theorem-proving tools, the authors in [84] look into verification of the new generation Airborne Collision Avoidance System (ACAS X) being considered by Federal Aviation Administration (FAA). The authors demonstrate that their theorem proving algorithms find conflicting advisory which might lead to violation of safety, and such tools can be used to guide the advisories for improvement and correction. With increase in AUV and AAV applications in civilian airspace, the need for development of scalable and more generally applicable verification and validation tools has become eminent.
As the applications of robotics in healthcare is increasing, more focus is devoted to work on formal verification of human-robot interaction in healthcare. The authors in [85] explore verification tools for autonomous robot guiding a patient towards doctor’s office. Another recent work in [86] study verification tools for human-robot interactions involving a robotic receptionist for COVID patients. Such robotic interaction are going to increase in the coming future, and the need for development of verification tools for correctness and safety evaluation of such interaction is going to increase even further.

6.5 [bookmark: _bookmark34]Recommendations
Some of the future research directions and open questions are listed below:
· Combined model checker: As argued in [76], a generic theorem prover and a combined model checker, capable of handling heterogeneous differ- ential equations and a combination of stochastic and real-time features, respectively, are highly desired.
· Sim2Real gap: It is desirable to develop a simulation platform that can integrate the cyber and the physical components. The authors in [34] argue that data-driven validation mechanisms needs more attention, and work needs to be done to bridge the gap to hybrid verification models by discovering how discretized data can be mapped to the component behavior while retaining its contracts, facilitating error localization in invalid models.
The authors in [76] confirmed that existing formal method techniques and simulation are, as yet, insufficient for supporting the development of entire general-purpose CPS. They also confirmed strongly that the current state of the




practice in CPS verification and validation remains an ad hoc trial and error process. Finally, they confirmed that there are still significant gaps between the formal models of computing and the formal models of physics that underpin today’s CPS systems. This investigation has elicited a set of research directions that have the potential to directly address challenges that real CPS developers cited in the experiences in developing and debugging real-world CPS.



7 [bookmark: Machine_Learning_Verification_&_Validati][bookmark: _bookmark35]Machine Learning Verification & Validation
Artificial Intelligence, particularly Machine Learning (ML), is one of the key technology enablers of current autonomous systems. AI/ML can be found in various functions in autonomous systems, such as visual perception, collision free planning and control, and object detection and tracking. These functions are adopted in many use cases described in Section 4. This section focuses on ML verification and validation. We first summarize various AI and ML models and algorithms and then identify technical challenges with potential solutions for ML V&V. Different aspects related to ML V&V will also be discussed, such as requirements, data, and ML compiling & implementation. Recommendations are given at the end of this section.

7.1 [bookmark: _bookmark36]Introduction
ML can be applied on different systems and functions in autonomy, including perception, localization, planning and control. Examples can be easily found in the autonomous vehicles [87]. Based on a survey of research in self-driving cars and unmanned aerial systems, typical AI/ML algorithms and models used in autonomous systems are summarized in Table 1.

	Autonomous
functions
	AI/ML algorithms

	

Perception
	
Camera
	Single shot detectors (YOLO [88], SSD [89])
Focal loss (RetinaNet [90])
Region based (FPN [91], Faster R-CNN [92]) Atrous convolutions (Deeplab-v3 [93])

	
	Lidar
	3D CNN

	
	Radar
	DBN trained with Spectral Correlation Function
(SCF)

	
	Acoustic
	Partially Shared Deep Neural Network (PS-
DNN)

	
Localization
	Graph-based SLAM (Cartographer)
LSTM-RNN
Particle filters (Gmapping)
Visual odometry (SVO, DSO, ORB-SLAM [94])

	

Planning
	A*
D*
Rapidly-exploring random tree (RRT) Probabilistic roadmap (PRM)
Fast Marching Trees (FMT*) Stable Sparse Trees (SST*)
Inevitable Collision State Avoidance (ICS-AVOID)






	[bookmark: _bookmark37]Autonomous
functions
	AI/ML algorithms

	
Control
	Model identification adaptive controllers (MIACs)
Model reference adaptive controllers (MRACs) Value function approximation (Deep Q learning) Imitation learning (Inverse RL, Dagger)



Table 1: A list of AI/ML algorithms and models in autonomous functions

This is a short list of the ML algorithms and models, but we observe the good diversity of problems to be addressed, implementation methods, data format, and outputs generated. Their V&V techniques are required to consider not only the characteristics of the ML algorithm, but also the requirements, training & testing data, and ML compiling & implementation. These aspects already exist in V&V of conventional software, but extensions are needed to address distinguished new features of ML. These aspects will be discussed in the following sections.

7.2 [bookmark: Current_challenges_of_ML_V&V][bookmark: _bookmark38]Current challenges of ML V&V
The main challenges in V&V of AI/ML are first given before specific V&V aspects are addressed:
· Lack well-defined AI/ML regulations and standards
· Lack widely-accepted industry AI/ML assurance plans or strategies
· Create good implementable and verifiable/testable AI/ML requirements and objectives
· Build sufficient dataset for ML training & testing, and data-driven V&V
· Create or identify appropriate V&V tools to provide enough guarantees with regard to predefined safety and V&V properties
· Explore how to use the V&V proofs to identify or support potential means of compliance with regulator’s AI/ML guidance
· Build integrated V&V framework to facilitate the integration of different V&V tools, insertion of the new tools in existing frameworks or processes, and communication among all the stakeholders
· Apply V&V technologies and tools developed in labs on real UAV platforms

7.3 [bookmark: AI_Requirements][bookmark: _bookmark39]AI Requirements
Four main challenges in AI/ML requirements are given here, including AI require- ments definition, requirements and data consistency, requirements decomposition and traceability, and requirement validation and refinement.




AI requirements definition. Definition of conventional software requirements doesn’t fit well into the new AI/ML applications. This problem is a result of the new features of AI/ML: data-driven approach, predictions of AI/ML irrelevant to logic or rules, probabilistic/statistical behavior, and generalization capability. New definitions of requirements are required to deal with these new features.
Requirements and data consistency. In current AI/ML practice and pro- cess, definition of requirements and data preparation are performed in parallel, and there are very limited techniques that can help assure the con- sistency of them. As a consequence, invalid requirements and unintended features in the collected data may be introduced. This problem eventually lead to incorrect AI/ML design and implementation.
Requirements decomposition and traceability. Decomposition of high-level requirement to low-level requirements, or decomposition of system-level requirement to component-level requirements is a common practice in the software and system development. This decomposition becomes ambiguous when the system has AI/ML components. The causes of this problem are closely related to AI/ML’s generalization capability, unintended behavior, and probabilistic behavior. This decomposition challenge also leads to the traceability problem of AI requirements.
Requirement validation and refinement. This is a result of the challenge of requirement definition, and in addition, validation of AI requirements share the same challenges of AI/ML verification.
Table 2 shows typical expected properties of AI requirements from different perspectives:

	[bookmark: _bookmark40]Examples of
requirement validation techniques
	Expected
general Properties
of	Require- ments
	Expected
Properties that can be checked and improved by using V&V
	Additional
Properties or Evaluation Metrics
	Expected
Properties of requirement techniques and tools

	Specification
mining,	Ex- plainable
and structure counter- example generation,
Falsification
	Traceability,
consistency, verifiability, expressive- ness
	Correctness,
completeness, equivalence
	Coverage (in-
tended / un- intended be- havior, data, process, etc.)
	Compatibility
(with	other engineering tools		and standards), usability


Table 2: Typical properties of AI requirements



7.4 [bookmark: ML_V&V_properties][bookmark: _bookmark41]ML V&V properties
ML V&V properties are derived from AI/ML requirements, as the results of requirement formalization and analysis activities. Compared to V&V tools, V&V properties are not subject to frequent changes according to the evolution of V&V techniques in the last decades. These properties are agnostic from the implementation and development of different V&V approaches and tools. With these considerations, we focus on V&V properties in this project.
The V&V techniques considered in our scope include verification, analysis, testing, simulation, and synthesis. The following is a short list of typical V&V- relevant techniques, used in this project to create sets of V&V properties.
· ML Verification and analysis
· Formal-methods-based, empirical, ML-based, Statistics-based, etc.
· Testing
· Formal-methods-based, empirical, ML-based, statistics-based, scenario- based, etc.
· Simulation
· Flight simulators, game engines, other dedicated simulators, hardware in the loop, etc.
· Software synthesis
· Automated synthesis (behavior), controller synthesis from Formal Specifications, program synthesis, invariant synthesis, motion plan synthesis, algorithm parameters synthesis, etc.

V&V properties related to verification and analysis

A list of V&V properties related to verification and analysis is shown in Table 3.




	[bookmark: _bookmark42]Examples
of V&V techniques (not a full list)
	General
Properties of	the
Require- ments/AI Compo-
nent/Data
	Expected
Properties that can be checked and im- proved by using V&V
	Additional
Properties or	Eval- uation Metrics
	System-
level properties
	Expected
Properties of	V&V Safety Tools

	Model
checking, Runtime verifica- tion,	Au- tomated theorem proving, Statistical analysis
	Complexity,
Verifiabil- ity	/
testability, Fairness, Criticality, Modu- larity, Composi- tionality, Reusabil- ity, Trans- ferability
	Accuracy,
Correct- ness,	Ro- bustness (AI/ML),
Explain- ability, Inter- pretability, Appropri- ateness
of	ab-
straction (verifica- tion	 or analysis model	re- garding the system), Model validation, Stability
	Coverage,
Confusion matrix and derivations (used	in analy-
sis	and testing), Uncer- tainty
	Robustness
(of the AI- enabled system, regarding noise, dis- turbance, etc.), Reliability
	Scalability,
Appli- cability, Usability, Interop- erability, Perfor- mance, Robust- ness	(of the Verifi- cation		or analysis tool)



Table 3: A list of ML V&V properties related to verification and analysis

V&V properties related to testing

Examples of testing techniques are automated test generation, regression testing, ML-based testing, stress testing, compliance testing, field testing, statistics-based testing. Typical examples of testing properties can be found in Table 4:




	[bookmark: _bookmark43]General
Properties of the Require- ments/AI Compo- nent/Data
	Expected
Properties that can be checked and improved by using V&V
	Additional
Properties or Evaluation Metrics
	System-level
properties
	Expected
Properties of V&V Safety Tools

	Complexity,
Verifiabil- ity/testability, Fairness, Criticality, Modularity, Composi- tionality, Reusability, Transferabil- ity
	Accuracy,
Correctness, Robustness (AI/ML), Ex-
plainability, Interpretabil- ity,	Appro- priateness of abstraction (verification or		analy-
sis	model regarding
the	sys- tem), Model validation,
Stability
	Confusion
matrix	and derivations (used		in analysis and testing), Uncertainty
	Safety	re-
gion/boundary, accuracy and coverage,
Robustness (of	the	AI- enabled system, regarding noise, distur- bance, etc.), Reliability, Mileage/flight hours
	Scalability,
Usability, Interop- erability, Statistical properties (test	data, scenarios, process, etc.), Applicability, Performance, Adequacy, Effectiveness, Robustness (of the testing tool)



Table 4: A list of ML V&V properties related to testing

V&V properties related to simulation


Typical examples of ML V&V properties related to simulation can be found in Table 5.




	[bookmark: _bookmark44]General
Properties of the Require- ments/AI Compo- nent/Data
	Expected
Properties that can be checked and improved by using V&V
	Additional
Properties or Evaluation Metrics
	System-level
properties
	Expected
Properties of V&V Safety Tools

	Complexity,
Verifiabil- ity/testability, Fairness, Criticality, Modularity, Composi- tionality, Reusability, Transferabil- ity
	Accuracy,
Correctness, Robustness (AI/ML), Ex-
plainability, Interpretabil- ity,	Appro- priateness of abstraction (verification or		analy-
sis	model regarding
the system), Model fidelity and validity, Stability, Consistency of	assump-
tions
	Coverage
(simulation scenar-
ios,	data,
etc.),	Tim- ing/synchroniza Tim-
ing/delay, Uncertainty
	Robustness
(of	the	 AI- enabled system,	re- garding noise, tdioinst,urbance, etc.), Reliabil- ity, Simulated Mileage/flight hours
	Scalability,
Interop- erability, Simulation realism, Per- formance, Applicability, Usability, Robustness (of the Ver- ification	or simulation tool)



Table 5: A list of ML V&V properties related to simulation

V&V properties related to synthesis


Typical examples of ML V&V properties related to synthesis are included in Table 6.




	[bookmark: _bookmark45]General
Properties of the Require- ments/AI Compo- nent/Data
	Expected
Properties that can be checked and improved by using V&V
	Additional
Properties or Evaluation Metrics
	System-level
properties
	Expected
Properties of V&V Safety Tools

	Observability,
Controllabil- ity,	Clear specification, Differentia- bility
	Correctness,
Liveness, Fairness (related	to unbounded nondeter- minism), Robustness, Stability
	Explainability
	Robustness
(of	the	AI- enabled system, regarding noise, distur- bance, etc.), Reliability
	Scalability,
Applicability, Usability, Interop- erability, Performance



Table 6: A list of ML V&V properties related to synthesis

7.5 [bookmark: Verification_related_to_data][bookmark: _bookmark46]Verification related to data
In addition to V&V of the ML component itself, data V&V are equivalently important. Training data play a major role to define the behavior of ML compo- nent. When the ML component cannot be completely verified and explained, analysis of training data aids to understand and predict the behavior of the ML component, including intended or unintended behavior. V&V of data, including the training, testing, and validation data, should be a part of the V&V plan.
The following challenges related to data V&V are identified: data require- ment/specification validation, data refinement and update validation, simulation data and real data validation, and data quality validation.
Data requirements/specification validation. In addition to conventional requirement validation considerations, data requirement validation also take into account the content of data, the context and conditions of data collection and generation, and the scenarios used to collect data.
Data refinements and updates validation. The evolution of data has an significant impact on consistency of data, and eventually change the be- havior of ML components. Examples of data evolution include collection of new data, correction (e.g., scenarios and labels) or removal of existing data, and change the labels of the data due to new requirements.
Simulation data and real data validation. In most cases, simulation data are more easily collected than real world data, particularly for corner case and data collected from risky environment. It is also much easier to label simulation data than real data. But a challenge of simulation data is its usefulness to train ML components that are expected to operate in real world environment.




Data quality validation. Data quality refers to data attributes, such as cor- rectness, completeness, coverage, representativeness, fairness, bias, privacy. Correct distribution and density are also key factors to consider.
A summary of properties in the data V&V process is found in Table 7:

	[bookmark: _bookmark47]General  Prop-
erties	of
the Require- ments/AI Com- ponent/Data
	Expected  Prop-
erties that can be checked and im- proved by using V&V
	Additional Prop-
erties or Evalua- tion Metrics
	Expected  Prop-
erties of V&V Safety Tools

	Consistency,
Timeliness, Validity, Statis- tical properties, Fairness, Trace- ability, Data sets independence
	Completeness,
Representative- ness, Statistical properties, Accu- racy, Correctness
	Coverage, Distri-
bution and den- sity (I/O)
	Statistical prop-
erties,	Robust- ness


Table 7: A list of data V&V properties Data V&V activities are mainly based on statistical analysis.
7.6 [bookmark: Neural_network_V&V_techniques][bookmark: _bookmark48]Neural network V&V techniques
Deep neural networks have a very fast growth in the past decade, and they have been experimented and being adopted in many autonomous functions. Many of these functions are safety-critical. Because of this, verification and testing are becoming more attractive and important to both industry and research communities.

