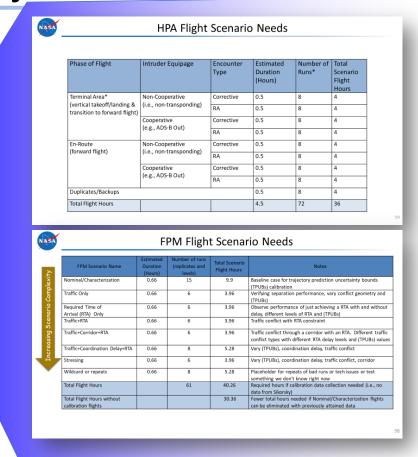


Flight Test Overview Presented to RTCA SC-147

March 23, 2023

Nancy Baccheschi, Chief Engineer Conrad Rorie, HPA Tech Lead

IAS-1 Spiral-2 Objectives


Top-Level NC IAS-1 Goal (Subproject Plan)

Evaluate NASA research concepts and technologies for complex operations through integrated automation and candidate operational concepts and scenarios

IAS-1 Objective (Subproject Plan)

Collect the required data to meet stakeholder objectives (see preliminary flight test matrices to the right)

IAS-1 Spiral-2 (IAS1S2) Primary Objective (ORD) Mature AAM technologies in a relevant environment

Sub-Objective 1 (ORD)

Test maturing AAM

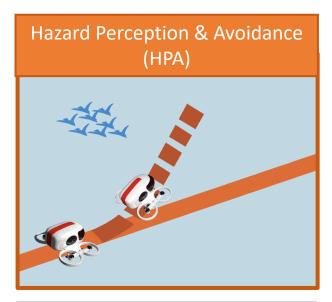
technologies

Sub-Objective 2 (ORD)
Evaluate developing AAM
technologies

Sub-Objective 3 (ORD)
Identify integrated pilot
display requirements

Requirements map back to Objectives

- Approximately 33 flight hours of test targeted for HPA and FPM technologies, as presented at MCR.
- Minimum Success criteria requires collecting data to validate that the algorithms function as designed in a relevant environment

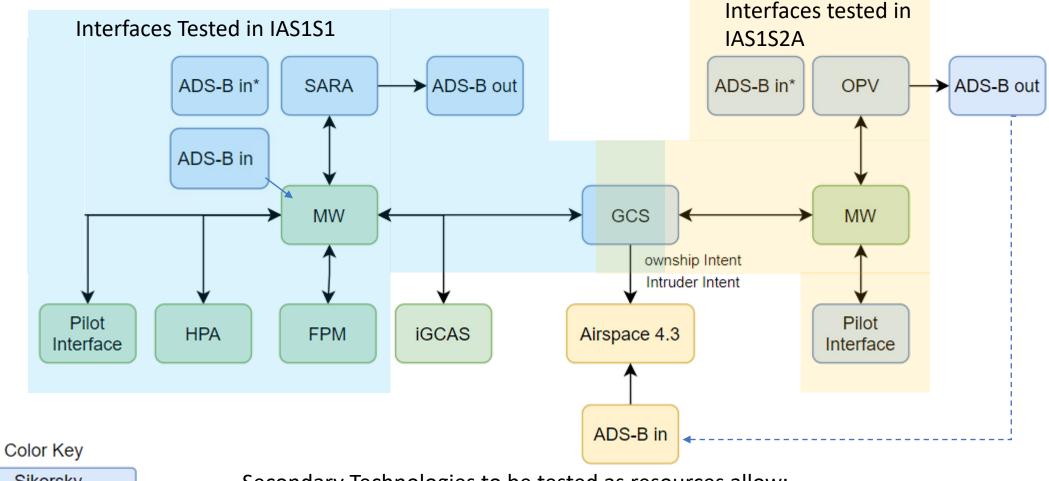


Overview of Technologies being Flight Tested

Two primary technologies being integrated for IAS-1 flight test:

- Hazard Perception and Avoidance (HPA)
 - > Tactical (near-term) response to conflicts with the flight path
 - O Detect and Avoid (DAA) advises the pilot for non-imminent events
 - Collision Avoidance (CA) and Resolution Advisories (RA) automation takes corrective action for imminent events
- Flight Path Management (FPM)
 - > Strategic (far-term) response to conflicts with the flight path
 - Options created by the system to resolve the conflict by adjusting the ownship's route
 - System tries to solve the conflict while maintaining the Required Time of Arrival (RTA)
 - Options presented to the pilot for selection

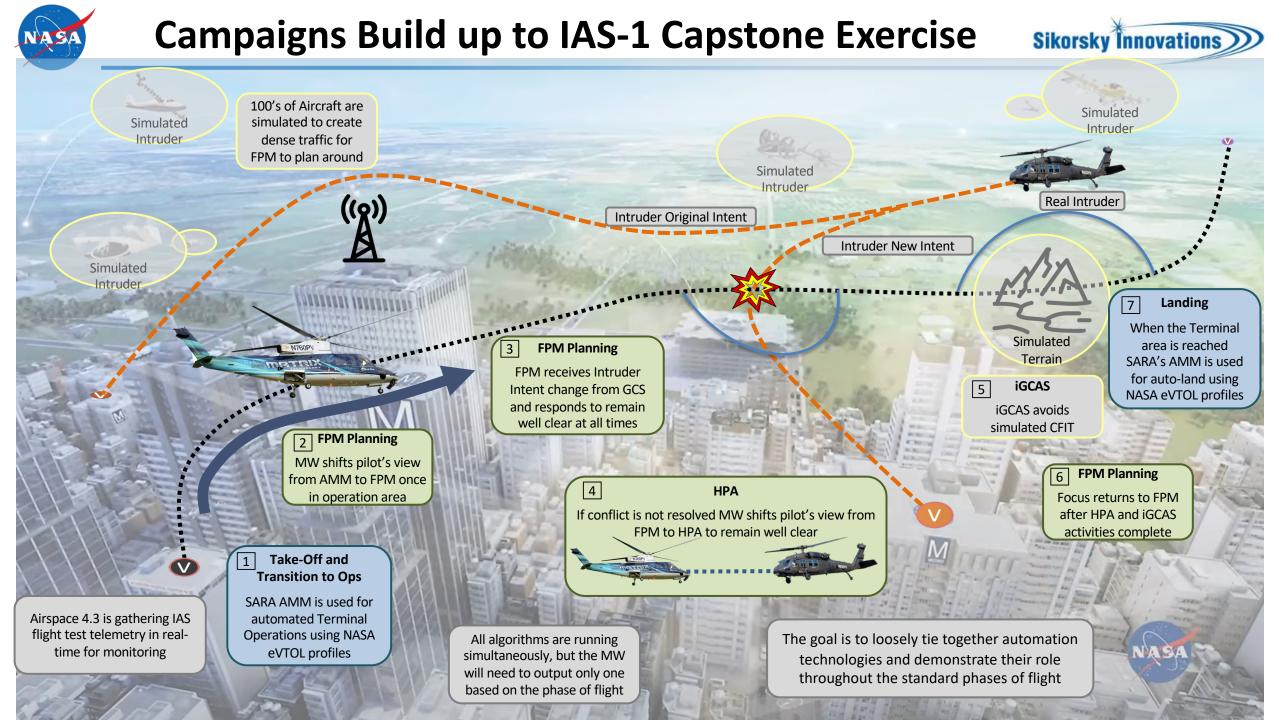
Test Aircraft


- SARA (Sikorsky Autonomous Research Aircraft) "Ownship"
 - Modified S-76B helicopter
 - Crew: Sikorsky safety pilot and NASA research pilot
 - IAS Middleware (MW) will be hosted on the aircraft
 - MW will communicate with ACAS Xr software and aircraft to enable HPA routes
- OPV (Optionally Piloted Vehicle) "Intruder"
 - Modified S-70 Blackhawk
 - Crew: 2 Sikorsky pilots or 1 Sikorsky/1 NASA H-60 qualified pilot and NASA XP in the back
 - IAS MW will be hosted on aircraft to enable control of intruder routes

