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Magnetic reconnection, a plasma process converting magnetic energy to particle kinetic
energy, is often invoked to explain magnetic energy releases powering high-energy flares
in astrophysical sources including pulsar wind nebulae and black hole jets. Reconnection
is usually seen as the (essentially 2D) nonlinear evolution of the tearing instability
disrupting a thin current sheet. To test how this process operates in 3D, we conduct a
comprehensive particle-in-cell simulation study comparing 2D and 3D evolution of long,
thin current sheets in moderately-magnetized, collisionless, relativistically-hot electron-
positron plasma, and find dramatic differences. We first systematically characterize this
process in 2D, where classic, hierarchical plasmoid-chain reconnection determines energy
release, and explore a wide range of initial configurations, guide magnetic field strengths,
and system sizes. We then show that 3D simulations of similar configurations exhibit
a diversity of behaviours, including some where energy release is determined by the
nonlinear relativistic drift-kink instability. Thus, 3D current-sheet evolution is not always
fundamentally classical reconnection with perturbing 3D effects, but, rather, a complex
interplay of multiple linear and nonlinear instabilities whose relative importance depends
sensitively on the ambient plasma, minor configuration details, and even stochastic
events. It often yields slower but longer-lasting and ultimately greater magnetic energy
release than in 2D. Intriguingly, nonthermal particle acceleration is astonishingly robust,
depending on the upstream magnetization and guide field, but otherwise yielding similar
particle energy spectra in 2D and 3D. Though the variety of underlying current-sheet
behaviours is interesting, the similarities in overall energy release and particle spectra
may be more remarkable.
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1. Introduction

Magnetic reconnection is an important plasma physical process because it can rapidly
convert magnetic energy to particle kinetic energy; it does so by rearranging the magnetic
field configuration, “breaking” and subsequently “reconnecting” magnetic field lines (for
a review, see, e.g., Zweibel & Yamada 2009; Yamada et al. 2010). Magnetic reconnection
is thus believed to play a fundamental role in a wide variety of rapid—and sometimes
violent and spectacular—releases of magnetic energy resulting in particle energization
and radiation, from solar flares to X-ray emission in coronae of accreting black holes to
flaring TeV emission in blazar jets of active galactic nuclei (AGN). In some high-energy
astrophysical sources, such as pulsar wind nebulae (PWN) and blazar jets, reconnection
may operate in a somewhat extreme regime of relativistically-hot plasma containing
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positrons instead of, or in addition to, ions. In such environments, reconnection in
the relativistic regime has become a promising explanation for high-energy emission,
especially since particle-in-cell (PIC) simulations have convincingly demonstrated that, in
addition to heating plasma, reconnection can accelerate a significant fraction of particles
to very high energies, yielding a nonthermal power-law energy distribution of particles
(e.g., Zenitani & Hoshino 2001, 2005a,b, 2007, 2008; Jaroschek et al. 2004; Lyubarsky &
Liverts 2008; Liu et al. 2011; Sironi & Spitkovsky 2011, 2014; Bessho & Bhattacharjee
2012; Cerutti et al. 2012b, 2013, 2014a,b; Kagan et al. 2013; Guo et al. 2014, 2015, 2016;
Guo et al. 2016, 2019; Nalewajko et al. 2015; Sironi et al. 2015, 2016; Dahlin et al. 2015;
Dahlin et al. 2017; Werner et al. 2016, 2018; Werner et al. 2019; Werner & Uzdensky
2017; Petropoulou & Sironi 2018; Ball et al. 2018, 2019; Li et al. 2019; Schoeffler et al.
2019; Mehlhaff et al. 2020; Sironi & Beloborodov 2020; Kilian et al. 2020; Guo et al.
2020; Hakobyan et al. 2019, 2021; Zhang et al. 2021). High-energy nonthermal particle
acceleration (NTPA) followed by synchrotron or inverse Compton emission could explain
observed nonthermal radiation spectra.
Large 2D PIC simulations of reconnection in collisionless, relativistic pair plasma have

observed fast reconnection, with reconnection rates around Erec ∼ 0.1B0vA/c (where
B0 is the upstream, ambient, reconnecting magnetic field, and vA is the corresponding
Alfvén speed), resulting in rapid conversion of magnetic energy to plasma energy. In
these simulations, NTPA yields power-law electron energy distributions f(γ) ∼ γ−p