ML Testing


Statistical testing has been the primary method to verify machine learning algorithms according to requirements, such as accuracy, distance, and capability of generalization. But with the popularity of machine learning used in a large number of applications, other research communities also proposed testing meth- ods that address ML properties similar to those of conventional software, such as correctness and robustness. A comprehensive survey of machine learning testing was performed [95], and Table 8 shows a brief summary of the surveyed testing methods:




	[bookmark: _bookmark49]Category
	Tools or techniques

	


Process
	
Test Input Gen- eration
	DeepXplore, DeepTest, DeepBillboard,
TensorFuzz, DLFuzz, DeepHunter, DeepGauge, DeepCheck, DeepColic, etc.

	
	Test Oracle Iden-
tification
	Perturbed Model Validation, METTLE,
Amsterdam framework, CRADLE, etc.

	
	
Test Adequacy
	Neuron coverage, MC/DC coverage vari-
ants, layer-level coverage, state-level cov- erage, DeepMutation, Keneral Density Estimation

	
	Test  Prioritiza-
tion and Reduc- tion
	Cross entropy, surprisal, Bayesian uncer- tainty, noise sensitivity based priority

	
	Debug and re-
pair
	Tfdbg, MISTIQUE, PALM, etc.

	
	Testing	frame-
work
	Telemade, VerifAI, Fairtest, etc.

	
Properties
	Correctness
	Accuracy, precision, recall, AUC, F-test,
mirror program

	
	
Overfitting
	Perturbed Model Validation, model com-
parison, cross-validation, regularization, early stopping, pruning, Bayesian priors, dropout, etc.

	
	Robustness
	DeepFool, DeepSafe, SafetyNet, AI2,
Ensemble adversarial training, distilled networks, AVFI, DriveFI, etc.



Table 8: Summary of the surveyed ML testing methods from [95]

ML Verification


Due to the weakness of testing related to coverage, completeness, robustness, etc., formal-methods-based verification has become very attractive since 2017, particularly inspired by several innovative research [96, 97]. A brief summary of the most recent neural network verification algorithms was presented in [98]. Table 9 shows a summary of identified verification methods and representative tools.




	[bookmark: _bookmark50]Verification methods
	Reachability-
based	ap- proaches
	Optimization-
based	ap- proaches
	Search-based	ap- proaches

	Description of	the	ap- proach
	Layer-by-layer
reachability analysis of the network
	Optimization used to falsify the assertion
	
Search for a case to falsify the assertion

	Verification meth- ods/tools
	ExactReach, MaxSens,	and Ai2.
	NSVerify, MIPVerify, and ILP.
	ReluVal, DLV, Fast-
Lin, Fast-Lip, Relu- plex, Planet, BaB, and Sherlock.



Table 9: A list of ML verification tools, extracted from [98]

Verification related to ML compiling and implementation


ML compiling and implementation are among important activities in the post-training phase in the ML development flow. It is provided in the machine learning development frameworks and tools, such as TensorFlow [99] and PyTorch [100]. Typical activities in ML compiling and implementation include:
Model conversion/translation: a conversion from a trained ML model to a standard model format that can be used in the downstream implementation activities. This activity is sometimes optional in implementation, for instance, when the ML design and implementation are performed in the same framework. But if the ML model is trained with TensorFlow, while implementation is performed with another tool, e.g., Matlab, a conversion may be necessary.
Model optimization: optimization to meet the deployment, performance, and other requirements on target architecture. Typical machine learning opti- mization techniques include pruning, weight sharing, quantization, Low Rank Approximation, Binary / Ternary Net, Winograd Transformation, etc.. Most of them lead to behavior and performance variations from the original ML model, so appropriate selection of optimization technique is an important consideration regarding V&V and certification requirements. Optimization can be switched off in some ML frameworks to maintain consistent ML behavior and performance.
Compiling or interpretation: compiling is a translation from an ML model to executable code, and it is an old software technique well studied in certification. On the contrary, in interpretation, inference engines embedded in ML frameworks are used to interpret ML models for inference, and certification is a big challenge as the inference engine may be complex, proprietary, and blackbox.




Synthesis: a series of steps to convert an ML model to high level hardware description language-based model, and then to gate level representation that can be put onto hardware, such as FPGA (Field-Programmable Gate Array) and ASIC (Application-Specific Integrated Circuit).

Recent competitions of ML V&V


International Verification of Neural Networks Competition (VNN-COMP) was started on 2020. The goal of the competition is to compare the scalability and speed of state-of-the-art neural network verification methods with standard model format, rules, and benchmarks. The most recent one is the 2nd competition on 2021 [101]. The participated tools included Marabou, VeriNet, ERAN, α, β-CROWN, DNNF, NNV, OVAL, RPM, NV.jl, Venus, Debona, and nnenum. The benchmarks of verification ACAS Xu, Cifar10 resnet, Cifar2020, eran, Marabou-cifar10, Mnistfc, NN4Sys, Oval21, and Verivital. As one example, ACAS Xu benchmark has 10 properties to be checked against 45 neural networks, which contain 300 neurons in 6 layers with ReLu activations. The results of the competition can be found in the reports [102] and the benchmarks evaluation scripts can be found online [101].

7.7 [bookmark: Recommendations_and_roadmap][bookmark: _bookmark51]Recommendations and roadmap
According to the challenges and the current state of the art of the ML V&V techniques, a research roadmap is created based on short-term, medium-term and long-term perspectives.
In short term, the focus is on the development of acceptable assurance techniques, including simulation, testing, and verification. In this phase, ML evaluation metrics are expected be defined and used as quantifiable confidence of the assurance techniques. Various V&V activities are explored and developed to address some specific V&V properties. These activities are integrated in ad-hoc ML V&V processes.
In medium term, ML requirements and their V&V requirements are well established and standardized. Appropriate V&V techniques are able to provide sufficient means of compliance, which are well adopted by industry in practice. Concepts of explainability and interpretability are well defined and matured to be used to increase trust of ML systems.
In long term, trustworthiness is further explored, with quantifiable guarantees of ML performance, generalization and safety. V&V techniques, development pro- cesses, and various means of compliance are progressively accepted by regulators and being integrated into AI guidance and regulations.



[bookmark: III_HUMAN-AUTONOMY_INTERACTION][bookmark: _bookmark52]Part III
[bookmark: Safety_in_Human-Autonomy_Interaction][bookmark: _bookmark53]HUMAN-AUTONOMY INTERACTION
8 Safety in Human-Autonomy Interaction
8.1 [bookmark: _bookmark54]Introduction
Levels of Human-Autonomy/Robot Interaction
The level of human-robot, human-autonomous system, or a human-autonomy system can be categorized based on the level of autonomy, the nature of interac- tion and the overlap of working environment. The authors in [103] categorize the various levels of Human-robot interaction as follows: Coexistence: Human works in (partially or completely) shared space with a robot with no shared goals. Cooperation: Human and robot work towards a shared goal in (partially or completely) shared space; and Collaboration: Human and robot work simulta- neously on a shared object in a shared space. These levels were chosen by authors in [104] because each level takes the joint effort deeper and the terms are similar to those suggested earlier. In some cases, coexistence and cooperation might be the same from the safety perspective, but they are different for the human worker. If the worker’s task depends on the robot’s activities, the interaction goes to a higher level, and issues such as timing, motion legibility, and joint awareness of the situation become significant
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Figure 8: [103]: Collaboration levels (a): Coexistence, (b): Cooperation, (c): Collaboration
.



8.2 [bookmark: Safety_in_HRI/HRC][bookmark: _bookmark55]Safety in HRI/HRC
Notion of safety
Generally speaking, safety of an autonomous system concerns with it not failing or crashing, collision avoidance and remaining in a restricted operational zone. In the context of HRI or HRC, safety is generally concerned with safety of the human being. In this context, the safety of humans are associated with both physical and psychological well-being. The authors in [105] categorize safety in Human-robot interaction as: Physical safety: In order for HRI to be physically safe, no unintentional or unwanted contact can occur between the human and robot. Furthermore, if physical contact is required for a given task (or strict prevention of physical contact is neither possible nor practical) the forces exerted upon the human must remain below thresholds for physical discomfort or injury. Psychological safety [106]: Stress can have serious negative effects on health, which makes stressful HRI a potential source of harm. Furthermore, psychological discomfort caused by any of the other aforementioned factors, as well as robotic violation of social conventions and norms during interaction, can also have serious negative effects on humans over time. We define the prevention of this type of indirect, psycho- logical harm as maintaining psychological safety. It is important to note that psychological harm, in contrast with physical harm, is not limited to proximal interaction, as it can also be sustained through distal interaction via a remote interface.

Safety at each level
The ISO standards for Industrial Robots [107] specify safe modes of operations as follows (see also [103]): Safety-rated monitored stop (SRMS): Under this mode of operation, the human and robot can perform tasks in separate workspaces and the robot can operate without restrictions as long as the human has not entered its workspace. The human may enter the robot’s workspace only when a safety-rated monitored stop is active, and the robot may resume only when the human has exited the robot’s workspace. Safety-rated devices should be used to detect the presence of human. Hand guiding (HG): In this mode, the human can manually provide motion commands to the robot by utilizing a HG device. When the human is outside the collaborative area, the robot can move at full speed; however, the human is allowed to enter the robot’s workspace and proceed with HG tasks only after the robot achieves SRMS. When the human takes control over the robot with the HG device the SRMS is released, accordingly when the HG device is disengaged the SRMS is activated Speed and separation monitoring (SSM): In this mode, the human and the robot can work in the same workspace. The speed of the robot is adjusted according to the distance between the human and the robot itself. The robot must not get closer to the human than the protective separation distance, otherwise the robot must stop. Power and Force Limiting (PFL): This mode allows physical contact between human and robot. PFL operations are limited to collaborative robots that have integrated force and torque sensors. Contact between human




and robot is allowed, however, the forces applied to the human body through intentional or unintentional contact should be below the threshold limit values which should be determined during the risk assessment.

Methods of safety
There are many different ways safety in HRI/HRC can be assured. The authors in [108] provide a detailed survey of various such methods, which are summarized below (see Figure 9):
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[bookmark: _bookmark56]Figure 9: [108]: Diagram depicting a taxonomy of the existing methods providing safety in HRI.

From Perception point of view, various techniques have been developed such as robot perceiving the human in the collaborative workspace as an obstacle for avoiding contact, intent estimation to predict future motion patterns of the human, and force/torque sensor-based contact-detection in addition to camera feed for maintaining safety. In Cognition enable robots, vision system as well as system’s self-awareness is utilized for control and reaction strategies. Human-aware motion planning takes into account human presence and intent, as well as robot’s social awareness, such as making the humans comfortable by reducing robot’s velocity. Cognition also focuses on failure scenarios where fail-safe measures, such as shutting down the system upon detection of faults or failures, have been explored. For Action-enabled robots, particularly in the scenarios involving physical HRI, the focus of Compliant control has been on developing standards and protocols on velocity/power/contact force limits for maintaining safety. Similarly, Compliant navigation deals with robot navigation in close proximity of people, avoiding contact and collisions. Finally, pre- and post- collision methods deal with methods of avoiding collisions and minimizing harm in case of a collision or an unwanted contact (see also [105]). Control Barrier Functions (CBFs)-based approaches have become very common for provable safety guarantees in terms of collision avoidance (see e.g. [109], [110], [111], [112]). Hardware features such as using user-friendly material, soft grasping, soft joint deformation, can contributed significantly to safety. Along the lines of cognition and post-collision methods, it also includes enabling robot with




force/torque detection, and fail-safe measures such as panic buttons.

8.3 [bookmark: Challenges_of_HRC][bookmark: _bookmark57]Challenges of HRC
There are several open problems and challenges yet to be addressed in the field of HRI/HRC. As an example, Moving Parts in a robot, such as propellers in an autonomous drone in human-drone interactions (see e.g., [113]) or moving arms of industrial robots, creates safety challenges for the humans operating in the vicinity. Another major challenge is Intent prediction (in terms of behavior or motion prediction) of the human operator [114, 109], and becomes even more difficult with low-cost sensors. The authors in [115, 116] point out additional challenges involving intent-communication and joint understanding of basic human emotions such as confusion, agreement, concern etc. for effective communication. As a result, it is difficult for humans to perceive a robot as a teammate and maintain team-cohesion involving robots. Additionally, it is argued in [117] that it is even more challenging to resolve ambiguous and uncertain situations due to the current level of robot intelligence and perception technology. It is important to focus not only on identification of individual objects but rather the overall situation. Furthermore, more work needs to be done on resolving situations involving human-unresponsiveness to robot actions or decisions (for e.g., AVs on the road with unresponsive or non-cooperative human-driven car) [110].
Fault-detection poses a major safety challenge in HRI, where it is utmost
important not only to detect a fault or a failure in a timely manner, but also having fail-safe measures and worst-case scenarios embedded in design procedures for maintaining safety. One major challenge in this field is maintaining a balance between formal guarantees (that might rely on strong assumptions and affect the robot performance) and probabilistic guarantees (that might guarantee higher performance on average, but cannot provide safety guarantee at all costs). While there is work on self-healing of robots upon fault-detection and failure-cases, it is
crucial to characterize type and severity of faulty behaviors necessary to decrease
a human’s trust to the point of intervention despite self-healing behavior [118]. Runtime challenges include maintaining safety during robot-learning from expert demonstrations involving close-vicinity of humans.
There are additional barriers and factors that make it difficult for adoption of robotic technology at the industrial level. Cost-factor introduces a new dimension of challenge as use of robots is increasing at the industrial scale. In particular,
the major cost-factors include Robot component and build cost, Installation and training cost and Maintenance cost [116]. Industrial robotics has other challenges as well, such as how to guarantee occupational safety of the human workers [119]. A major challenge in successful and widespread adoption of robotic technology is the fear of job loss. Furthermore, training of the human workforce to work cohesively with a co-robots (also termed as cobot ) introduces additional costs, creating additional barriers. Deviations from the standardized work practice by human interaction partners could cause the HRI to fail. For example, if an employee does not place a certain workpiece in the predefined joint hand-over




area with the cobot, the latter is unable to proceed unless cobots are equipped with artificial intelligence for object recognition and independent planning of trajectories and work steps. Additionally, also in case of a defect, employees should know how to perform trouble- shooting to re-start the working process without losing much time. In a flexible production environment, in which the robot is required to adapt regularly to different production processes, it is of increasing importance to have these manuals prepared for each process.

