
APRES Prototype Mission Planner

System Demonstration

John L. Bresina1, Vijayakumar Baskaran2, J Benton3, Hassan Eslami4, Elif Kurklu5,

David E. Smith6, Deep Tailor7, and Ramazan Ushpayev8

NASA Ames Research Center1,3, KBR Wyle Services, LLC2,4,5,7,8
john.l.bresina@nasa.gov1, vijayakumar.baskaran-1@nasa.gov2, j.benton@nasa.gov3, hassan.eslami@nasa.gov4,

elif.kurklu@nasa.gov5, david.smith@psresearch.xyz6, ramazan.ushpayev@nasa.gov7

Abstract

Activity Planning with Resources for the Exploration of
Space (APRES) is a mixed-initiative mission planning
system for ground operations. APRES has been designed to
support multi-spacecraft missions. The APRES Interface is
browser-based and includes a plan editor, a timeline plan
display, a temporal constraint editor, display of the state and
numeric chronicles, and a violation resolution manager.
Automation support is supplied by the APRES Service,
which includes components that provide the following
capabilities:(1) plan simulation, which determines the state
and numeric chronicles (values of the model variables over
time) and determines when "processes" are triggered and
terminated based on world states in the execution trace, (2)
violation detection of constraints and flight rules encoded in
the domain model, and of the temporal constraints created
by the user, (3) violation resolution suggestions as to how to
fix the plan's violations via rescheduling. The user controls
when and how to utilize the automation support.

Introduction

The APRES (Activity Planning with Resources for the

Exploration of Space) Prototype system is a ground-based,

mixed-initiative mission planner, which can be employed

for human space missions and robotic missions. The

support of multi-spacecraft missions was one of the key

design drivers. The resulting features facilitate the creation

of multi-spacecraft domain models, enabling an order of

magnitude reduction in the model size, likewise for the

creation of the UI configuration.

 The APRES Prototype design draws primarily from the

design of, and operational experience with, the LASS

planner (based on SPIFe) deployed on the Lunar

Atmosphere Dust Experiment Explorer (LADEE). The

primary differences between APRES and LASS are the

interface framework, the domain modelling language, and

the automated reasoning components. LASS used an

Eclipse-based interface, a simpler Activity Dictionary, and

a reasoning component based on EUROPA (Frank and

Jonsson, 2003).

APRES Architecture Components

 The APRES Prototype architecture consists of the

following key components (Figure 1).

• APRES Interface: browser-based front-end,
built on top of the OpenMCT (Mission Control
Technologies) ground operations software system
(https://nasa.github.io/openmct/).

• APRES Service: back-end suite of file
management and automated reasoning
components

• ANML Editor: browser-based smart editor for
domain models, specified in the ANML language

• APRES Data Store: file-based local storage for
all files used in the planning process; accessed by
both APRES and the ANML Editor

 The APRES Interface includes the following GUI

components: Activity Dictionary, Activity Editor,

Timeline Viewer, Temporal Constraint Editor, and Tables.

The Timeline Viewer includes the UTC Time Zone,

Action/Process Timelines, and State and Numeric

Chronicles. There are tables for: Initial Assignments,

Violations, Temporal Constraints, and Resolutions. From

the interface, the user can invoke the Validate Plan

operation and the Resolve Violations operation, both of

which are performed by the APRES Service.

 The APRES Service components are based on the

ANML language (Smith, Frank, and Cushing, 2008),

which is a highly expressive language for specification of

models. ANML enables the creation of more accurate

models and more accurate plans. In addition to action

definitions, ANML models can include definitions of

"processes", which are not under the control of the agent,

e.g., the operation of a survival heater that is powered on

and off based on the current temperature.

 The closest modelling language to ANML is PDDL,

which has many variants (for a summary see

https://en.wikipedia.org/wiki/Planning_Domain_Definitio

n_Language). ANML has strong notions of action and

mailto:john.l.bresina@nasa.gov1
mailto:vijayakumar.baskaran-1@nasa.gov2
mailto:j.benton@nasa.gov3
mailto:hassan.eslami@nasa.gov4
mailto:elif.kurklu@nasa.gov5
mailto:david.e.smith-1@nasa.gov6
mailto:ramazan.ushpayev@nasa.gov7

state, much like in PDDL; however, ANML uses a

variable/value representation and one can specify a richer

set of possible conditions and effects than allowed by

PDDL. In particular, one can specify conditions at times

other than the start and end of an action, and also over

arbitrary intervals within the action. Similarly, one can

specify effects at times other than the start and end of an

action. The same primitives that are used to specify these

richer temporal constraints in ANML are also used to

specify exogenous conditions, as is done with timed initial

literals in PDDL 2.2. In contrast to PPDL+, ANML does

not distinguish between events and processes – processes

are allowed to include both continuous and discrete effects

at arbitrary times and over arbitrary windows.

 We have also developed a web based ANML Editor for

creating domain models. The ANML Editor interacts with

the ANML Parser to detect errors and interacts with the

APRES Data Store for file management.

The APRES Planning Process

The human planner selects which action instances to insert

into the plan and schedules them. The automated reasoning

components in the APRES Service provide support to the

user. Typically, APRES is used to incrementally develop a

plan; the user alternates between adding actions to extend

the plan and invoking the simulator and violation detection

process. In order to handle partial plans, the Episodic Plan

Simulator (EpSim) is permissive and continues the

simulation in the face of violations by making enabling

assumptions about missing preconditions, conflicting

effects, and bounds violations. This gives the user a more

complete status of the partial plan and facilitates the

violation resolution process.

The simulation determines the chronicles for each fluent

(variable) in the domain model, specifying the fluent’s

value over time. Secondly, the simulation also inserts into

the plan the process instances that are triggered by

simulation episodes. Thirdly, the plan validation detects

plan violations based on the domain model and the user-

created temporal constraints. The following are the types

of violations detected: Unsatisfied Condition, Violated

Condition, Inconsistent Effects, Variable Bounds,

Temporal Constraint, and Inconsistent Constraints. The

first four violation types are detected by EpSim, and the

last two types are detected by the Temporal Constraint

Checker.

 Upon request from the user, suggestions for resolving

the existing plan violations are automatically generated,

which specify changes to the schedule of actions. The user

has control over which if any of these resolution

suggestions to perform and which violations to resolve

manually via action rescheduling, addition, modification,

or deletion.

Any subset of the recommendations can be selected and

previewed, showing what the plan would look like and

what violations would remain. The user can then select

another subset to preview or accept the current resolved

plan to replace the original plan or reject all resolution

suggestions and manually fix the violations.

Acknowledgments

This work was performed as part of the NASA

Autonomous Systems and Operations (ASO) Project,

under the Advanced Exploration Systems Program.

References

Bresina, J.L., Activity Planning for a Lunar Orbital Mission. AI

magazine, Vol. 28, No. 2, Summer 2007.

Frank, J., and Jonsson, A., Constraint-Based Interval and

Attribute Planning, Journal of Constraints Special Issue on

Constraints and Planning, 2003.

Smith, D.E., Frank, J., and Cushing, W., The ANML Language,

ICAPS Workshop on Knowledge Engineering for Planning and

Scheduling (KEPS), 2008.

Figure 1: APRES Prototype System Architecture.

	Abstract
	Introduction
	APRES Architecture Components
	The APRES Planning Process