Both aircraft are fault-tolerant test beds with physical separation from Class A software

IAS-1 High Level Architecture

Sikorsky


IAS

Airspace

*safety pilot only

<u>Secondary Technologies to be tested as resources allow:</u>

- Airspace 4.3 Integration
- iGCAS Integration

IAS Plans

- The IAS flight test is being conducted as a series of Spirals
 - All flights occurring at Sikorsky in Stratford, CT
 - Multiple spirals have been completed and were used to test ownship and intruder performance & NASA middleware functionality
 - 2 spirals remain and will be used for FPM & HPA data collection:
 - **Spiral 2B** May 22-26, initial test cards
 - **Spiral 2C** Aug/Sept, full test card set & capstone demonstration

HPA IAS Objectives

- Test the performance & acceptability of FAA's tactical collision avoidance system for rotorcraft,
 Airborne Collision Avoidance System (ACAS) Xr in a live flight environment
 - Assess effectiveness of ACAS Xr alerting & guidance
 - Assess NASA's implementation of *automated* Resolution Advisory (RA) maneuvers
 - Test both ACAS "configurations"
 - Test under different flight regimes

ACAS Xr Background

ACAS Xr Configurations

- TA/RA: similar to TCAS II; Collision Avoidance only
 - Traffic Advisories (TAs) are caution-level and issued prior to Resolution Advisories (RA)
 - RAs are warning-level alerts which command specific type of maneuver and must be flown
- DAA: provides Detect and Avoid + Collision Avoidance
 - DAA alerting and guidance replaces TAs
 - RAs are issued if the DAA threat is not resolved

Resolution Advisory (RA) types:

- Horizontal RAs command a target track angle
- Vertical RAs command a target vertical speed
- Blended RAs command a target track & vertical speed simultaneously

TA/RA Configuration

- Traffic Advisory (TA) issued first
 - Visual & aural alert ("Traffic, Traffic")
 - Not used to maneuver no maneuver guidance
 - Pilot can try to visually acquire traffic
- Resolution Advisory (RA) eventually issued
 - Visual & aural alert (e.g., "Climb, Climb", "Turn Right, Turn Right")
 - Vertical and/or horizontal guidance dictates how pilot maneuvers
 - Maneuver expected within 5 seconds

DAA Configuration

- DAA Corrective alert issued first
 - Visual & aural alert ("Traffic, Avoid")
 - Guidance "banding" used by pilot to determine if/how to maneuver
 - Airspeed, heading and vertical speed bands offered
- Resolution Advisory (RA) issued if not resolved
 - Presentation same as TA/RA Mode

Scenarios

- 10 flight cards per ACAS Xr Configuration (TA/RA & DAA)
 - Ownship & intruder will be in forward flight (~90kts), 500-1500' AGL, & level for all encounters
 - Intruder equipped with ADS-B Out
 - 8 of 10 will have logic enabled that will automatically execute the RA without pilot intervention (via translation made by NASA middleware)
 - Remaining 2 will have manual RA responses
 - The 8 primary encounters are being designed to generate a variety of RA types horizontal,
 - vertical & blended RAs
 - 2 of these will involve Descend RAs at lower altitudes (e.g., 500ft AGL)
- Pilots will have ability to disable/disengage auto-RA response prior to and during RAs
 - Deflecting the stick and/or pressing a dedicated Auto-RA button on ACAS display will disable the auto-RA behavior
 - Pilots will be able to re-enable the auto-RA function by pressing the same button

Flight Test Data

Objective Data Sources

- ACAS Xr logs
- Middleware logs
- Aircraft state data
- Intruder state data
- Voice logs
- ACAS display screen recordings