8.4 [bookmark: _bookmark58]Use cases
Among other important and prevalent use case of HRI/HRC is in the healthcare where robotic applications in assistance for differently-abled and elderly people have increased manifold in the past few years. The survey paper [120] lists the state-of-the-art methods and use-cases in the field. In particular, the authors note that social robots are used in healthcare for providing health education and entertainment for patients in the hospital and for providing aids for the sick and aged. They are also used for dispensing drugs and providing rehabilitation as well as emotional and aging care, thereby improving the efficiency and quality of healthcare services. The authors in [121] study the impact of robot personality in the HRI in healthcare. They concluded that understanding the interplay between the robot’s and human’s personality traits, such as Extraversion, Agreeableness, Conscientiousness, Emotional Stability and Openness, is likely to provide impor- tant insights that can be generalized into valuable design recommendations for robots in healthcare.
Another major use case of HRI is in the field of assistance and rehabilita- tion. Recently, tools such as ArmSym [122] have gained much traction, where simulation environments can be used to gather data from immersive experiences, opening the door to closer collaboration between device engineers and experience designers in the future. A comprehensive review of the topic is presented in [123], where various applications such as Rehabilitation Robots, Robotic Exoskeleton,
Robotic Prostheses, Assistive Manipulators, and Assistive Mobile Robots, are
reviewed.
Next set of applications of HRI include tasks in a shared autonomy space, where a robotic manipulator or similar assistant aids a human in efficiently completing complex tasts. The authors in [124] evaluate some of the recent algorithms for shared autonomy tasks. Many such manipulators have been developed in the past few years, e.g., Lio [125]. There are other advanced robotic platforms developed for assisting humans with various tasks in both domestic and industrial setting, some examples include but not limited to: Pepper by SoftBank Robotics, WALKER by UBITECH, Care-o-bot 4 by Unity Robotics and Fraunhofer IPA, REEM-C and TIAGo robots by PAL Robotics, Spot and Stretch by BostonDynamics, and Digit by AgilityRobotics.
HRI is also a major component of Human-In-The-Loop (HITL) simulations and experiments, where the human "influences the outcome in such a way that is difficult if not impossible to reproduce exactly." HITL also readily allows for the identification of problems and requirements that may not be easily identified




by other means of simulation. The authors in [126] study HITL simulations in a bushfire detection scenario, where a single human operator is responsible for coordinating multiple UAV platforms to search for and localize bushfires over a large area.

8.5 [bookmark: _bookmark59]Recommendations
Based on some of the challenges mentioned in the previous sections and as pointed out by some of the recent survey articles, the following main recommendations are made as lines of focus for future work in the field of HRI-HRC.
The authors in [127] argue that future research should focus on obtaining extensive data on human perception and address the question that at what distance to a robot, navigation intent shows most strongly in the gaze of humans.
The article also recommends that future research should aim to find confidence models for predictors based on different modalities with the goal to derive more reliable joint predictors. Focusing further on navigation intent, it is recommended
that navigation intent prediction needs to be integrated into human-aware motion planning.
The survey article [108] make several suggestions on the topics and fields that need more attention. Making a case for improving and incorporating vision sensors in the robots, the articles suggests that integration of the existing mechanisms with computer vision will, on the one hand provide the required cognitive perception and on the other hand will endorse the future robots with
physical intelligence. Weighing on the importance of the growing Machine- Learning based methods, it is also recommended that by incorporating machine learning techniques into the action robotic skills, safety can be increased with the association of environmental constraints and physical parameters into end-to-end solutions instead of analytical ones.
Moreover, looking at the success of probabilistic models in achieving ac- ceptable level of performance, it is recommended that the incorporation of probabilistic learning into task planning and decision making should be inten- sified, since most of the existing solutions are deterministic ones and cannot handle changes in the interaction scenario with humans.
Finally, it is argued that need for the mathematical modeling and systematiza- tion of the existing SoA (Service oriented Architecture) methods will contribute in the safety by design requirement of the future robots. Creation of unified metrics and data sets that, on the one hand will allow the intense evaluation of the future methods to be developed and, on the other hand, will give thrust to the incorporation of machine learning techniques into safety, which are all aspects that eventually will ease and expedite the future standardization procedure.
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9 [bookmark: Runtime_Assurance][bookmark: _bookmark61]Runtime Assurance
Not all assurance challenges can be addressed by the design process. Run-time assurance (RTA) architectures are one method to address the residual challenges posed by complex algorithms by monitoring systems behavior during operation.

9.1 [bookmark: Challenges][bookmark: _bookmark62]Challenges
RTA architectures (also known as a simplex architectures [128]) add high- assurance components to a system design to ensure that the component containing complex behaviors (or difficult to certify algorithms such as ML) cannot cause unsafe or unintended system behaviors. The high-assurance components in- clude run-time monitors, safety backup components, and a switch that manages whether the complex component or a safety backup is being used. Run-time monitors continuously check variables related to the system state, inputs to the complex component, or outputs produced by the complex component, and intervene to switch to a backup function that is proven to be safe. Monitors may be used to detect anomalous inputs that are outside of the data distribution used to train the system and therefore could lead to unintended behavior. One or more safety backup components provide alternate functionality that has been verified to be safe. When a violation of system safety properties or an unsafe output from the complex component is detected, the architecture switches to a verified backup to continue safe operation. The main idea is that system performance is provided by the complex component while system safety is guaranteed by the high-assurance components (though possibly with lower performance).
The ASTM F3269 standard for bounded behavior of complex systems [129] provides design assurance guidance for the use of RTA. The standard provides guidance for mitigating unintended functionality through the use of run-time monitors. The complex component in the system may still contain unintended functionality, but the architecture ensures that there will be no impact on system safety. This approach essentially uses the verified properties of the architecture, run-time monitor, and safety backup functions to justify a reduced level of criticality for the complex component.
An excellent overview of recent RTA applications and approaches can be found in [130]. The paper provides a useful classification of RTA approaches based on their key characteristics.
· Distribution. The system may be monolithic where every monitor com- ponent knows the state of every switch, or a distributed collection of independent subsystems.
· Switch Fan-In. The switch may arbitrate between two controllers (the




complex component and a single safety backup) or it may choose among multiple backups based on the outputs of multiple run-time monitors.
· Hierarchy. The RTA may be flat or its output may cascade to one or more downstream RTA architectures.
· Monitor Input. Data may be shared among all run-time monitors, or they may be segregated to use independent sources.
· Monitor Output. When the RTA includes multiple run-time monitors, there are different ways in which monitors may expose and combine the results of their switching determinations.
· Coverage. Systems that are designed to manage compliance with all safety requirements for the vehicle are called comprehensive. Systems that ensure compliance with a subset of safety requirements are called focused.
· Criticality. If the architecture contains systems/components of different criticality, it needs a means of prioritizing the switching outputs of the various monitor components, whether through architectural hierarchy or some other method.

9.2 [bookmark: _bookmark63]Use Cases
The feasibility of run-time assurance approaches have been demonstrated on several project, with and without machine learning as the complex system to be guarded.
The “TaxiNet” run-time assurance demonstration is described in [131]. The baseline system consisted of the aircraft (or simulation), an ML-based guidance component, a controller for steering the aircraft, and the Vehicle Management System (VMS) which manages actuators on the aircraft and integrates other autonomy functionality. The ML component was implemented as a deep neural network (DNN) trained to estimate the cross-track error (CTE) of the aircraft (position left or right of the runway centerline) based on images from a forward- looking camera on the aircraft. Since the images are 360x200 pixels, the resulting DNN is larger than can be analyzed by current formal methods tools.
The run-time assurance architecture added four different run-time monitors (three for system safety, one for DNN confidence assessment), a Monitor Selector for choosing which monitor to use at any time, and a Contingency Manager to determine when intervention is needed to maintain safety and what action should be taken. In this example, the safety actions available were reducing the commanded aircraft speed or using the brakes to halt the aircraft.
The architecture was tested in a variety of simulated environmental conditions with both well-trained and poorly-trained DNNs to assess baseline performance, intervention of the assurance architecture in the presence of errors, and absence of unnecessary intervention (false alarms). The architecture performed in ac- cordance with expectations in all scenarios. In every case where a faulty DNN caused the aircraft to deviate from the required centerline tracking performance,




the assurance architecture detected the condition and slowed or halted the air- craft. At no time was the aircraft allowed to depart from the paved runway. Furthermore, no false alarms were observed, meaning that the architecture never intervened when the aircraft was performing within requirements and correctly tracking the runway centerline.
There a number of other examples where RTA has been explored as a means to ensure safety of a system containing one or more complex or less trustworthy components.
NASA Armstrong Flight Research Center (AFRC) conducted an effort called “Traveler” to develop and flight test a small autonomous UAV which included a multi-layer RTA architecture [132]. The Expandable Variable Autonomy Architecture (EVAA) included an RTA software framework containing a flight executive that was fed by three RTA monitors. The RTA monitors were a ground (and obstacle) collision avoidance system (GCAS), a no-fly zone avoidance system geographic fence (GeoFence) and a Forced Landing System (FLS). EVAA bounded flight behavior through these monitors that evaluated future aircraft state relative to predefined safety boundaries. Each monitor predicted various potential future aircraft states (avoidance or maneuver trajectories) and evaluated those trajectories against their respective safety boundaries. Within the Flight Executive was a Moral Compass that evaluated the consequence of all requested maneuvers. The Moral Compass used risk-based decision logic to determine which RTA monitor controlled the aircraft’s flight path guidance, and chose the highest consequence as the maneuver that should be executed. This maneuver was passed to the coupler to convert the maneuver request into commands that the vehicle autopilot could use. The Moral Compass selected the appropriate monitor maneuver input based on the highest consequences of the impending risk.
Safeguard is an onboard system designed to monitor and enforce conformance to a set of geospatial limitations defined prior to flight (e.g., geospatial stay-out or stay-in regions, and altitude constraints) [133]. Unlike typical geo-fencing or geo-limitation functions, Safeguard operates independently of the off-the-shelf UAS autopilot and is designed in a way that can be realized by a small set of verifiable functions to simplify compliance with existing standards for safety- critical systems (e.g., for spacecraft and manned commercial transportation aircraft). A framework is described that decouples the system from any other devices on the UAS as well as introduces complementary positioning source(s) for applications that require integrity and availability beyond what can be provided by the onboard Global Positioning System (GPS)-based navigation solution. This paper presents results of analyses of flight data collected during Safeguard testing since initial presentation of the design concept at the 35th DASC (2016) and further development and testing at the 36th DASC (2017). Over this timeframe, numerous flight tests were completed on multiple unmanned aircraft (including multi-rotor and fixed wing) with each performing various mission types (e.g., infrastructure inspections, low altitude flights over populated/urban areas, and extended visual line-of-sight flights). Findings will focus on quantifying the performance of the system in support of validation of assurance claims, as well as




demonstration of advanced technology readiness level (TRL). Integration testing with NASA’s UAS Traffic Management (UTM) service-oriented architecture was also demonstrated during many of these flights; allowing performance results for this capability to also be presented. The paper will conclude with plans for future research and development, including evaluating the use of alternate positioning systems, extending the conformance monitoring criteria, and embedding the functions into a more holistic runtime assurance system concept.
Copilot is a new language created for specifying distributed monitors and for synthesizing them [134]. Copilot is a domain-specific, embedded stream language for generating hard real-time C code. The language is implemented as an embedded domain-specific language (eDSL) in the functional language Haskell. It uses a sampling-based monitoring strategy in which global variables of the observed program (or programs) are periodically sampled and provides mechanisms for controlling when to observe the variables. Copilot automatically generates its own periodic schedule, allowing for easy integration into the periodic schedule of the observed program. It is specifically developed to write embedded software monitors for more complex embedded systems, but it can be used to develop a variety of functional-style embedded code. The effectiveness of the Copilot language was demonstrated in flight tests on a UAV to detect pitot tube sensor failures.

9.3 [bookmark: _bookmark64]Recommendations
Run-time assurance (RTA) can be used to limit or prevent unintended behaviors in some systems and might be used to address scalability limits for systems beyond the capabilities of current analysis tools. Case studies should be developed to show demonstrate RTA can be incorporated into the design of real systems, showing how specific objectives of current and new certification guidance are satisfied.
Run-time assurance architectures containing many different ML-subsystems, monitors, and mitigation actions or controllers will be needed to build large complex systems. New methods are needed to show that interactions among monitors and mitigation actions are not in conflict. These methods will need to be integrated with current standards and certification practices for design and safety analysis.



10 [bookmark: Autonomy_for_Contingency_Planning][bookmark: _bookmark65]Autonomy for Contingency Planning
10.1 [bookmark: _bookmark66]Introduction
Manned aviation has relied on redundant systems and pilot judgment to mitigate risks posed by in-flight failures and adverse environmental conditions. Even in small UAS component-level redundancy is beginning to be introduced, though size, weight, power, and cost constraints limit redundancy and safety-related equipment [135]. A remote pilot’s ability to handle an aircraft in distress is limited by the need to exert indirect control authority and deal with inevitable communication latency and reduced situational awareness [136], yet we anticipate a future where efficiency and profitability in advanced air mobility (AAM) will rely on moving any human pilot/supervisor offboard.
Contingency management systems play a critical role in Aerospace system safety. The first step is to recognize the situation, and then the system must appropriately respond to this situation. Response could be as straightforward as switching to a redundant backup system or as complex as planning and executing
an urgent or emergency landing. [137, 138, 139] Contingency management systems can be prepared to respond to well-characterized anomalies such as adverse weather, control actuator [140, 141], and sensor failure with deterministic real-time response protocols that can be verified, validated, and certified [142]. Once equipped, an aircraft of any size will be capable of recovering stable control and guiding itself to a safe landing in a variety of challenging anomaly situations. This section begins with a brief overview of essential aircraft contingency management functions. We overview contingency management functional require- ments and present progress toward prognostics-informed decision systems. We then discuss the specific use case of map-based emergency landing site selection and planning to improve safety for AAM operations expected to occur at low altitudes over and near densely populated regions. We discuss challenges of veri- fication and validation associated with autonomy for contingency management
and conclude with recommendations.
Figure 10 shows a system-level contingency management technology progres- sion from today to an envisioned AAM implementation. As shown, databases figure prominently in the progression from the static maps and plan databases of today to the dynamic maps and autonomous flight planning capabilities re- quired for autonomous contingency management. As we integrate datalink into every aircraft, each will be capable of sharing data in real-time, ranging from a vehicle’s intent and health status to updates regarding the sensed environment, e.g., weather, wind, mapped obstacles such as construction cranes. System-wide safety-critical datalink will require a resilient, redundant, and diverse solution to assure functionality despite the potential for hacking and (single link) outages. Dynamic updates to maps and weather will require a trusted process to ingest and validate new data into each existing and trusted cloud-based dataset.
Current flight management systems (FMS) are designed to operate capably in nominal conditions but require pilot (crew) input when off-nominal situa- tions are encountered. Three safety-critical flight systems form a foundation.




[image: Diagram

Description automatically generated]

[bookmark: _bookmark67]Figure 10: Progression of Contingency Management Technologies.

Guidance, navigation, and control (GNC) systems enable an aircraft to build and follow an efficient flight route, navigate based on sensed vehicle state, and command actuators/propulsion modules to maintain stability and track pre- scribed trajectories. GNC systems are essential in every fly-by-wire avionics system. Integrated vehicle health management (IVHM) systems monitor a suite of sensors embedded across an aircraft to detect and diagnose faults and failures, predict potential issues through prognostics, and communicate with dispatchers et. al. to schedule maintenance activities. Detect and avoid (DAA) systems inspired by deployed TCAS (Traffic Collision Avoidance System) modules are becoming increasingly capable of not only recommending but executing safe collision avoidance solutions.
Today, GNC systems offer crews a choice of autonomy levels and require pilot input during taxi, takeoff, and landing. Pilot-supervised GNC systems operate autonomously from takeoff through landing but require pilot-specified modifications in most cases. In the future, GNC systems will interact in real- time with other aircraft and updated onboard plus cloud datasets to plan and execute urgent landings as required. Watchdog monitoring systems [143] will grow increasingly important to offer oversight of autonomous modules to assure each is operating within specification.