(where electron energy is γmec
2) with a range of slopes p; it appears that, depending on

the environment and system size, p can take on values greater than 1, and p may even
approach 1 in highly magnetically-dominated reconnection (e.g., Guo et al. 2014, 2015;
Werner et al. 2016). Since p can in principle be inferred from observed radiation, these
simulation results may potentially elucidate plasma parameters (such as magnetization)
in astrophysical sources. Besides the power-law slope p, an important result of these simu-
lations is the determination of the high-energy cutoff γc of the power law, and in particular
its scaling with system size L, since real astrophysical systems are usually much larger
(with respect to kinetic scales) than we can possibly simulate. For systems with small L,
simulations observe “extreme acceleration” consistent with particles being accelerated in
reconnection electric field Erec ≃ 0.1(vA/c)B0 (where B0 is the reconnecting magnetic
field) over system size L (Hillas 1984; Aharonian et al. 2002), so that particles reach
energies γcmec

2 ≃ eErecL (Werner et al. 2016). However, for larger systems, this rapid
acceleration seems to stall around γc ∼ 4σ, where σ ≡ B2

0/(4πnb0mec
2) is the “cold”

magnetization parameter involving the reconnecting field B0 and the ambient plasma
rest-mass energy density nb0mec

2 (Werner et al. 2016). More recent PIC simulations
found that acceleration can continue well beyond this limit in extremely large systems,
albeit at a significantly slower rate so that cutoff energies grow with the square root
of time, resulting in γc ∼

√
L (Petropoulou & Sironi 2018; Hakobyan et al. 2021).

The precise mechanism of reconnection-driven particle acceleration has received much
attention (e.g., Zenitani & Hoshino 2001; Drake et al. 2006; Zenitani & Hoshino 2007;
Jaroschek et al. 2004; Lyubarsky & Liverts 2008; Liu et al. 2011; Bessho & Bhattacharjee
2012; Cerutti et al. 2012a, 2013, 2014b; Kagan et al. 2013; Guo et al. 2014, 2015; Guo
et al. 2019; Bessho et al. 2015; Nalewajko et al. 2015; Dahlin et al. 2016; Sironi et al.
2016; Werner et al. 2016; Petropoulou & Sironi 2018; Ball et al. 2018, 2019; Li et al.
2019; Kilian et al. 2020; Guo et al. 2020; Zhang et al. 2021); a number of mechanisms
have been considered, and it remains a matter of ongoing research to determine precisely
which mechanism operates most effectively in which regime.
Most studies of reconnection in relativistic plasmas have relied on 2D simulations; an

important outstanding question remains whether these are applicable to 3D events in
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nature. A much smaller number of 3D simulations of reconnection in relativistic pair
plasmas have been done (Zenitani & Hoshino 2005b, 2008; Yin et al. 2008; Liu et al.
2011; Kagan et al. 2013; Cerutti et al. 2014b; Sironi & Spitkovsky 2014; Guo et al. 2014,
2015; Werner & Uzdensky 2017; Guo et al. 2020; Zhang et al. 2021) (there have also
been 3D PIC simulations of non-relativistic electron-ion reconnection, e.g., Hesse et al.
2001; Pritchett & Coroniti 2001, 2004; Lapenta et al. 2006; Daughton et al. 2011, 2014;
Markidis et al. 2012; Lapenta et al. 2014, 2020; Nakamura et al. 2013; Wendel et al.
2013; Dahlin et al. 2015; Dahlin et al. 2017; Lapenta et al. 2017; Le et al. 2018, 2019;
Pucci et al. 2018; Li et al. 2019; Stanier et al. 2019; Lapenta et al. 2020). Because of
computational expense, 3D simulations have been smaller in physical system size, and
have covered a much narrower range of regimes.
The first 3D PIC studies of relativistic reconnection focused on the competition