Subjective Data Sources

- Will ask pilots acceptability & usability questions throughout the testing
 - Post-encounter questionnaires presented via tablet
 - Post-flight questionnaires presented on the ground
 - Post-spiral questionnaire & debrief on the ground

Section III - Resolution Advisory (RA) Alerts and Guidance

This section refers specifically to the *Resolution Advisories* issued by the ACAS Xt alerting and guidance system. This alert level is intended to prompt you/the vehicle to maneuver immediately to avoid a near midair collision (NMAC). *Traffic Advisories* (TAs) were only issued in conditions where we used the "TA/RA Mode" of ACAS Xt. Resolution Advisories (RAs) were issued in both the "TA/RA" and "DAA" Modes of ACAS Xt. RA "guidance" is depicted as red and green arcs on the PFD (i.e., vertical RAs) and navigation display (i.e., horizontal RAs).

Alert Type	Symbol & Aural Alert	Meaning
Resolution	A	Maneuver immediately to
Advisory	"Climb"/"Descend" x2	avoid collision
	"Turn Right"/"Turn Left" x2	

Please circle the response that best represents your answer:

 I found the TA/RA Mode – which included TAs & RAs but no DAA alerting and guidance – effective for maintaining sufficient separation from nearby traffic:

Strongly	Somewhat	Neither Agree	Somewhat	Strongly
Disagree	Disagree	nor Disagree	Agree	Agree

- In which, if any, of the following flight phases/flight regimes did you find the TA/RA Mode and associated alerting and guidance to be <u>unnecessary or inappropriate</u>:
 - o Cruise/forward flight
 - Approach
 - Hover/low speed

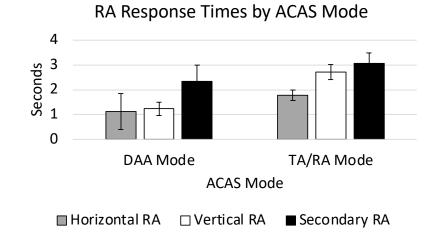
3. I found the vertical RAs (i.e., target vertical speed) issued by ACAS Xr useful:

() E 1 /					
Strongly	Somewhat	Neither Agree	Somewhat	Strongly	
Disagree	Disagree	nor Disagree	Agree	Agree	

4. I found the horizontal RAs (i.e., target track) issued by ACAS Xr useful:

Trouble the horizontal rate (not, target track) isolate of from the factorial.					
Strongly	Somewhat	Neither Agree	Somewhat	Strongly	
Disagree	Disagree	nor Disagree	Agree	Agree	

I found blended RAs (i.e., target vertical speed & target track) issued by ACAS Xx useful:



Analysis and Reporting

Typical HPA metrics:

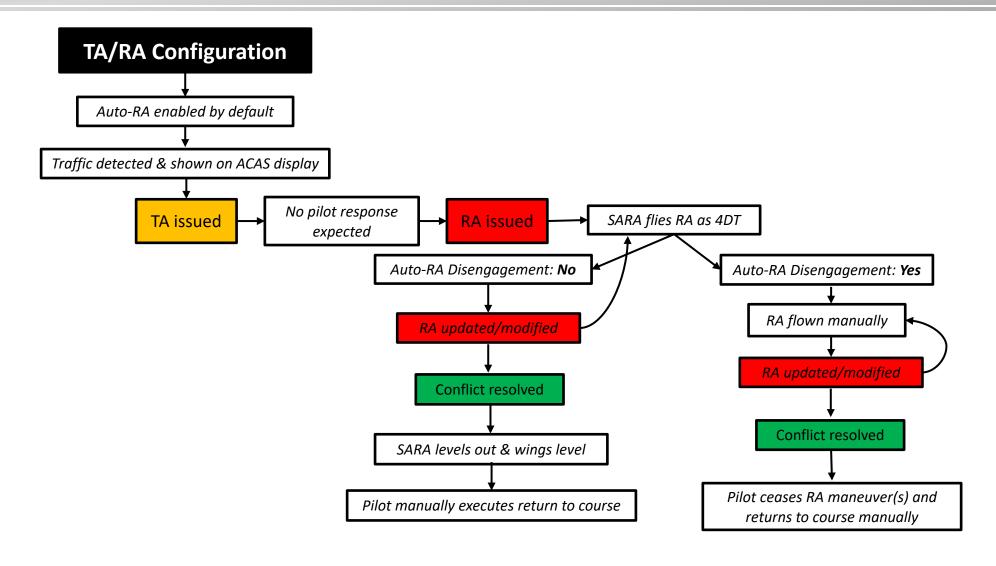
- Pilot response time to DAA and (manual) RA alerts
- Instances of losses of DAA well clear and/or NMACs
- Instances of pilots intentionally non-complying with ACAS RAs
- Pilot ratings on timeliness & effectiveness of alerting
- Pilot ratings on usability of ACAS display and aural alerts
- Pilot ratings on utility of the automated-RA function
- Comparison of TA/RA vs DAA Modes