10.2 [bookmark: Use_Cases][bookmark: _bookmark68]Use Cases
Autonomous contingency management will require an urgent landing planning capability that enables an aircraft to safely land as soon as possible when safety- critical systems fail or environmental hazards (e.g., bad weather, non-cooperative aircraft) necessitate such action. When sensors or actuators are faulty, GNC systems must navigate with backup systems and/or revert to fault-appropriate control laws that respect reduced flight envelope constraints. Contingency flight
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[bookmark: _bookmark69]Figure 11: Identification of rooftop landing site options from overhead imagery using computational geometry. [139, 144]

planners must both select an appropriate landing site and plan a feasible path to that site. When no adequate runway or vertiport is reachable, an off-field landing site must be selected. As an example, Figure 11 illustrates a computational geometry processing pipeline applied to urban map data to identify clear flat rooftop urgent landing sites suitable for small uncrewed aircraft system (UAS) [139, 144]. While passenger-carrying aircraft would require larger clear rooftop landing sites with appropriate structural support, infrastructure-based options such as rooftops, roads, railroad tracks, et. al. are typically safer and preferred by pilots over forested, water, or other ground-based sites with unknown hazards and risks.
In the future, IVHM prognostics information must inform autonomous contin-
gency management systems about faults, failures, and remaining useful lifetime, especially when these updates might impact flight safety. Figure 12 illustrates prognostics work aimed at predicting remaining useful life for battery and electric propulsion modules and using this information to regularly validate the nomi- nal flight plan or to inform urgent landing planning activities as needed [145]. This figure illustrates the importance of building accurate models of physical subsystems and representing possible faults/failures and their likelihoods with uncertainties guided by large-scale datasets. Such models can then be used in both offline and online contingency management decision making to assure solutions can use prognostics inputs such as remaining useful life (RUL) as well as vehicle performance and environment models to assess risks in continuing a nominal mission and in assuring contingency response selection minimizes risks based on current and anticipated off-nominal events and degradation.

10.3 [bookmark: Challenges_and_Gaps][bookmark: _bookmark70]Challenges and Gaps
Current Flight Management Systems (FMS) offer provable GNC performance today, as do deployed IVHM systems. However, while foundational contingency
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[bookmark: _bookmark71]Figure 12: Prognostics-informed urgent landing planning in a small UAS case study.

management autonomy can be added with deterministic functions built from checklists, trusted database information, and provably-correct physics-based models, a number of challenges remain. Most are related to the complexity of multiple systems requiring compatible updates, consistent datasets, and coordinated reactions. Below is a list of specific challenges to be addressed.
· Despite the potential for IVHM and FMS products to be provided by different teams or even different companies, IVHM and FMS updates must always be verified compatible with each other. This requires open communication between development teams, a verification and validation process with access to updated models and datasets from interacting products, and updates to test processes and training protocols.
· Contingency plans must be coordinated with ground-based entities as well as other aircraft especially when off-field interactions are necessary. For example, if an aircraft requires an urgent landing at an unprepared site, communication with ground-based vehicles and even people, e.g., through cell phone alerts, may reduce risk to people and vehicles on the ground.
· Dynamic maps must have accuracy and precision far exceeding today’s aviation map standards, and aircraft data feed information, e.g., on weather and new obstacles, must be validated in near-real-time before distributing to others in the system.
· System-wide V2V (vehicle-to-vehicle) and V2C2V (vehicle-to-cloud-to- vehicle) links must be trusted and certified to meet high-bandwidth data




exchange needs for DAA and other mapping, planning, and traffic coordi- nation functions.
· AAM will involve a complex mix of diverse aircraft types that may need different flight speeds and paths and will need to operate in a higher- density airspace landscape. When a contingency situation arises, flight plan updates to the same destination or rerouting to support safe urgent landing must be reconciled with all other air traffic. V&V of intersecting routes in dense airspace will be required for all traffic under nominal and contingency situations, and under all weather and wind conditions.

10.4 [bookmark: _bookmark72]Recommendations
The first step to develop autonomy for contingency management is to understand and capture models of risks, hazards, and mitigation strategies. The next step is to capture checklists, implement watchdogs, and prove datalink technology in a manner that addresses the "easy" contingency management responses, enables software monitoring software (in lieu of human monitoring), and that prepares for the high-bandwidth low-latency information pipeline required for diverse traffic in a shared airspace to coordinate and accommodate the requests of a distressed aircraft without delay.
For GNC, the academic community has focused on assuring stable control and navigation (state) awareness under sensor and actuator degradation scenarios. Models of reachability and controllability can be captured to support contingency- based rerouting as well as avoiding loss of control. Industry has deployed resilient/redundant architectures that minimize the likelihood of failures and has constructed cockpit designs that offer the flight crew situational awareness to manage problems not handled by the automation. DAA prototypes are under development but will require more sensors and reliable datalink to realize with most AAM visions of integrated airspace.
There are two pathways from crew-based contingency management to au- tonomous contingency management as described more generally in Ref. [146]. One path evolves from today’s FMS to simplified vehicle operations (SVO) in which automation reduces workload to an acceptable level for a single crew member to manage, and then increasingly autonomous functionality becomes trusted to the point where the human pilot can be safely moved to the ground as a supervisor of one or more aircraft. The other path evolves from today’s UAS that are constrained in how and where they can operate to improved systems sufficiently resilient to be certified for flight in shared airspace and over population centers.
Both UAS and crewed aircraft must avoid mid-air collision through assured DAA, and we must move to DAA as soon as possible to improve precision and reduce latency in DAA-related information exchange. Both UAS and crewed aircraft can offer data, e.g., on weather, to inform all other occupants of the airspace in real-time, mitigating risks due to hazards such as thunderstorms, wind shear, and unmapped vertical obstacles. UAS risk assessment can focus on




people/valuable property on the ground, while manned aviation will continue to prioritize safety for onboard occupants. DAA and environmental awareness for contingency management ultimately relies on shared and updated information across the airspace. GNC and IVHM must be more closely coupled to maximize mutual real-time awareness. While the aircraft designs and missions may be quite diverse, the basic contingency management goals of situational awareness, reconfiguration to respond, and safe landing are shared. Community standards and expectations for autonomous contingency management can therefore be developed and approved over time. Once these standards are in place, certification will follow.


11 [bookmark: _bookmark73]Dynamic Assurance
Autonomous systems are often deployed in complex sociotechnical environments, such as public roads, where they must behave safely and securely. Unlike many traditionally engineered systems, autonomous systems are expected to behave predictably in varying “open world” environmental contexts that cannot be fully specified formally. As a result, assurance about autonomous systems requires us to develop new certification methods—codified checks and balances, including regulatory requirements, for deploying systems—and mathematical tools that can dynamically bound the uncertainty engendered by these diverse deployment scenarios [147].

11.1 [bookmark: Motivation][bookmark: _bookmark74]Motivation
We detail the dynamic assurance of autonomous systems (Figure 13)—the iterative revision of permissible ⟨use, context⟩ pairs for a system—rather than pre- specified tests that a system must pass to be certified. Dynamic assurance offers the ability to “learn while certifying,” thereby opening additional opportunities to shape the development of an autonomous technology. This type of comprehensive, exploratory testing, shaped by insights from deployment, can enable iterative selection of appropriate contexts of use. More specifically, we propose dynamic assurance and modeling involving three testing stages: early-phase testing, transitional testing, and confirmatory testing. Movement between testing stages is not unidirectional; we can shift in any direction depending on our current state of knowledge and intended deployments. We describe these stages in more detail below, but the key is that these stages enable system designers and regulators to both learn about and assure that autonomous systems will operate within the bounds of acceptable risk.
Our proposal is similar to how the Food & Drug Administration (fda) tests drugs in stages with increasing scrutiny before being approved for public consumption. Rather than a simple yes/no certification, the fda uses an iterative process of exploratory stages in which pharmaceutical agents are first approved for limited uses in restricted contexts under careful oversight, and only gradually approved for wider uses as post-approval monitoring and subsequent studies demonstrate safety and efficacy. Of course, the fda procedures cannot be used directly for dynamic assurance of autonomous (software) systems, but they provide an “existence proof” that dynamic assurance can work.
Technology creation involves at least two different yet interdependent types of decision. Design decisions determine the structure and intended operation of the autonomous system, including the evaluation functions that are optimized during development and revision/updates. Deployment decisions determine the contexts and uses for the autonomous system, including designating certain situations as “do not use” (or “use only with increased oversight”). In practice, static certification and regulatory systems often focus only on deployment decisions (and take the design decisions and technical specifications as fixed). However, precisely because of the frequent uncertainty about what counts as “success” for
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[bookmark: _bookmark75]Figure 13: dynamic assurance explicitly allows for ambiguities in specifications, uncertainties, and decisions yet to be made. In addition, dynamic assurance keeps a decision trail by intertwining modeling and testing throughout the lifecycle. Models are not only code, but also living documents continually updated in response to data to record changing assumptions and specifications. Models, specifications, and tests are continually refined as we better understand real- world contexts.Early-stage testing
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an autonomous system, certification of those systems must also consider design decisions, using technical specifications to predict performance in unencountered contexts. That is, we must consider both types of decisions, the ambiguities and uncertainties in them, and their impacts on later stages of the dynamic assurance process, particularly in the context of safety.
Dynamic assurance includes design decisions, particularly in the early stages when changes have the highest impact and lowest cost, often before code or hardware have even been built [148, 149]. Mathematical tools from formal methods can thus play an important role in specifying autonomous systems at different levels of abstraction, even when they have not yet been implemented. Formal methods allow us to specify acceptable risks, identify failures that inform mitigation strategies, and both understand and represent the uncertainty associ- ated with the deployment of autonomous systems in heterogeneous environments. Formal models are also living documents that encode design and deployment decisions made throughout the lifecycle of the autonomous system. For example, tracking changes in the specification of requirements throughout the lifecycle can give a good picture of the design problems and solutions at a particular time, as well as how those changes reflect design shifts over time. Successful dynamic assurance thus depends on translational research by the formal methods, autonomous systems, and robotics communities to establish proper procedures to assure that deployed systems are unlikely to cause harm.
Dynamic assurance relies on iterative assessment of the risks (and benefits) introduced by the deployment of autonomous systems for different uses and contexts. Formal methods offer a concrete basis for specification, verification,



and synthesis for autonomous systems, but do not provide guidance for trans- lation of our desired values and acceptable risk into those formal models. We require frameworks that explicitly allow for ambiguities in specifications and uncertainties, as well as partial decisions in modeling, while remaining scalable to practically relevant sizes. More generally, dynamic assurance will require an appropriate co-evolution of regulatory and formal frameworks. Having argued for implementing parts of dynamic assurance via formal methods, it is crucial to ac- knowledge other types of analyses that could implement dynamic assurance, such as assurance cases [150], structured interrogation of requirements [151, 152, 153], and domain standards [154]. Indeed, these other types of methods and their associated tools and metrics could play valuable roles in the dynamic assurance of autonomous systems.

11.2 [bookmark: Current_challenges_of_certification_in_a][bookmark: _bookmark76]Current challenges of certification in autonomy
The key challenges in certification are:
· Lack of common language between stakeholders.
· Full formal specification needed for assurance, rather than fidelity and partiality in modeling.
· Lack of tools based on formal methods that work at scale.
· Lack of interplay between informal, quasi-formal, and formal methods for certification based on evaluated degree of assurance.

11.3 [bookmark: Dynamic_assurance][bookmark: _bookmark77]Dynamic assurance
Dynamic assurance is built on two fundamental operations, modeling and testing. Modeling allows system engineers to keep track of design choices that otherwise would be difficult to document and adjust when issues arise because of complex interactions between subcomponents. Models also enable the engineer to focus on the interfaces between subcomponents, often abstracting away the individual subcomponents to focus on the behavior of the whole. Importantly, we can use models to understand how the system might succeed or fail before the system is built—that is, for high-impact, low-cost design decisions. In contrast, testing involves the actual implementations, focusing on whether the assumptions of the model and the resulting design decisions actually function as expected in the physical world. Conventional static certification struggles when operational (or regulatory) assumptions fail to hold in reality. In contrast, dynamic assurance posits that modeling and testing should be intertwined throughout the system lifecycle, and so our models (and assumptions) can be continually refined as we better understand the real-world contexts. Certification of autonomous learning systems requires both elements: testing since the world can surprise us and the system can change through learning, plus modeling to guide our design and testing decisions through the massive search spaces.




Assurance requires specifying when, where, and why an autonomous system is being deployed within a sociotechnical context. But if autonomous systems are expected to learn from their environment and context of operation, then there does not seem to be a stable model for testing. Dynamic assurance turns this concern into a virtue: if our base system model contains appropriate parameters, then we can iteratively refine and augment this base model through different testing procedures. This virtue and the resulting testing procedures come from the feedback and interaction between stakeholders that have different concerns and expertise, making it clear when testing procedures are sufficient and models accurate. Therefore, in the long run, we can engage in sufficient testing to have an accurate model that supports assurances that our systems will operate as expected.
Specification of the base system model for dynamic assurance requires (per- haps partial) identification and description of the following four components (inspired by Kimmelman and London [155]).
· Modules of the system (primarily software, but potentially hardware) including the function(s) of each module.
· Contexts in which the system is expected to be capable of successful operation.
· Mappings from Context → Behavior for “successful” performance in various conditions.
· Variations in the environment for which the system should be robust.
The first stage is early-phase testing that takes place in the development lab or other highly controlled settings. The two main goals of this stage are
(1) to verify that the integrated modules implement the intended mappings; and (2) to develop appropriate base models of the autonomous system for offline testing. The first goal is relatively standard when developing a software system (for example, unit-testing). The second goal, however, is much less common and requires careful consideration of the range of contexts and variations that might be encountered in plausible deployment environments. Importantly, all four components of the base system model must be (tentatively) specified in early-phase testing; this stage is not solely technology-focused. Given an initial specification, early-phase testing continues until the software system is suitably verified and its expected performance is sufficiently good in offline testing. In the running scenario, early-phase testing could take the form of building and testing a gridworld that models the high-level decision-making for the uav. In this stage, the designer would identify anomalous behavior such as locations that create deadlocks, thereby enabling design decisions to mitigate situations that lead to task degradation [156].
The second stage is transitional testing in which the system is deployed in real-world environments, though with significant oversight and control. The two main goals of this stage are (1) to identify contexts of real-world failure; and
(2) to characterize potential environmental variations. These goals require



highly active engagement and interventions; this stage is not simply “deploy and watch” or “compare to prior standards.” Rather, transitional testing should involve, for example, focused efforts to place the system into “hard” contexts precisely to improve our understanding of the system. Transitional testing involves careful, systematic efforts to determine the boundaries of appropriate system performance. The information produced by this testing can be iteratively used to change modules, constrain contexts, add mapping complexity, or increase variation specificity. That is, transitional testing is exploratory (helping to understand), not merely confirmatory (checking if the system performs as expected). In our running scenario, transitional testing would involve testing (not just modeling) system performance with high-fidelity and hardware-in-the-loop simulations [157, 158, 159] or in controlled environments (e.g., a large industrial park with limited public traffic). The intention of this stage is to gather enough data to modify the formal system model to further reflect reality.
The third and final stage is confirmatory testing in which the system is deployed with significant oversight and monitoring, but no further controls beyond those specified in the certification by a set of ⟨use, context⟩ pairs. This stage aims to determine, in real-world settings, both (1) system performance reliability; and (2) the extent of system-user value (mis)matches. The latter goal is crucial because many autonomous system “failures” involve a properly functioning system that implements different values than the users expect. The system behaves correctly, but according to a (perhaps implicit) notion of “success” that is different from that of the human users;1 that is, the system implements the wrong mapping. These kinds of divergences often appear only once the system is in the hands of untrained users, and so confirmatory testing must initially include significant oversight to detect, record, and respond to real-world performance failures and value divergences. This monitoring can be gradually reduced as we learn the exact behavior of the system in relevant real-world contexts (i.e., even this stage involves some exploratory testing).2 In the running scenario, confirmatory testing would involve supervised deployment in a controlled environment, possibly borrowing rules and regulations from the operational design domain [161]. Changes to the system design based on actual operational contexts should reflect the formal model; they must agree. Once testing and modeling agree, dynamic assurance has assured that the system will behave acceptably safely.