between the tearing instability that leads to reconnection and the relativistic drift-kink
instability (RDKI), which is forbidden in 2D reconnection simulations but in 3D can grow
as fast as the tearing instability (Zenitani & Hoshino 2005a, 2007, 2008; Yin et al. 2008).
Later, simulations with sufficiently large system sizes observed NTPA, and moreover
(despite clear manifestations of RDKI) found substantial similarities between 2D and 3D
relativistic reconnection in both NTPA and general reconnection dynamics, including
magnetic energy release and reconnection rates (Liu et al. 2011; Kagan et al. 2013;
Sironi & Spitkovsky 2014; Guo et al. 2014, 2015; Werner & Uzdensky 2017; Guo et al.
2020; Zhang et al. 2021). Our previous work (Werner & Uzdensky 2017) systematically
compared 2D and 3D simulations in the magnetically-dominated regime (where the
upstream magnetic energy dominates over the upstream plasma thermal and rest-mass
energy), and found magnetic energy conversion and NTPA in 2D and 3D to be nearly
indistinguishable. This was found to be the case over a range of guide magnetic fields,
0 ⩽ Bgz/B0 ⩽ 1 (although both energy conversion and NTPA were suppressed by
stronger guide field). In the nonrelativistic regime, where NTPA occurs but may not
yield power laws, 2D and 3D reconnection (with guide field) have also been found to
be similar, but with slightly enhanced NTPA in 3D (Dahlin et al. 2015). We note in
passing that all of these 3D simulations began with a thin initial Harris or force-free
current sheet. The close resemblance between 2D and 3D reconnection justifies the use of
2D simulations to model natural 3D systems, allowing us to simulate larger system sizes
with lower computational expense. However, some have supposed that 3D reconnection
might behave somewhat or even drastically differently, because of 3D instabilities and
turbulence (e.g., Lazarian & Vishniac 1999; Zenitani & Hoshino 2008; Takamoto et al.
2015; Lazarian et al. 2016; Beresnyak 2017, 2018; Muñoz & Büchner 2018; Takamoto
2018; Zhou et al. 2018; Boozer 2019; Lapenta et al. 2020; Lazarian et al. 2020)

In this paper, we use PIC simulation to study both 2D and 3D magnetic reconnection
in an ultrarelativistically-hot pair plasma in the moderately-magnetized regime where the
upstream magnetic energy is comparable to the upstream plasma thermal energy (i.e.,
σh = 1, where the “hot” magnetization σh is defined in §2). In both 2D and 3D, we
systematically explore the effects of different initial current sheet configurations, as well
as the effect of guide magnetic field; in 2D, where very large simulations are feasible,
we also vary the overall system size, and in 3D, we vary the system size in the third
dimension (i.e., Lz).
The moderately-magnetized, ultrarelativistic pair plasma regime is of interest for

several reasons. First, it is likely relevant to astrophysical sources such as AGN jets
and PWN (e.g., the Crab Nebula) in which energy might be expected to be roughly
equally partitioned between plasma and magnetic field. Second, this regime lies between
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magnetically-dominated relativistic reconnection and non-relativistic reconnection, both
of which have been much more studied (especially in 2D); this study provides an
important bridge between these regimes and also connects to reconnection in semi- or
trans-relativistic electron-ion plasma, where particles may be transrelativistic or ions
may be subrelativistic while electrons are relativistic (e.g., Rowan et al. 2017, 2019; Ball
et al. 2018, 2019; Werner et al. 2018). Third, this is perhaps the most computationally
tractable regime, because the kinetic (microphysical) plasma length scales all collapse to
roughly the same values, allowing the greatest dynamic range between system size and
the kinetic scales, with less computational expenditure. Using pair plasma means that
electron and “ion” (i.e., positron) scales are the same; in the ultrarelativistic limit, the
collisionless skin depth de and Debye length λD are nearly equal, de =

√
3λD; and the

moderately-magnetized regime implies that the gyroradius ρb in the ambient plasma is
nearly the same as de. Thus the grid spacing ∆x can be chosen just a little smaller than
all these kinetic scales (which are nearly the same), maximizing the separation between
the largest (hence all the) kinetic scales and the system size L (for a given computational
cost). This facilitates the study of macroscopic, large-system behaviour, such as plasmoid
formation and NTPA.