ACAS Mode

Proportion of LoWC by ACAS Mode

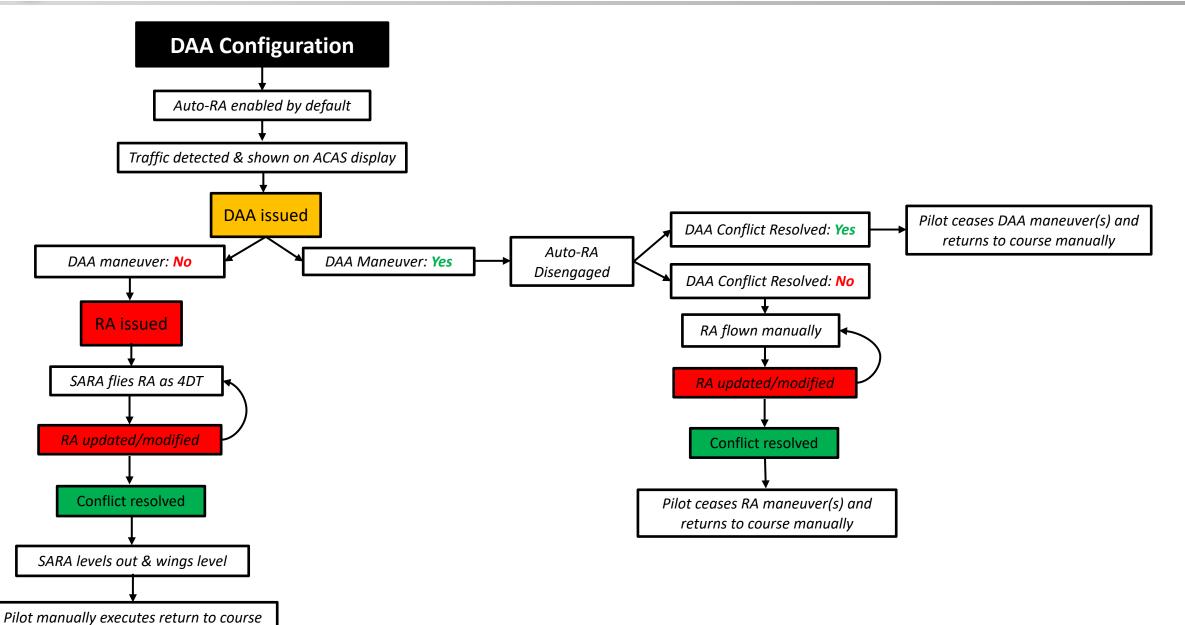
Spiral 2C

- Spiral 2B will focus on simpler encounters (forward flight, level encounters)
- Spiral 2C will introduce greater complexity:
 - Hover & low-speed scenarios (e.g., 0kt & 10kt ownship scenarios)
 - Ownship & intruder maneuvering prior to alert
 - Terminal area & corridor intruder designation encounters
 - Inject virtual intruders for multi-threat encounters



BACKUP

Activity Diagram



Activity Diagram