11.4 [bookmark: _bookmark78]Recommendations
Dynamic assurance is an approach for autonomous systems that attempts to provide a common language between formal models, simulations, real world (testing) data, and regulatory mechanisms. Dynamic assurance requires advances in formalism compatibility and codesign, development of high fidelity simulation

[bookmark: _bookmark79][bookmark: _bookmark80]1Many classic examples of “AI run amok” fall into this category. For example, the paperclip maximizer [160] simply has a different idea of “success” than us.
2Confirmatory testing is thus quite similar to conformance testing, but does not assume that we have a fully-specified set of standards and behaviors that are provided in advance.



tools that can input information from formal models, expansive context-aware testing vectors, and legal codification of acceptable stages of deployment. In light of these multidisciplinary aspects, it is perhaps unsurprising that dynamic assurance has been a relatively under-explored approach. However, dynamic as- surance holds the promise of better-designed, safer, and more secure autonomous systems, providing assurance of correct behavior and increased deployment of those systems. The effort to advance dynamic assurance can provide significant benefits.
At the same time, AI presents additional challenges for the dynamic assurance of autonomous systems. In particular we detail the following recommendations for overcoming these challenges.
· The distributed nature of AI and robotic development can lead to signif- icant communication barriers between different stakeholders during the requirements elicitation stage, and research is needed to develop, test, and validate structured approaches for requirement and value elicitation.
· Modular and scaleable methods and tools are needed to characterize precisely—whether through formal methods or otherwise—the connections between requirements and system (mis)behavior, particularly given the inevitable uncertainties with AI-enabled systems.
· Higher-fidelity causal models could enable improved counterfactual rea- soning in the design and certification of autonomous systems, as the certification processes could then incorporate additional feedback loops that identify counterexamples in data collection, provide diagnostic ca- pabilities, and clarify assumptions used to evaluate performance of the autonomous system in uncertain, “open world” environments.
Reaping the benefits and overcoming the challenges posed by dynamic assur- ance will require extensive research and integration with parts of the system development lifecycle (Figure 14).
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[bookmark: _bookmark81]Figure 14: A roadmap for employing dynamic assurance.



[bookmark: V_NEW_APPLICATIONS_AND_TECHNIQUES][bookmark: _bookmark82]Part V
NEW APPLICATIONS AND TECHNIQUES
12 [bookmark: UTM_for_UAS][bookmark: _bookmark83]UTM for UAS
12.1 [bookmark: _bookmark84]Introduction
New applications such as aerial inspections, package delivery, first responders (e.g., border patrol, public safety, fire) and Advanced Air Mobility (AAM) are expected to proliferate in low altitude airspace, Figure 15. New airspace management and vehicle technology is needed to serve these operations at the frequency and scale desired. To address these new and future use cases at scale, low altitude airspace needs to address scalable Communications, Navigation and Surveillance (CNS) infrastructure, UAS Traffic Management (UTM) utilizing federated service providers and Artificial Intelligence (AI) / Machine Learning (ML) within the aircraft, ground stations and infrastructure.
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[bookmark: _bookmark85]Figure 15: New low-altitude airspace operations within an air mobility corridor.

This report highlights key aspects of GE’s UTM vision and identifies software assurance challenges in key AI/ML capabilities that exist within the UTM and air mobility ecosystem. Functions that can employ Level 1, 2 and 3 AI/ML [162] are presented along with descriptions of the Verification and Validation (V&V) challenges that they highlight. The functions utilized for these purposes include;
1) Flight planning, 2) Performance authorization, 3) Flight approvals and 4) Detect and Avoid (DAA).
The existing Air Traffic Management (ATM) system employs multiple over- lapping layers of services to assure the safe separated of all aircraft in airspace. The systems and procedures that mitigate the risk of mid-air collisions include Strategic Separation, Tactical Separation and Onboard Collision Avoidance. Similarly, Unmanned Aircraft System (UAS) Traffic Management (UTM) is envisioned to mitigate collision risks using three similarly defined overlapping layers of services. UTM implements Strategic Deconfliction, used during pre- flight. Dynamic Re-Route and Conformance Monitoring services are used in flight to ensure separation is maintained on a shorter time-horizon, tactically.




Detect and Avoid (DAA) provides separation on the shortest time scale, utilizing sensor data carried by the vehicle and/or ground based surveillance and tracking services. Since the UAS operator responsible for the operation is off-board the vehicle, UAS and UTM employs different technologies from traditional ATM and may rely on AI/ML to utilize data, solve Size, Weight and Power (SWaP) and operational density challenges.
The technology stack for air mobility comprises the Aircraft, Ground Con- trol Station (GCS), authoritative data provided by the Air Navigation Services Provider (ANSP) and supporting user infrastructure and data services provided by Supplemental Data Services Providers (SDSPs) within the air mobility cor- ridor, Figure 16. AI/ML may be deployed on the vehicle for sensing or sensor processing and in the GCS for planning and decision aiding. Further, the aircraft and GCS are connected to each other and infrastructure, where Communications, Navigation and Surveillance (CNS) data services, UAS Service Supplier (USS) services and authoritative data and services (I.e., from the FAA) are utilized to enable safe and secure interoperation within airspace. The types of AI/ML employed here may include sensor processing, decision aiding and prediction of environmental variables (i.e., risk, infrastructure utilization, etc.).
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[bookmark: _bookmark86]Figure 16: Autonomy functionality mapped across the air mobility ’stack’


12.2 [bookmark: _bookmark87]Relevant use cases
Autonomous functions have been selected to highlight areas within UTM and the air mobility ecosystem where autonomy can be, or is known to be, deployed to attain better, more scalable outcomes. The use cases start with definition of the “job” performed by a human without any AI/ML, and then a future state of that task with the addition of AI/ML. Further, to transition from a fully manual to an autonomous state, the needed level of autonomy and functionality assigned to AI/ML are defined. Finally, the verification and validation challenges are highlighted. A summary of the use cases, jobs and challenges can be found in


Figure 17. The remainder of the document provides additional detail on each select autonomous function.
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[bookmark: _bookmark88]Figure 17: Summary of UTM use cases at required levels of AI/ML with V&V challenges


12.2.1 [bookmark: Planning][bookmark: _bookmark89]Planning
Current UAS Service Supplier (USS) systems have been integrated into unmanned traffic management (UTM) platforms to organize and notify Remote Pilot in Command(s) (RPIC) of Supplemental Data Service Providers (SDSPs) data. RPICs are required to evaluate their flight environment [163] to ensure safety through the duration of their flight and face financial and criminal penalties for negligence [164, 165]. Typically the process of flight planning begins with an RPIC selecting a flight path through environment obstacles. They would then submit flight waypoints through a USS connected Ground Control Station (GCS). Flight approval may take several iterations of re-planning by the RPIC to adjust for USS flight conflicts e.g. conflicting flights from other USSs.

12.2.2 [bookmark: Performance_Authorization][bookmark: _bookmark90]Performance Authorization
Operations beyond the scope of 14 CFR Part 107 require additional safety risk management and waiver or Certificate of Authorization (COA), which includes operational and technical information that substantiates the operator’s flight safety claim. As part of these advanced operations, which require waiver or COA, the operator is envisioned to obtain Performance Authorizations (PAs) to demonstrate their ability to meet Communication, Navigation and Surveillance (CNS) and UTM Network performance capabilities, requisite to executing the planned flight operation under their COA/waiver [163]. The operator’s USS, SDSPs or other authoritative services are envisioned to provide PAs based on the intended operation, performance requirements captured within the COA and




predicted performance capabilities of each underlying system, service and/or data that is critical to achieving the safety of the operation. AI/ML is used broadly for predicting future events or outcomes. Similarly, it can be implemented to predict and/or monitor the availability, integrity or other performance measures relative to CNS and UTM infrastructure. Examples include:
· Demand forecasting: for operations requiring public use infrastructure the demand for resources may be shared across aviation and non-aviation users. Therefore, the availability of services at a prescribed performance level needs to be predicted prior to flight. AI/ML may be used to predict the demand and availability of that infrastructure in the vicinity and planned time of the planned flight operation.
· UTM Network monitoring: the health, accuracy and failure scenarios pertaining to the UTM network need to be monitored and included within the performance authorization. In network degradation circumstances, the operation may not be authorized. AI/ML functionality may be used to monitor the performance of the UTM Network and the USSs that are interoperating within it.

12.2.3 [bookmark: Flight_Approval][bookmark: _bookmark91]Flight Approval
Prior to any operation’s entry into the NAS, the risk posed by that operation is verified to be mitigated beyond a Target Level of Safety (TLS). For example, operations under Part 107 are approved automatically on condition of operator training and abidance with the procedures that establish flight under that rule. Advanced operations such as operations over people and BVLOS, which are beyond the purview of Part 107, require additional risk assessment and analysis prior to approval. As part of the approval process, authorities assess air and ground risk, the use of specific mitigating technologies and/or procedures, and equipment performance (i.e., performance authorization). Flight approval is typically a local data and model problem, as the risks can vary significantly from one area of operation (or time) to another, and the equipment or technology chosen to achieve the operational outcome. For example, the risk posed by flying over a stadium will differ greatly between when there is an event at the stadium and when there is none. Further, the safety analysis can rely on extrapolating point-models to capture worst-case risk scenarios, which may overstate the risk by orders of magnitude, or fail to capture significant elements of it that are unforeseen at the time of analysis. The two items required to complete the assessment and produce an approval are:
· Trusted models of the operating environment (inclusive of the risks, equip- ment and mitigations) which are aligned with the operating environment at time of operation
· Trusted data that can be used, with the models, to demonstrate that the proposed operation can achieve the TLS established for the airspace



Using trusted data and models, AI/ML can be used to dynamically assess risk and approve flight operations by combining trusted apriori and current data, the state of the NAS adjacent to the area of the planned operation, the extended operating environment (i.e., ground) and equipment performance. Given AI/ML’s ability to extend human review, assessment and approval capabilities, a process like Supplemental Government Interest (SGI) waiver or authorization could be extended to all users of the NAS, enabling advanced operations, at scale, for both public and private interests. Further, it could reduce the time of approval for many existing requests from public agencies already utilizing SGI for public safety and disaster response.

12.2.4 [bookmark: Separation_Approval][bookmark: _bookmark92]Separation Approval
Detect and Avoid (DAA) is a short time-horizon airspace separation methodology, expected to be employed where strategic deconfliction, dynamic re-route and/or contingency management UTM functionality fails. It is the equivalent of “seeing and avoiding”, except that the UAS operator uses technology to “see” the intruding aircraft. The “avoiding” part of the job can be performed in different ways, depending on equipage and use case. It involves conflict detection, conflict resolution, and approval/review and execution of the resolution advisory. Some deployment examples include:
· UAS operator uses a combination of ground-based infrastructure and airborne sensors, such as ADS-B, to track intruders. The operator detects and resolves conflicts manually.
· Central authority within a Network Operating Center (NOC) detects intruders using ground-based infrastructure and communicates resolution maneuvers with vehicle operators over highly-available command and control link. Operators upload maneuvers to their vehicle.
· Vehicle detects and resolves potential conflicts using airborne sensors and software. The operator is notified of the deviation prior to execution and may override the maneuver.
Given the numerous equipage and deployment opportunities, AI/ML can be deployed to enhance or replace human behavior across a number of different “jobs” - perception, detection, resolution, approval and execution. Further, the level of resulting DAA functionality may be classified at AI/ML level 1, 2 or 3. At a level 3, AI/ML could be deployed for fully autonomous DAA to solve all of the following:
· Intruder Perception: The perception function can use any number of input sensors (i.e., vision, LIDAR) and it is common to train a neural network to detect intruder. The V&V challenge is showing that perception can be performed with a high level of functional integrity.
· Traffic / tracking: To provide separation services, ADS-B signals must be validated with a data source independent of ADS-B and GPS [166].



Similarly to ADS-B, UAS position is based on GPS, and must be verified using an independent data source. Telecommunications networks could be used for this task, as they provide localization independent of GPS. However, the density of demand from other users and network performance may need to be predicted. AI/ML and many types of neural networks are used for many prediction tasks.
· Conflict Detection: Prediction of a future conflict can be performed au- tonomously using UTM software, some of which may rely on AI/ML.
· Conflict Resolution: Airborne Collison Avoidance System (ACAS) sXU has been demonstrated for generating conflict resolution maneuvers for small UAS. Due to SWaP considerations, neural networks have been studied for deployment and formal verification of ACAS sXU on small UAS [167].
· Verification / Execution: Prior to uploading the resolution maneuver to the UAS, the operator verifies the command. The representation of the maneuver, its verification or command and control link used for the upload may utilize AI/ML.

12.3 [bookmark: Gaps_&_Challenges][bookmark: _bookmark93]Gaps & Challenges
In the future, AI and ML could advance USS functionality to lessen the burden of flight planning on an operator and programmatically increase the efficiency of flights, for example by actively offering pre-approved flight paths from which the RPIC can choose.
· Validation and verification of flight planning AI/ML highlight the chal- lenges of training data completeness, system explainability, and qualifying structural coverage. For example, because of the breadth of data considered in flight planning, AI systems may orient around minima otherwise deemed irrelevant by a human pilot.
· Likewise, qualifying AI structure completeness to meet conventional airspace certifications is particularly difficult since processes are built around their inputs. System explainability, or being able to reason and justify AI/ML output, proves to be another problem in this use case since outputs, includ- ing a flight’s perceived risk score, are ordinarily determined subjectively. For these reasons, the UAS Air Traffic Management (ATM) use case is an ideal application of AI to prove validation and verification mechanisms.
· Presently USSs can be onboarded to the FAA’s LAANC network which requires certification of geo-spatial deconfliction, data privacy and user notification functions by means of static scenario testing. Beyond LAANC integration, USSs are independent following internally developed guidelines and processes rather than universal standards. In the future USSs will become interoperable and a more formal certification is expected to follow potentially regulated by the FAA [163].