Reconnection in mildly relativistic, moderately magnetized pair plasma has been previ-
ously studied with 3D PIC simulations (Yin et al. 2008; Liu et al. 2011; Kagan et al. 2013;
Guo et al. 2020). However, this work features the first extensive systematic exploration
of several important parameters (such as the initial current sheet configuration and guide
magnetic field strength) both in 2D and 3D, running for long times with sufficiently large
system sizes that allow us to investigate NTPA. A detailed discussion of this current work
in the context of those previous studies can be found in §8.1.

We will show that the evolution of current sheets can be substantially different in
2D and 3D, in particular in the way that they evolve and convert magnetic energy to
plasma energy—but despite these differences, NTPA is not much changed (if anything, it
is enhanced in 3D). First, however, we will systematically characterize 2D reconnection
in the ultrarelativistic moderately-magnetized (σh = 1) pair-plasma regime, as a number
of parameters are varied—including initial current sheet configuration, system size, and
guide magnetic field. Then, we will characterize current sheet evolution in 3D across a
similar range of parameters, comparing with 2D reconnection. We will identify patches
in 3D simulations that exhibit signatures of classical 2D reconnection, including outflows
from thin current sheets, non-ideal electric fields (parallel to and/or larger than the
magnetic field), and energy transfer from fields to plasma. However, we will see that
3D reconnection is vastly more complicated to study than 2D reconnection, displaying
a greater variety of behaviours along with greater sensitivity to the initial configuration
(e.g., the initial current sheet thickness or field perturbation). The rates of magnetic
energy depletion and upstream magnetic flux reduction are generally slower in 3D,
but reconnection continues for much longer times. Ultimately, more magnetic energy is
released in 3D than in 2D, because in 2D, magnetic energy in outflows is trapped forever
in plasmoids, whereas in 3D the plasmoid-like structures can decay. We also find that,
in 3D, there is a new channel for magnetic energy conversion that does not necessarily
involve classical reconnection at all: the kinking of the current sheet in 3D can grow to
such large amplitudes that the current sheet becomes violently and chaotically deformed,
resulting in rapid magnetic energy release and turbulent thickening of the current layer.
This process is not inevitable; two initially-similar simulations can end up behaving very
differently over long times because one triggers such deformation and energy release,
while the other does not, even though the upstream conditions may be identical in both
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cases. This sensitivity to initial conditions complicates the study of 3D reconnection by
increasing the parameter space that needs to be explored.

This paper is organized as follows. We will define the simulation parameters and
set-up in §2. Then in §3 we describe diagnostics used to characterize current sheet evolu-
tion, starting with precise definitions of important terms (§3.1) and followed by detailed
descriptions of diagnostics, such as how we measure the amount of unreconnected flux
in a simulation and how we characterize NTPA. In §4 we will describe 2D reconnection
in the moderately-magnetized relativistically-hot pair-plasma regime. We will see that in
2D, this regime exhibits behaviour that is qualitatively very similar to, e.g., magnetically-
dominated relativistic reconnection, and we will use this opportunity to review the basic
picture of plasmoid-dominated (multiple X-line) reconnection, to be contrasted later with
3D simulations. In addition, we quantify the effects of varying a number of parameters
(such as initial current sheet thickness, system size, and guide magnetic field) on magnetic
energy conversion and NTPA. Besides expanding our knowledge of 2D reconnection in
the moderately-magnetized relativistically-hot regime, this provides a baseline for our
study of 3D reconnection in §5. There we find that current sheet evolution can differ
distinctly from 2D reconnection, and we investigate the effects of varying the initial
current sheet configuration, varying system length Lz in the third dimension, and varying
guide magnetic field. We discuss differences between the moderately-magnetized regime
studied in this paper and the magnetically-dominated regime (studied in 3D in previous
work) in §6. We list the most important findings in §7 before discussing some possible
impacts on plasma physics and astrophysical modelling in §8, and finally conclude with §9.
For reference, in Appendix A we present a resolution convergence study justifying the
cell size ∆x used in this work.

