
HYBRIDQ is a highly extensible platform designed to provide a 
common framework to integrate multiple state-of-the-art techniques 
to simulate large scale quantum circuits on a variety of hardware.

• Provides tools to manipulate, develop, and extend noiseless and 
noisy circuits for different hardware architectures.

• Supports large-scale high-performance computing (hpc) 
simulations, automatically balancing workload among different 
processor nodes and enabling the use of multiple backends to 
maximize parallel efficiency. 

• Simple and expressive language allows for seamless switching from 
one technique to another as well as from one hardware to the 
next.

• Greatly simplifies the development of new hybrid algorithms and 
techniques.

HTTPS://GITHUB.COM/NASA/HYBRIDQ 

S. Mandra, J. Marshall, E.G. Rieffel, and R. Biswas, HybridQ: A Hybrid 

Simulator for Quantum Circuits, IEEE/ACM Second International 

Workshop on Quantum Computing Software (QCS) 2021.
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Xiao MI et al. (Google team & NASA QuAIL contributors) Information 
scrambling in quantum circuits, Science, Volume: 374, Issue: 6574, 
Pages: 1479-1483.
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HybridQ and PySA are open-source tools developed by the NASA Quantum Artificial Intelligence Laboratory (QuAIL) to support 
benchmarking, analysis and quantum algorithm development in areas such as simulation, optimization and machine learning. 
These tools leverage classical hardware acceleration via high-performance computing CPU and GPU architectures and support 
high-performance computing. HybridQ is a highly extensible platform designed to provide a common framework to integrate 
multiple state-of-the-art techniques to simulate large-scale quantum circuits. PySA is an extensible platform to optimize a 
classical cost function. We provide an outline of these open-source tools and highlight projects using each of these tools in 
contexts of simulation, optimization and machine learning.
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QuTiP

A.A. Asanjan, , M. Memarzadeh, P. A. Lott, A.A. Asanjan, E. G. Rieffel, S. 
Grabbe Probabilistic Wildfire Segmentation Using Deep Learning from 
Satellite Imagery, Remote Sensing 2023

PYSA is an extensible platform to optimize classical cost functions.

• A powerful tool for solving optimization and sampling problems

• Enables use of different numerical techniques – including e.g. 
parallel-tempering, annealed importance sampling and path-
integral monte carlo. 

• Designed to run on HPC clusters via user-friendly interface

• Jupyter notebook tutorials available outlining use in solving ising 
models, and training restricted Boltzmann machines.

HTTPS://GITHUB.COM/NASA/PYSA

T. Templin, M. Memarzadeh, W. Vinci, P. A. Lott, A.A. Asanjan, A.A. 

Armenakas, E. G. Rieffel Anomaly Detection in Aeronautics Data with  

Quantum-compatible Discrete Deep Generative Model, 

arXiv:2303.12302, 2023

(left) Comparison of QuTiP to HybridQ speed 
on density matrix operations. Wall-clock time 
versus system size n (number of qubits). 
Depolarizing channel applied on each qubit of 
a random density matrix, utilizing two of the 
HybridQ backends.  Note the ‘evolution-
hybridq‘ backend only works for more than 5 
qubits in the density matrix setting. 

(right) Tensor network contraction on a 
density matrix circuit. For each system size, 
we generate a random quantum circuit of 
50 total gates, which we then add 
depolarizing noise after each gate. Using 
the tensor network contraction, we extract 
the reduced state of the 0’th qubit. In QuTiP 
we obtain this state by performing the full 
simulation and tracing out the other 
degrees of freedom. 

(left) unsupervised variational autoencoder model with convolutional 
encoder/decoder networks and latent prior for detecting anomalies in aeronautics 
time-series data. (right) Comparison of precision, recall and f1- scores for 3 
different priors: Blue (Gaussian), Orange (Bernoulli), and Grey (Boltzmann) 
distributions, Boltzmann machine is comparable in performance to Gaussian prior, 
both outperforming Bernoulli.

Probablistic U-Net to build a 
supervised stochastic 
segmentation via RBM latent 
model & feature learning.  Method 
combines Variational Inference & 
MCMC to generate more accurate 
latent samples and provide 
realistic scenarios for wildfire 
detection.

Figure provides a graphical 
illustration of the proposed 
Probabilistic U-Net framework. The 
inputs are NDVI, NDVI difference 
with long-term NDVI, and MODIS 
MCD43A4 channels for 
Land/Cloud/Aerosols.

(a) (top) presents the training scheme where the prior network encodes inputs and 
the posterior network encodes the inputs and target data together into 
multivariate Gaussian distributions. The samples from the unified multivariate 
Gaussian distribution are concatenated with U-Net outputs to produce stochastic 
events of target data.

(b) (bottom) demonstrates the inference scheme where samples are drawn from 
the prior network.

QuAIL Tools for 
Benchmarking, Analysis 

and Quantum Algorithm Development 
P.A. Lott, S. Mandra, J. Marshall, L. Brady, D. Bernal, A.A. Asanjan, S. Grabbe, A.A. Armenakas, M. Memarzadeh, T. Templin, E.G. Rieffel, 

R. Biswas

(A) Example transformation of a product of Pauli operators (Pauli string) by different quantum gates. A 
single Pauli string 𝐼ˆ(1)𝜎ˆ(2)z𝜎ˆ(3)x𝐼ˆ(4)𝐼ˆ(5) is mapped either into a different Pauli string by a Clifford 
gate or a superposition of multiple Pauli strings (coefficients not shown) by a non-Clifford gate. (B) OTOCs 
of individual random circuit instances, C, measured with the number of non-Clifford gates in 𝑈ˆ, Nwv, fixed 
at different values. Dashed lines are numerical simulation results. For each circuit, the non-Clifford gates 
are injected at random locations within the intersection between the light cones of Qb and Q1. The inset 
shows locations of Qa (black-outlined unfilled circle), Q1 (black filled circle), and Qb (blue filled circle) as 
well as the number of circuit cycles with which the data are taken. Here, and also in Fig. 4, error bars are 
omitted because a sufficient number of samples was taken to ensure that the statistical uncertainty is 
≤0.01 (36). (C) The mean 𝐶⎯⎯⎯ (top) and RMS values δC (bottom) of C for different Nwv. Dashed lines are 
computed from the numerically simulated values in (B). (Inset) Numerically computed average numbers 
of Pauli strings in the time-evolved operator 𝑂ˆ(𝑡), np, for the experimental circuits. Dashed line is an 
exponential fit, 𝑛p≈20.96𝑁wv. HybridQ used to simulate 53 qubits with 32 non-Clifford gates.

https://github.com/NASA/HYBRIDQ
https://github.com/NASA/PYSA
https://www.science.org/doi/10.1126/science.abg5029#F4
https://www.science.org/doi/10.1126/science.abg5029#core-R36
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