Dynamic performance authorizations do not exist today. To expand the breadth of operations, incorporate public infrastructure and UTM networks, dynamic PAs can be provided as services by the ANSP, or on behalf of the ANSP. Where AI/ML is intended to be used for PA, common V&V challenges of AI/ML will need to be addressed. These include the following:
· Training data and satisfiability of requirements: prediction of network or infrastructure availability may utilize past performance data. Can the software implemented based on a training data set be validated against requirements? Also, how can continuous learning be implemented without exposing the system to potential adversarial data within the environment?
· Robustness to input variance: predictions may produce highly nonlinear results between interpolated input data points, how can robustness to inputs be guaranteed?
AI/ML could be trained to use accepted rationale from prior approvals to aid the approver (Level 1 AI/ML) or collaborate with the approver (Level 2 AI/ML) in providing flight approval. However, AI/ML V&V challenges such as explainability and intent satisfiability need to be addressed. How could a human use such a safety critical recommendation without a clear rationale for the outcome, or prove that such a system satisfies the system requirements? Further V&V of AI/ML research is needed for:
· Intent satisfiability: AI/ML has been demonstrated to produce biased outcomes, even during interpolation. Ideally, the AI/ML will interpolate to assess scenarios that are common and extrapolate to assess new scenarios. How can the software be validated against training data sets given scenarios where accepted data is used, and later, where newly learned data is utilized?
· Explainability: the software implementation needs to be correct relative to the intent of the design, and the outcome produced by the software must provide rationale to the user to support decision making.
As with other functionality, AI/ML V&V challenges for separation approval
/ DAA have to do with requirement satisfiability, explainability and robustness to input variance. In particular for DAA, the following challenge(s) are key:
· Verifying timely transition of control from AI to Human: in particular for collision avoidance and DAA, transition time from AI to Human is safety critical. The challenge is to prove and/or limit the AI from giving up and then transitioning over to the Human only once it is all-too-late for the Human to resolve the issue.

12.4 [bookmark: _bookmark94]Recommendations
UTM deployment presents rich opportunities for utilizing AI/ML, across levels 1, 2 and 3. Opportunities include those discussed above, such as: path planning,



performance authorization of UTM, flight approval automation and detect and avoid. Each of these present validation and verification challenges relative to the AI/ML that may be used to implement each function. Further, the challenges identified for each UTM/ATM UAS use case may be mapped to the Overarching Properties (OPs) – intent, correctness and innocuity. They can be condensed to a handful of items that map to the challenging aspects of using data driven, non-transparent and bias-prone functionality for safety critical decision making. The recommended areas to focus on are summarized as follows:
· Training data may be used as a form of requirement to define intended behavior or OP Intent. Test data may be used to verify the implementation or OP:correctness. However it is not clear to align training and test data with traditional requirements to ensure that the training and test data are complete, correct and unbiased.
· Explainability, validation of output and rationale (OP: Correctness, Innocu- ity): Unlike traditional software, AI/ML implementations do not provide transparent software implementations that can be traced to explainable outcomes.
· Structural coverage metric (OP: Correctness, Innocuity): The structural coverage metric does not make sense for a neural network topology.
· Robustness to input variance (OP: Correctness, Innocuity): Unlike tra- ditional software, AI/ML software is not transparent and can be highly nonlinear between interpolated input conditions, thus the robustness cannot be determined using traditional means.
· Verifying timely transition of control from AI to Human (OP: Intent, Innocuity): In many implementations, AI/ML functionality can be guarded by a run-time monitor, but the hand-off between AI/ML and human needs to be validated and verified against the operational context. To ensure safety critical operation, the run-time monitor must hand the function over to a human, ensuring ample time for human data acquisition, understanding, decision making and execution.
· Neural Networks are commonly used to recognize features in images. If a Neural Network is used in a Perception function, it is not clear how to assess the quality of the design and implementation. For example, how does the user know if the training and test data are complete, and unbiased?
· OPs eliminate the prescriptions provided within existing accepted ap- proaches to software assurance. Many prescriptions, such as structural coverage metrics are misaligned with AI/ML, so OP should help in eliminat- ing measures that are not meaningful to AI/ML. However, the realization of this benefit poses challenges similar to when performance-based standards are introduced. Using OP, safety engineers will have more latitude to define how to achieve the OP, but in many cases the how is yet to be defined and




must become part of the task. Further, considering cyber-physical-human systems, the roles played by both human and machine, implementation and training of the machine, and training of the human, must be considered against objectives, wholistically. As we monitor the machine, going forward, we may need to monitor the human in regards to their ability (or inability) to perform.


13 [bookmark: Model-Based_Systems_Engineering_(MBSE)_f][bookmark: _bookmark95]Model-Based Systems Engineering (MBSE) for AI/ML
13.1 [bookmark: _bookmark96]Introduction
This report documents an overview of applying Model Based Systems Engineering (MBSE) to develop and certify AI/ML for aerospace applications, and provides a summary of the main gaps and challenges raised by the use ML in aerospace applications. In addition, it recommends potential future research areas for AI/ML in this field. This report is structured as follows. It begins with the motivation for the adoption of MBSE across the full product lifecycle in the aerospace domain. Section 13.3 provides a discussion on related work. Section 13.4 describes the use cases considered within the scope of this report. Section 13.5 describes the challenges and gaps required to perform validation and verification of AI/ML developed with MBSE in the aerospace domain. Section 13.6 provides recommendations for activities and investments.

13.2 [bookmark: Model_Based_Systems_Engineering_(MBSE)][bookmark: _bookmark97]Model Based Systems Engineering (MBSE)
In the Systems Engineering Handbook [168] NASA defines Systems Engineering as “a methodical, multi-disciplinary approach for the design, realization, technical management, operations and retirement of a system". Historically systems engineering relies on documents and people to share information across the various technical domains and product life cycle steps. An example life cycle is shown in 18. In aerospace, products are in service for decades so it is very challenging to create and maintain a digital thread over the entire product life cycle.
[image: ]
[bookmark: _bookmark98]Figure 18: Example Life Cycle

Aerospace product organizations are typically partitioned by technical do- mains where each has preferred modeling and analysis tools. Technical domains include combustion dynamics, thermal, requirements, electrical, safety, security, rotor dynamics control, protection and manufacturing. The systems engineering process develops requirements which are refined and allocated to each of the technical domains. Today teams are using model based engineering in most of the technical domains for design and analysis. MBSE replaces manual and document based systems engineering with a systems model as shown in Figure 19, typically captured in SysML [169] which may be integrated with the various modeling domains. MBSE is expected to improve the aerospace industry by:




· Providing common source of truth – improves transparency
· Providing traceability throughout life cycle – field issues to suppliers/lots
· Providing virtual environment analysis/simulation – identify problems early in process
· Improving collaboration throughout supply chain
· Improving cycle times
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[bookmark: _bookmark99]Figure 19: MBSE Connected to Example Domains

AI/ML may be considered one more domain when integrated into an MBSE process and work flow. Figure 20a shows an example model-based aerospace software development process representative of those described in RTCA DO-331. Figure 20b shows where AI/ML may intersect. For example if we add AI/ML to the process, requirements referred to here as specification models and design models may have training and test data associated with them. The Training data may be used to train the AI/ML component to match the required behavior and the test data may be used to verify the implemented behavior. Today design models are usually developed in SCADE or Simulink, where they are analyzed to support V&V objectives, then as the input for automated source code generation. AI/ML models are typically developed with open-source tools including TensorFlow and PyTorch. Integration tools such as Open Neural Network Exchange (ONNX) [170] exist to facilitate collaboration between the python based AI/ML tools and other environments, however these tools do not have the same aerospace qualification pedigree as the MBSE tools (SCADE, Simulink) used today. The source code generated from the traditional model- based software development tools is targeted for embedded platforms with aerospace qualifiable processors and operating systems. AI/ML algorithms implemented as neural networks may require graphics processing units (GPU) instead of central processing units (CPU) due to performance requirements. This may create certification challenges based on application of code generators,




operating systems and hardware that have not been through a qualification process.
[image: Diagram

Description automatically generated][image: Diagram

Description automatically generated]


(a) [bookmark: _bookmark100]Model-based Aerospace Software Process (DO-331)
(b) 
Example Model-based AI/ML Aerospace Software Process

Figure 20: AI Connected to Model Based Software Development Process


13.3 [bookmark: Related_Work][bookmark: _bookmark101]Related Work
The following references are provided as recommended background reading to learn more about MBSE and AI in aerospace applications. The International Council on Systems Engineering (INCOSE) [171] is an organization focused on systems engineering with a set of working groups that include AI [172]. Holladay et al. [173] provides benefits data from MBSE applications at NASA. Subarna et al. [174] provides an aerospace example of MBSE focused on requirements management. Madni et al. [175] provides lessons learned from an MBSE test bed based project that includes digital twins on an aerospace application. Rountree et al. [176] shows an example of MBSE applied to a Mars accent vehicle. Asaadi et al. [177] is focused on assurance of machine learning algorithms in aerospace applications. Cofer [178] highlights the challenges associated with V&V for detecting the unknown unknowns in aerospace learning enabled components. IEEE publishes a Standard for Assumptions in Safety-Related Models for Au- tomated Driving Systems [179]. It would be useful to have a similar data set for aerospace applications. Irfan et al. describes an approach to formally certify safety properties on a neural network implementation of a collision avoidance function on a small UAV [180]. Julian et al. [181] describes an adaptive stress testing based-approach to validate image based controller systems on aerospace applications. The Alignment Problem [182] provides background on the history of AI/ML and highlights experience with training and test data sets and methods of training and trusting implementations. There are a number of papers related to certification of embedded systems based on machine learning [183, 184, 185].


The highlighted challenges in those papers may also apply to developing AI in the context of MBSE.

13.4 [bookmark: Relevant_use_cases][bookmark: _bookmark102]Relevant use cases
Relevant use cases include AI/ML components to support health monitoring, path/mission planning, supervisory control, protection logic, preventive main- tenance, and perception. Simulation capabilities enabled by MBSE provide an outstanding environment to safely train and evaluate AI/ML algorithms for all of the use cases mentioned above. A full life cycle MBSE enterprise would provide data from operations to confirm AI/ML models over time and would be a source of new training data.

13.5 [bookmark: Gaps_and_challenges][bookmark: _bookmark103]Gaps and challenges
The following list of V&V challenges were identified for developing AI/ML with MBSE.
· How and where do we align training and test data with traditional require- ments and processes? Training seems to be aligned with requirements and test data seems to be aligned with verification evidence. In the context of Overarching Properties we may consider training data as “intent" and test data should be applied to measure “correctness".
· How do we know that the training and test data sets are correct, complete, unbiased, accurate, consistent, traceable, ...? With MBSE we may use models to generate the training and test data, but this challenge is not limited to MBSE.
· How do we integrate the AI/ML development frameworks with the MBSE frameworks commonly used in aerospace? AI/ML developers commonly use tools like TensorFlow and PyTorch to develop and train neural networks, which are not part of traditional an aerospace qualifiable tool chain. ONNX
[170] is an open neural network exchange framework that may be used to support integration of AI/ML models into MBSE tool chain, but the tools and process will need to be reviewed and qualification approaches will need to be developed.
· How should we think about code coverage for a neural network model implementation? Code coverage analysis is traditionally measured after requirements based tests are run on a software or model implementation. If paths through the code or model are not covered it raises the questions:
· are the requirements complete?
· are the test cases complete?
· is there malicious code embedded in the implementation?
· is there any dead code included in the implementation?




In a neural network the algorithm is executed in parallel and all paths are run on each step. The real question is not how do we measure code coverage, rather how do we replace the verification that code coverage provided?
· What do we need to do differently if we are targeting a GPU or other non traditional aerospace platform processing elements and operating systems?
· How do we perform V&V on perception functions implemented as AI/ML applications?

13.6 [bookmark: _bookmark104]Recommendations
The follow list are recommendations for technology investment that will benefit MBSE for AI.
· Develop a methodology to manage the training and testing datasets includ- ing measuring the accuracy and consistency of the datasets and document the data source for traceability purpose.
· Develop a comprehensive approach to manage the lifecycle of training datasets, and detect and reduce bias in the data.
· Develop a methodology to convert traditional requirements as formal verifiable properties on the AI/ML model (requirements language for AI/ML models).
· Develop a feedback loop from verification of formal properties to retraining the AI/ML model.
· Develop common integration approach with qualifiable path from common AI/ML development tools to common aerospace domain tools
· Develop testing approaches for AI/ML such as [186, 187, 188, 189] to align with traditional MBSE testing strategies.
· Develop adaptive stress testing-based approaches to identify corner cases and anomalies.
· Develop property-based AI requirements as run time monitors
· Develop approach to verify the GPU based component, then integrate with traditional system
· Develop an approach to verify AI-based perception functions in an MBSE environemnt



[bookmark: VI_AUTONOMY_SOFTWARE_CERTIFICATION][bookmark: _bookmark105]Part VI
AUTONOMY SOFTWARE CERTIFICATION
14 [bookmark: Regulatory_Frameworks_and_Challenges][bookmark: _bookmark106]Regulatory Frameworks and Challenges
14.1 [bookmark: Introduction][bookmark: _bookmark107]Introduction
Software is playing an increasingly important role to improving performance, safety, reliability and flexibility while reducing cost and time in autonomous systems lifecycle. The autonomy software enables increasing levels of automation and autonomy. They are required to deal with more complex environment, perception, planning, decision making, control, and communication under imper- fect situational awareness, uncertainty, and even adversarial conditions. This is usually a replacement of human pilot role.
RTCA DO-178[190]/DO-278[191] are currently dominant standards consid- ered in the certification of airborne and ground-based software in aerospace. But due to the increasing applications of autonomy, many new challenges emerge, such as data-driven methods, probability, adaptation, and non-determinism. Existing standards don’t fit well to address these new challenges. The certifi- cation considerations in this report mainly include general autonomy software (this section) and AI/ML considerations (Section 15). Autonomy software cer- tification challenges, regulatory frameworks, and recommendations for future research directions are presented in the following sections. This section mainly briefly describes basic and conventional certification considerations for autonomy software, without consideration of new challenges of AI/ML.

14.2 [bookmark: Scope_of_autonomy_software][bookmark: _bookmark108]Scope of autonomy software
In this report, we mainly consider software involved in various autonomous functions, which are mission or safety-critical. They are found in autonomous functions, as mentioned in previous sections. These functions include basic functions, such as perception and information fusion, mapping and localization, planning and decision making, control, coordination and teaming, contingency planning, integrated vehicle health management (IVHM); functions in different phases, like autonomous taxiing, autonomous takeoff, autopilot, detect and avoid/collision avoidance, autonomous landing, emergency landing; and functions dealing with interactions: interaction with other systems, human autonomy interaction, interaction with traffic management.
Some typical autonomous functions have been presented in Section 4, such as autonomous taxiing, autonomous takeoff, autopilot, detect and void, autonomous landing, emergency landing.