2. Simulation setup

The simulations in this work use a standard double-periodic simulation box initialized
with a twice-reversing magnetic field balanced by two thin, oppositely-directed Harris cur-
rent sheets (e.g., Werner et al. 2016; Werner & Uzdensky 2017). The Harris sheets (which
contain drifting plasma) are superimposed upon a uniform, stationary, relativistically-hot
background plasma. Once the initial state is set, the simulation code Zeltron evolves
the plasma with no external input (e.g., no driving) according to a standard explicit,
relativistic electromagnetic PIC algorithm (Cerutti et al. 2013), with periodic boundary
conditions; in 2D simulations, all quantities are assumed to be uniform in the third
dimension (z) at all times—e.g., ∂Bx/∂z = 0, since all derivatives with respect to z are
zero.
In this section, we first describe the background plasma, and then the drifting plasma

that forms the Harris current sheets. At the end, we summarize the parameters describing
the set-up, including whether they are fixed or varied throughout this study.
Ideally, we hope to associate reconnection behaviour with the uniform background (or

upstream) pair plasma, described by
• nb0, the initial (electron plus positron) particle number density,
• θb ≡ Tb/mec

2, the normalized temperature,
• B0, the (reconnecting) magnetic field in the x direction, and
• Bgzẑ, the initially-uniform guide magnetic field.
(B is initially uniform except for Bx reversing around the current sheets.) It is useful to
express nb0, θb, B0, and Bgz in terms of a nominal gyroradius ρ0 and three dimensionless
parameters, σ, σh, and Bgz/B0. We define the nominal relativistic gyroradius ρ0 ≡
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mec
2/eB0 in place of B0; thus a particle with ultrarelativistic Lorentz factor γ ≫ 1

has a gyroradius of order γρ0 in field B0, hence typical background particles have
gyroradii around 3θbρ0 (for θb ≫ 1). The density nb0 can then be expressed in terms
of ρ0 and the “cold” magnetization parameter σ ≡ B2

0/(4πnb0mec
2), which is twice the

ratio of the reconnecting magnetic field’s energy density, B2
0/8π, to plasma rest-energy

density, nb0mec
2. If all magnetic energy were given to particles, their Lorentz factors

would increase by ∆γ = σ/2—i.e., σ determines the available magnetic energy per
particle. Thus we generally normalize lengths to a characteristic scale ρc ≡ σρ0, which
is on the order of the gyroradii of typical energized particles. Finally, we re-express the
temperature θb in terms of the hot magnetization σh ≡ B2

0/(16πθbnb0mec
2) = σ/(4θb),

the ratio of magnetic enthalpy density B2
0/4π to plasma enthalpy density (including rest-

mass energy), which is h = 4θbnb0mec
2 in the relativistic limit θb ≫ 1 (Melzani et al.

2014). We note that (for Bgz = 0) the Alfvén 4-velocity is c
√
σh; i.e., the Alfvén velocity

is vA = c
√
σh/(1 + σh).

In this paper we focus on the specific case of reconnection with moderate magnetiza-
tion, or σh = 1 (the majority of studies of reconnection in pair plasma have explored
σh ≫ 1, and most electron-ion reconnection studies have been nonrelativistic with
σh ≪ 1). The upstream plasma is then completely defined by specifying, in addition to
σh = 1, the values of ρ0, Bgz/B0, and σ. The particular value of ρ0 is irrelevant; the entire
simulation scales trivially with ρ0. For astrophysical relevance and theoretical simplicity,
we choose to study the ultrarelativistically-hot regime in which σ ≫ 1 and θb ≫ 1—as
with ρ0, the particular value of σ does not matter (the simulation scales trivially with
ρc ≡ σρ0 as long as we stay in the ultrarelativistically-hot regime). When σh = 1, the
upstream magnetic and plasma energy are roughly comparable; even complete conversion
of magnetic energy would not drastically increase the plasma energy. For Bgz = 0, σh = 1
implies that the plasma beta is βplasma = 1/2 and the expected bulk reconnection outflow
velocity is vA = c/

√
2.