14.3 [bookmark: Regulatory_frameworks][bookmark: _bookmark109]Regulatory frameworks
ANSI Unmanned Aircraft Systems Standardization Collaborative (UASSC) issued the Standardization Roadmap for Unmanned Aircraft Systems (Version 2.0) in 2020 [192]. The roadmap has a summary of the existing regulations, guidance, and standards related to UAS certification, and a software-related shortlist was extracted from the roadmap:




	Organization
	Existing regulations, guidance, and standards

	



FAA
	Advisory Circular (AC), AC 20-171 Alternatives to RTCA
DO-178B for Software in Airborne Systems and Equipment [193]
AC 119-1 Airworthiness and Operational Authorization of Aircraft Network Security Program (ANSP) [194]
AC 20-115D, Airborne Software Development Assurance Using EUROCAE ED-12 and RTCA DO-178 [195]
AC 00-69, Best Practices for Airborne Software Development Assurance Using EUROCAE ED-12 and RTCA DO-178 [196]
Order 8110.49A, Software Approval Guidelines [197] AC 20-156, Aviation DataBus Assurance [198]
AC 43-216 Software Management During Aircraft Mainte- nance [199]
AC 20-148 Reusable Software Components [200]

	


RTCA
	DO-178C, Software Considerations in Airborne Systems and
Equipment Certification [190]
DO-278A, Software Integrity Assurance Considerations for Communication, Navigation, Surveillance and Air Traffic Management (CNS/ATM) Systems [191]
DO-248C, Supporting Information for DO-178C and DO- 278A [201]
DO-330, Software Tool Qualification Considerations [202] DO-331, Model-Based Development and Verification Sup- plement to DO-178C and DO-278A [203]
DO-332, Object Oriented Technology and Related Tech- niques Supplement to DO-178C and DO-278A [204]
DO-333, Formal Methods Supplement to DO-178C and
DO-278A [205]

	

SAE
	ARP4761 Guidelines and Methods for Conducting the Safety
Assessment Process on Civil Airborne Systems and Equip- ment [206]
ARP4754A Guidelines for Development of Civil Aircraft and Systems [207]
ARP6883, Guidelines for writing IVHM requirements for aerospace systems [208]
ARP6887, Verification & Validation of IVHM Systems and Software [209]
AIR7121, Applicability of Existing Development Assurance and System Safety Practices to Unmanned Aircraft Systems
[210]






	Organization
	Existing regulations, guidance, and standards

	
ASTM
	ASTM F3201-16, Standard Practice for Ensuring Depend-
ability of Software Used in Unmanned Aircraft Systems (UAS) [211]
ASTM F3269-17, Standard Practice for Methods to Safely Bound Flight Behavior of Unmanned Aircraft Systems Con-
taining Complex Functions [129]

	


DoD
	MIL-STD-882E,	System	Safety	Standard	Practice,
Appendix-B: Software System Safety Engineering and Analysis [212]
DOD-STD-2168, Defense System Software Quality Program [213]
MIL-S-52779, Software Quality Assurance Program Require- ments [214]
MIL-STD-882E,	System	Safety	Standard	Practice,
Appendix-B: Software System Safety Engineering and Analysis [212]

	
ISO
	ISO/IEC/IEEE 90003:2018, Software engineering – Guide-
lines for the application of ISO 9001:2015 to computer soft- ware [215]

	SAE-ITC
	ARINC Standards [216]



14.4 [bookmark: Challenges_for_certification_of_autonomy][bookmark: _bookmark110]Challenges for certification of autonomy software
A brief survey of challenges from literature related to autonomy software certifi- cation was first performed. A list of general challenges are then given. Finally, we consider challenges from 6 technical aspects in certification.

General challenges
The ANSI working group also identify a high priority (Tier 1) gap and make recommendations [192]:
Software Considerations and Approval.  Standards are
needed to address software considerations for UAS oper- ations outside of Part 107, control stations, flight control, navigation elements, associated equipment, and support ser- vices in the cloud. The majority of the current resources from manned aviation (standards, regulations, ACs, orders, etc.) are targeted at traditional aircraft and do not address the system of systems engineering used in UAS operations comprising man, machine, the NAS, and integration. UAS standards related to software dependability must properly account for all the unknown risks and potential safety is- sues (e.g., DAA, cybersecurity) during the software design, development, and assurance processes.
Gap A10





Department of Defense issued the “Unmanned Systems Integrated Roadmap FY2017-2042” in 2018 [217]. The roadmap also listed challenges across the themes and enablers, and software-related challenges include:
· Lack of common requirements
· Need for evolved Test & Evaluation, Validation & Verification (TEVV) standards
· Lack of foresight in design flexibility and securing data rights
· Legal and policy constraints
· Lack of understanding human-machine interactions
· Lack of trust
· Difficult, cumbersome, lagging software upgrades
· Lack of high information assurance solutions
· Lack of refined sensitive HMIs
As a new way of transportation, advanced air mobility needs to address new challenges from the introduction of new technologies, more constraint environment conditions, and evolved traffic management systems. Some exam- ples include UAS Traffic Management, battery management, communication, human-autonomy interaction, collision avoidance, vehicle health management, contingency management, and fast evolution of systems. [218] briefly describes the challenges of safety, security, resilience, communications, integration of au- tonomy into the airspace system, scalability, flexibility, infrastructure, airspace and flight data, air vehicles.
Based on the survey, we summarize the main challenges in software certifica- tion:
· Definitions of autonomy software requirements and objectives
· Verifiability and validity of autonomy software
· Verifiability and validity of data
· Maturity of safety assurance techniques
· Avoidance of unintended behavior of autonomy components
· Uncertainty of environment, vehicle systems, remote pilots, infrastructure, and traffic management
· Definitions for properties and metrics of autonomy software
· Traceability of the requirements and implementation in development pro- cess
· Increasing realistic simulation
· Human-Autonomy interaction (including onboard/remote pilots, air traffic controllers, and other human in the loop)
· Gaps of autonomy standards, guidance and regulations




Challenges from 6 aspects
We further consider these challenges from certification perspectives in six as- pects (Figure 21): safety assurance and benchmark datasets, convincing safety proof and arguments, industry best practices, industry standards, guidance and regulations, complete means of compliance.
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[bookmark: _bookmark111]Figure 21: Considerations of six areas in certification.

More details of the challenges in each aspect is shown in Table 10.
	Area
	Challenges

	
Safety assurance and benchmark datasets
	Verification, testing, simulation: scalability,
compositionality, performance, robustness, etc. Autonomy/AI safety assessment
Runtime assurance, contingency management,
fault detection & recovery

	Convincing safety proof and arguments
	Verification objectives and properties
Overarching properties Safety argument

	
Industry best practices
	Simulation and flight testing
Development and assurance processes Platform and technology integration Lessons learned






	
[bookmark: _bookmark112]Industry standards for autonomy, AAM, and AI
	Specifications for environment, scenarios, op-
erational domains Performance standards Safety standards Process standards

	
Guidance and regulations
	Enabling technology roadmap, V&V roadmap,
certification roadmap Certification guidance Gaps for regulations

	
Complete and sound means of compliance
	Complete definition of means of compliance
Safety objectives, properties Metrics and evaluation Criteria of satisfaction



Table 10: Details of the challenges in the six areas of certification considerations.

14.5 [bookmark: _bookmark113]Recommendations
We list the recommendations for academia, industry, government agencies and regulators regarding the previous 6 technical aspects in certification.


	Recommendations
	Academia
	Industry
	Regulators

	
Safety assurance and benchmark datasets
	
Development of sound software and data assur- ance techniques
	System	and
platform	de- velopment,
data collection, maturation	of
academic tools
	Definition	of benchmark datasets, evalua- tion of assurance techniques

	
Convincing safety proof and arguments
	
Development of safety argument techniques
	development of
safety proofs, evaluation of the proofs against safety goals
	evaluation of the proofs against safety goals and regulations

	Industry	best practices
	
N/A
	Report of indus-
try best prac- tices
	Evaluation
of	the	best practices

	
Industry	stan- dards
	
N/A
	Collaboration
on the creation of	industry standards based on consensus
	
Evaluation
of	industry standards






	Guidance	and regulations
	Providing	rec-
ommendations to regulators
	Providing	rec-
ommendations to regulators
	Development of
guidance	and regulations

	
Complete means of compliance (MoC)
	

N/A
	
Implementation of the MoC
	Definition   of
complete MoC and evaluation of the submit- ted MoC from industry



Due to increasing complexity and scalability challenges in autonomy software assurance, verification & validation techniques performed in design time become insufficient to assure expected safety assurance levels. Risk mitigations technique are recommended, for instance, runtime assurance, contingency management, fault tolerance, fault detection and isolation

15 [bookmark: Certification_of_AI/ML_Subsystems][bookmark: _bookmark114]Certification of AI/ML Subsystems
Significant advances are being made in the development of autonomous systems that employ machine learning (ML) technologies. However, these technologies — including deep neural networks — are not compatible with current certification guidance and processes.
Aircraft systems have legal requirements for airworthiness certification that present barriers to the use of ML. In a typical ML system, much of the complexity and design information resides in its training data rather than in the actual code produced. For example, one of the key principles of avionics software certification (covered in DO-178C [219]) is the use of requirements-based testing along with structural coverage metrics. These activities not only demonstrate compliance with functional requirements, but are intended to show the absence of unintended functionality. However, it can be difficult to precisely state requirements for ML-based subsystems, especially those implementing perception functions. Even when requirements are available, it is usually not possible to associate any particular lines of code with a specific requirement. Furthermore, complete structural coverage can be achieved for a typical neural network with a single test case, but this provides almost no confidence in its correctness. Showing that
a component or system is correct and does not do harm because of behaviors
that were unintended by designers or unexpected by operators is a critical aspect of the certification process. Additional details regarding certification challenges posed by learning-based systems can be found in [220]. Much of the material found in this section has been drawn from [221].

15.1 [bookmark: Current_Certification_Guidance][bookmark: _bookmark115]Current Certification Guidance
In this section we provide an overview of current certification guidance for assuring the correctness of aircraft software.
The development process described in DO-178C begins with system require- ments that have been allocated to software for implementation. These system requirements are subsequently refined into high-level requirements, low-level requirements, and software architecture, from which source code is produced and ultimately compiled into executable object code.
According to DO-178C, the purpose of software verification is to detect errors that may have been introduced during software development. More specifically, the software verification process must verify that “the Executable Object Code satisfies the software requirements (that is, intended function), and provides confidence in the absence of unintended functionality.” (sec. 6.1.d).
Software verification activities in DO-178C center on requirements-based testing. Coverage refers to the extent to which a verification activity satisfies its objectives. Two specific measures of test coverage required in DO-178C are requirements coverage and structural coverage.
Requirements coverage analysis determines how well the requirements-based testing verified the implementation of the software requirements (section 6.4.4.1), and establishes traceability between the software requirements and the test


cases. Requirements coverage analysis should show that test cases exist for each software requirement, and that the test cases satisfy the criteria for normal and robustness (abnormal range inputs) testing.
Verification that provides complete requirements coverage is not necessarily a thorough test of the software. For example:
· The software requirements and the design description may not accurately specify all of the behavior in the executable object code.
· The software requirements may be too abstract and do not ensure that all the behaviors implemented in the source code are tested.
Structural coverage analysis determines how much of the code structure was not executed by the requirements-based tests (6.4.4.2), and establishes traceability between the code structure and the test cases. Three different coverage metrics are defined, with the more rigorous metrics applied to code that is more safety-critical: 1) statement coverage, 2) decision (or branch) coverage, and 3) modified condition/decision coverage. These are all based on assessing the control flow among statements in the source code, including the logical expressions that govern that flow. An excellent tutorial on structural coverage in DO-178 can be found in [222]
DO-248C, Supporting Information for DO-178C and DO-278A [223], pro-
vides further rationale for structural coverage analysis. FAQ #43 states that structural coverage analysis (and associated resolution of coverage shortcomings) are intended to:
· Show that the code structure was verified to the degree required for the applicable software criticality level.
· Establish the thoroughness of requirements-based testing.
· Support demonstration of the absence of unintended functions.
Complete structural coverage does not guarantee the absence of unintended behaviors, but when combined with normal range and robustness testing it does provide evidence that testing was rigorous and complete.
The FAQ observes that requirements-based testing alone cannot completely verify the absence of unintended functionality. This is because code that is implemented without being linked to requirements may not be exercised by requirements-based tests, and this code could result in unintended functionality. Structural coverage analysis was added to address this problem. If requirements- based testing shows that all intended functions are properly implemented, and if structural coverage analysis shows that all existing code is reachable and adequately tested, these two together provide a greater level of confidence that there is no unintended functionality.
Guidance for model-based software development is provided in DO-331 [203], Model-Based Development and Verification Supplement to DO-178C and DO-278A.




It is common in model-based development (MBD) processes for source code to be generated directly from a design model that corresponds to traditional low-level software requirements. MBD processes introduce a new concern related to unintended behavior. Model elements implementing unintended behavior could inadvertently make it into the design model and subsequently result in source code through the code generation process. Such code may not be detected by structural coverage testing because it traces to a model element that is now part of the low-level requirements (i.e., the corresponding code is exercised by a requirements-based test case).
For this reason, DO-331 introduced new objectives for model coverage analysis (MB.6.7) showing that all model elements have been exercised by requirements- based model verification activities. To facilitate this analysis, every model must have identified requirements from which the model was developed (MB.1.6.1).
Model coverage analysis is defined as an analysis that determines which requirements expressed by a design model were not exercised by verification based on the requirements from which the model was developed. The stated purpose is to support the detection of unintended behavior in the design model. Coverage of the requirements from which the model was developed must be achieved by the requirements-based verification cases. Model coverage analysis is different from structural coverage analysis and therefore model coverage analysis does not eliminate the need to achieve the objectives of structural coverage
analysis per DO-178C section 6.4.4.2.
Guidance for the use of formal methods in the certification process is pro- vided in DO-333, Formal Methods Supplement to DO-178C and DO-278A. This document describes how mathematical analysis tools based on formal logic can be used to satisfy verification objectives. It includes provisions for performing coverage analysis when using formal methods.
Requirements coverage is essentially unchanged from DO-178C in that ap- plicants must demonstrate that all requirements have been verified by formal analysis, and establish traceability between the software requirements and the verification cases. The need for structural coverage analysis, however, is based on the impracticality of achieving exhaustive testing and the consequent need to establish metrics to ensure that the testing performed is rigorous and sufficient. Unlike testing, the use of formal methods may provide an exhaustive assessment of the software. However, additional activities are required to achieve comparable coverage analysis.
The additional activities are intended to show that the software requirements are complete and precisely specified, that the analysis itself is complete (corre- sponding to a mathematical proof), and that all assumptions in the analysis have been justified.
Formal analysis can show that there are no inputs to the system that result in incorrect or unintended behaviors. However, this does not demonstrate the absence of extraneous code — it just shows that such code cannot impact the observable software behavior. Additional activities (analyses or reviews) must be performed to detect unintended dataflow relationships in the software, and to detect unreachable or deactivated code.


15.2 [bookmark: Gaps_Relative_to_Current_Guidance][bookmark: _bookmark116]Gaps Relative to Current Guidance
What are the gaps relative to current certification guidance?
ML methods present unique challenges that may be barriers to the use of traditional, model-based, or formal methods guidance currently defined in DO-178C and its supplements. Fundamentally, this is due to the reliance on requirements-based testing (or verification) and structural coverage metrics, as described in the previous section.
It should be obvious that requirements-based testing requires requirements. Clearly stated requirements are also a necessary part of MBD and formal methods development and verification processes. However, the ability to implement complex functionality by learning from data in the absence of clear requirements and to generalize when faced with new data is actually a strength of machine learning. It may be possible and necessary to retroactively add high-level functional requirements to ML designs, but this is often not the usual starting point.
Even when requirements are available, it is still difficult to determine whether enough testing has been performed to provide a complete assessment of an ML subsystems design and provide confidence in the absence of unintended behaviors. Structural coverage metrics were constructed with the understanding that much of the complexity of traditional software is manifested in the logical decisions that are being implemented. This logic should be traceable to specific software requirements. When requirements-based tests fail to exercise part of the software logic as revealed by structural coverage metrics, it is reasonable to conclude that something is amiss (either a missing requirement or some
unintended function).
Since neural networks do not primarily implement logical decisions, structural coverage can usually be achieved with one test case (or possibly a small number of them). Individual lines of code in the software representation of a neural network do not represent design choices that implement specific requirements. Therefore, current structural coverage metrics are not helpful in identifying unintended behaviors.
Software testing remains a critical challenge for machine learning systems and new approaches will be needed to take the place of traditional assurance methods. An excellent summary of the current state is provided in [224].
Before moving on, let us consider feedback control systems and whether their structure and implementation provide a precedent for addressing ML assurance concerns. Feedback control is used in safety-critical aviation systems and is obviously certified using current guidance and processes. Perhaps the same approach or something analogous can be used for ML subsystems.
A typical control system can be described by the equation x˙ = Ax + Bu, where x is the state vector for the system and u is a vector of inputs. This
equation for x˙ describes the system dynamics, computing the derivative for
each state element based on the current state and inputs. The linear algebra computations involved bear some similarity to the computations performed in a neural network inference model (ignoring the activation functions in the neural



net). We might say that there is no real traceability between particular entries in the A and B matrices and the system requirements, and that a neural network should be no more or less challenging from an assurance standpoint.
However, there are two important differences:
· For a typical aircraft feedback control system the matrices may have tens of entries, but a typical neural network (trained to perform a perception task) may include millions of weights.
· While the entries in the control system matrix may not trace directly to requirements, their specific values are determined by an extremely well-understood theoretical framework, and the control characteristics implemented using that framework definitely trace to the system require- ments.
In conclusion, ML and associated software implementations break many of the assumptions that are the basis for current certification processes. In particular, the design intent cannot be inferred from an examination of a ML model or its software implementation.

15.3 [bookmark: New_Certification_Guidance][bookmark: _bookmark117]New Certification Guidance
How are these gaps being addressed?
There are a number of parallel efforts underway to develop new certification guidance supporting the use of ML in aviation applications.
The European Union Aviation Safety Agency (EASA) has published its Artificial Intelligence Roadmap 1.0 [225] which establishes an initial vision for safety in the development of ML subsystems in the aviation domain. Important contributions include the definition of “trustworthiness building blocks” for ML and publication of a proposed timeline, calling for first approvals of ML subsystems (used in an advisory role) around 2025.
EASA has also published a report on a research effort addressing the challenges posed by the use of ML in aviation entitled Concepts of Design Assurance for Neural Networks [226]. The report describes a W-shaped development life-cycle that adds training processes in the middle of the traditional V-shaped life-cycle. It also investigates theoretical and practical generalization bounds as a means of establishing confidence that an ML subsystem will perform as intended when faced with novel inputs.
Another recent publication is EASA’s concept paper on First Usable Guidance for Level 1 Machine Learning Applications [227]. “Level 1” in this context refers to applications in which the ML subsystem is providing assistance to a human operator as opposed to human/machine collaboration or autonomy. The report describes a set of candidate objectives to be satisfied by developers of Level 1 ML and is intended to provide visibility into regulatory expectations for such systems.
These reports are being used as inputs by the joint SAE committee G34 and EUROCAE working group WG-114, Artificial Intelligence in Aviation. WG-114



was formed in 2019 and shortly thereafter merged with G34 to work together to address certification of aeronautical systems implementing artificial intelligence technologies. The goals of the joint committee are to create and maintain reports and recommended practices on the implementation and certification aspects related to AI technologies, including both airborne and ground-based systems needed for the safe operation of aerospace vehicles. The principle work product of the committee will be a new standard: AS6983 Process Standard for Development and Certification/Approval of Aeronautical Safety-Related Products Implementing AI.
The detection and elimination of unintended behaviors has been identified by the committee as a key concern to be addressed by the guidance documents ultimately published. A number of means to achieve this goal are under consid- eration, looking at different points in the development life-cycle. These include assessments of the completeness and representativeness of the training and test datasets, new structural coverage metrics (though the specifics have yet to be agreed upon), and the use of run-time assurance approaches at the system design level.
One final effort worth noting is the Overarching Properties initiative, which followed from the 2016 U.S. Federal Aviation Administration (FAA) “Stream- lining Assurance Processes Workshop.” The Overarching Properties (OP) are the product of a multi-year, international effort to develop a minimum set of properties sufficient for use in the approval process. A more detailed explanation of the OP can be found in [228].
The three OP as currently defined are:
· Intent: The defined intended behavior is correct and complete with respect to the desired behavior.
· Correctness: The implementation is correct with respect to its defined intended behavior, under foreseeable operating conditions.
· Innocuity: Any part of the implementation that is not required by the defined intended behavior has no unacceptable impact.
Innocuity captures the goal of eliminating unintended behavior — that is, any behavior that is not included in the defined intended behavior of the system. Innocuity specifically does not restrict the implementation to only contain items which are required by the defined intended behavior. Such things may be necessary when a system is implemented from previously developed items. Rather, it requires that nothing extra in the implementation can negatively affect safety.
The OP initiative does not provide a solution to the gaps in the current certification standards. However, it does provide a framework for deciding whether new assurance methods and technologies can be used to provide an equivalent level of safety compared to current methods.



15.4 [bookmark: Recommendations][bookmark: _bookmark118]Recommendations
At the present time, there is no agreed upon solution to the detection and elimination of unintended behavior in ML-based systems. The fundamental problem is that ML techniques were never imagined to be able to provide guarantees of correctness. They are best applied to challenging problem domains where traditional approaches are less effective but where the ability to learn and generalize from large amounts of data can provide unique capabilities.
ML-based systems exhibit different levels of complexity and criticality, both of which impact certification. Figure 22 illustrates a number of aerospace systems and their relative complexity and criticality.
For low-criticality systems (e.g., DAL D), DO-178C largely treats the im- plementation as a black box, and it is likely that little additional assurance evidence will be needed for an ML-based system. Such systems could be fielded in the near term and would provide excellent experience (for both applicants and evaluators) with the data, models, and other artifacts produced.
Similarly, low-complexity ML-based systems will likely be able to satisfy rigorous requirements for input space coverage and absence of unintended be- haviors, either by a combination of formal analysis (or possibly through testing alone). Near- to mid-term efforts to scale up current analysis tools will allow the new certification guidance under development to address a fairly large class of applications.
However, the combination of high-criticality and high-complexity (found, for example, in applications like autonomous vision-based landing systems) will require significant breakthroughs in scale for analysis tools and new approaches to behavioral and input space coverage.
In all likelihood, certification guidance under development will rely on a combination of techniques, each contributing some bit of assurance evidence. Assurance for ML-based systems in safety-critical applications remains an active area of research.
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[bookmark: _bookmark119]Figure 22: ML-based systems exhibit different combinations of complexity and criticality. Due to their highly complex input space, perception systems remain a challenge to certify in high-criticality applications.
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16 [bookmark: Summary_of_Challenges_and_Gaps][bookmark: _bookmark121]Summary of Challenges and Gaps
This section summarizes the challenges in autonomy verification & validation in the technical areas presented in the previous sections.
A list of general autonomy software Challenges:· Open operation environment
· Distributed operations
· Highly diverse use cases
· Reliance on infrastructure
· Heterogeneous user types and operations closer to users (hence, increasingly sociotechnical systems)
· Integration of unconventional functionality (e.g., AI) with unex- pected behavior
· Lack of established specifications
General autonomy software Challenges


A list of Challenges of emerging autonomy software V&V:· Generalization and predictability of learning systems
· Prediction of human behavior
· Dynamic/unexpected contingency situations
· Battery performance prediction
· Perturbations, inference, and security in communication
Challenges of emerging autonomy software V&V


A list of Challenges of contingency management systems:· IVHM, FMS updates must always be verified compatible/safe
with each other
· Contingency plans must be coordinated with ground-based entities as well as other aircraft when off-field interactions are necessary
· Dynamic maps must have accuracy and precision far exceeding today’s aviation map standards; new data feeds must be validated in near-real-time
· System-wide V2V links must be trusted and certified to meet high-bandwidth data exchange needs for DAA and other map- ping/planning functions
· AAM will involve a complex mix of aircraft types that may need different flight speeds and paths, especially to support dynamic plan updates for contingency management. V&V of intersecting routes in dense airspace will be required
Challenges of contingency management systems





A list of challenges of safety in human autonomy interaction:· Intent communication capability and its impact
· Team flow and positive psychological experiences
· Maintain and improve trust
· Joint attention between human and autonomy
· Mutual awareness of emotions (confusion, agreement, concern etc.)
· Shared accountability
· Optimal training level and method
Challenges of safety in human autonomy interaction


A list of challenges related to verification factors and trade-off:· Metrics are often selected to reflect the strength of the proposed
methods, not the limitations
· Verification is fundamentally difficult: Ultimately brute force methods are needed to provide deterministic guarantees
· Improvement in V&V technologies is far behind the growth of complexity of modern intelligent systems
· In industry, information is protected, which leads to complicated games and strategies that are opaque
· Dunning–Kruger effect in industry
Challenges related to verification factors and trade-off


A list of challenges related to UAS Traffic Management (UTM) for Au- tonomous Aircraft:· Needs for scalability: CNS infrastructure; UAS Traffic Manage-
ment (UTM) ; Autonomy: flight, ground and supplemental data systems
· Planning
· Training data satisfies requirements. . . no bias
· Explainability, validation of output rationale
· Structural coverage metric for AI implementation
· Performance Authorization
· Training data is representative of the situation
· Robustness to input variance
· Flight Approval
· Training data is representative of the situation
· Robustness to input variance
· Training data does not fit the requirement (i.e., adversarial manipulation of AI)
· Separation Approval
· Coverage metric of AI implementation
· Verifying timely transition of control from AI to Human
Challenges related to UAS Traffic Management (UTM) for Au-
tonomous Aircraft





A list of challenges related to Model-Based Systems Engineering for AI/ML:· Growth of system complexity
· Managing information/knowledge over product lifecycle
· Configuration management (suppliers, versions, product variants, operational history)
· Cycle time and cost to develop and field new systems
· Certification guidance
· Trust in correctness, fairness and completeness of training data
· Simulation environments can reset – real work consequences are permanent
Challenges related to Model-Based Systems Engineering for AI/ML


A list of challenges related to Run-Time Assurance:· Unintended behaviors of autonomy components
· Standardization of runtime assurance
· Runtime assurance certification process
· New definitions for coverage metrics
· Requirements for monitors and monitored component in RTA architecture
· Integration of monitors for input anomaly detection in RTA
· Guidance needed for RTA (or RTA components) in addition to ARP4754A
Challenges related to Run-Time Assurance


A list of challenges related to AI Certification:· Definitions of autonomy requirements
· Verifiability and certifiability of autonomy software
· Maturity of safety assurance technologies
· Unintended behavior of autonomy components
· Uncertainty of environment, vehicle systems, remote pilots, infrastructure, and traffic management
· Definitions for properties and metrics of autonomy software
· Assurance for dynamic updates
· Gaps of autonomy standards, guidance and regulations
Challenges related to AI Certification Considerations


A list of challenges related to Machine Learning Verification & Validation:




· Clear definition of V&V requirements and objectives
· Complexity of ML models and high dimensional inputs
· Assurance for online learning, generalization, and approximation
· Definition of verification properties: robustness, coverage, com- pleteness, etc.
· Sound data-driven verification techniques
· Efficient representation of ML models
· Performance of verification techniques
· Use verification in the safety argument
Challenges related to Machine Learning Verification & Validation


A list of challenges related to general autonomy software certification:· Definitions of autonomy requirements
· Verifiability and certifiability of autonomy software
· Maturity of safety assurance technologies
· Unintended behavior of autonomy components
· Uncertainty of environment, vehicle systems, remote pilots, infrastructure, and traffic management
· Definitions for properties and metrics of autonomy software
· Gaps of autonomy standards, guidance and regulations
Challenges related to general autonomy software certification



17 [bookmark: Roadmap_for_Autonomy_V&V_techniques][bookmark: _bookmark122]Roadmap for Autonomy V&V techniques
A simple roadmap for autonomy evolution (Figure 23):
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[bookmark: _bookmark123]Figure 23: A Brief View of the autonomy evolution roadmap A roadmap for V&V of Autonomy Software (Figure 24):
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[bookmark: _bookmark124]Figure 24: A roadmap for V&V of Autonomy Software

A roadmap for V&V of Emerging Autonomy Software Technologies (Figure 25):
A roadmap for Contingency Management Systems (Figure 26):
A roadmap for Safety in Human Autonomy Interaction (Figure 27): A roadmap for Verification Factors and Tradeoff (Figure 28):
A roadmap for UAS Traffic Management (UTM) for Autonomous Aircraft (Figure 29):
A roadmap for Model-Based Systems Engineering for AI/ML (Figure 30): A roadmap for Run-Time Assurance (Figure 31):
A roadmap for AI Certification (Figure 32):
A roadmap for Machine Learning Verification & Validation (Figure 33): A roadmap for general autonomy software certification (Figure 34):
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[bookmark: _bookmark125]Figure 25: A roadmap for V&V of Emerging Autonomy Software Technologies
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[bookmark: _bookmark126]Figure 26: A roadmap for Contingency Management Systems
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[bookmark: _bookmark127]Figure 27: A roadmap for Safety in Human Autonomy Interaction
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[bookmark: _bookmark128]Figure 28: A roadmap for Verification Factors and Tradeoff
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[bookmark: _bookmark129]Figure 29: A roadmap for UAS Traffic Management (UTM) for Autonomous Aircraft
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[bookmark: _bookmark130]Figure 30: A roadmap for Model-Based Systems Engineering for AI/ML
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[bookmark: _bookmark131]Figure 31: A roadmap for Run-Time Assurance
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[bookmark: _bookmark132]Figure 32: A roadmap for AI Certification
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[bookmark: _bookmark133]Figure 33: A roadmap for Machine Learning Verification & Validation
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[bookmark: _bookmark134]Figure 34: A roadmap for general autonomy software certification
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This report summarizes the findings from the “Autonomy Verification and Validation Roadmap and Vision 2045” project. This joint government, industry, and academia effort produced autonomy Verification and Validation technology roadmaps. The report can serve as a reference for the aviation domain to discuss autonomy V&V challenges, gaps, current solutions, and recommendations towards future research and development.
The team adopted a systematic technical approach to build the V&V roadmaps. The tasks were to define the project scope, survey the existing roadmaps of global aerospace-relevant organizations, identify and analyze select autonomy and safety-related projects, and synthesizethe information to:
· identify use cases and autonomous functions,
· summarize state-of-the-art technologies,
· identify technical gaps,
· build the roadmap, and
· make recommendations.
The vision was built on the collective expertise of industry researchers at Boeing, Collins Aerospace, and GE research, and from academic researchers at the Uni- versity of Michigan, University of Texas at Austin, and Massachusetts Institute of Technology. The team also considered inputs and feedback from government agencies (Federal Aviation Administration, Air Force Research Laboratory and Naval Research Laboratory), and Artificial intelligence & autonomy standard committees. The collective perspectives from government,industry, and academia in this report’s vision and roadmap was an aviation community effort, which is important for the future realization of increasingly autonomous systems in the National Airspace.
The main report findings include use cases and autonomous functions, tech- nical challenges to be addressed, recommendations, and roadmaps for future R&D. These findings were validated via technical discussions and deep dives with NASA panelists, advisory review meetings, and dedicated workshops with various domain experts.
This roadmap can provide guidance and potential direction for future V&V technology development. The roadmap is based on our team’s expertise and experience, global research strategies, industrial needs, and certification require- ments. Our comprehensive analysis will provide information needed to help guide NASA’s technology investment, planning, and development.
The recommendations from this effort include:



· a new voluntary working group to support technical activities in Autonomy V&V,
· promotion of a joint effort to address the Autonomy V&V challenges,
· continued effort to update and improve the roadmaps,
· contribution to autonomy, safety, and Artificial Intelligence/Machine Learn- ing standards, guidance, and regulations.
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