Important plasma length scales, in terms of σρ0 and σh, include the average back-
ground gyroradius ρb ≡ 3θbρ0 = (3/4)σ−1

h σρ0, the background Debye length λD =

(1/2)σ
−1/2
h σρ0, and the collisionless skin depth de =

√
3θbmec2/4πne2 =

√
3λD.

Over time, the background plasma should (at least in 2D) dominate reconnection
dynamics. However, to start in a state susceptible to reconnection, we need a reversing
magnetic field and its associated current sheet (Kirk & Skjæraasen 2003). Actually we
use two oppositely-directed Harris current sheets to allow periodic boundary conditions
in all directions. The simulation box, containing both current sheets, has size Lx×Ly×Lz

where x is the direction of reconnecting magnetic field, y is perpendicular to the initial
current sheet, and z is the “third” dimension, parallel to the initial current. We initialize
this box with a (doubly) reversing magnetic field:

B(t = 0) = ẑBgz + x̂B0 ×
{

−tanh[(y − Ly/4)/δ] for y < Ly/2
tanh[(y − 3Ly/4)/δ] for y > Ly/2

(2.1)

where δ is the half-thickness of the initial current sheet. All simulations in this work
use Ly = 2Lx; although the lower and upper halves of the simulation can interact, the
separation Ly/2 = Lx between current sheets has been found to limit the interaction
so that, e.g., the reconnection rate is the same as in simulations with much larger Ly

(also, in 3D, the current sheets kink and stray more in the y direction; it is important
that Ly be large enough that they never touch). When presenting results, we often focus
on just one current sheet (the lower one) for simplicity, but display results involving
total energy and particle spectra for the entire simulation. The system length Lz in the
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third dimension will be varied to investigate 3D effects, but the fiducial value for 3D
simulations will be Lz = Lx.

To balance the magnetic field reversal (according to Ampere’s law), as well as to
provide pressure balance against the upstream magnetic field, we add a “drifting” plasma
in addition to the background plasma (Kirk & Skjæraasen 2003). This initially-drifting
plasma has a total particle density strongly peaked around the magnetic field reversal,
nd(y) = nd0cosh

−2[(y−yc)/δ] (measured in the simulation frame), where yc is the centre
of the current sheet; yc = Ly/4 for the lower sheet, or yc = 3Ly/4 for the upper.
Within each sheet, the electrons and positrons drift in opposite ±ẑ directions with speed
βdc [hence Lorentz factor γd = (1 − β2

d)
−1/2], and the initial temperature in the co-

moving frame is θdmec
2. The initial current sheet configuration can be specified by the

drift βd and the overdensity η ≡ nd0/nb0, with the remaining parameters, θd and δ,
determined by pressure balance and Ampere’s law: nd0θd/γd = B2

0/8πmec
2 = σnb0/2

and B0/δ = 4πend0βd. In terms of the characteristic length σρ0, the sheet thickness is
δ = (nb0/nd0)σρ0/βd; and in terms of the gyroradius ρd ≡ 3θdρ0 of drifting particles,
δ = 2ρd/(3βdγd).

In previous (especially 2D) reconnection simulations, the initial current sheets have
often been slightly perturbed to trigger reconnection faster (reducing computation time)
and to create an initial X-point in a predetermined location. Although such a perturbation
can have an effect in 2D (Ball et al. 2019), we find that small perturbations leave 2D
simulations basically unchanged in many important ways (cf. §4.2) as the simulation
becomes dominated by the background plasma; however, the effect in 3D can be more
significant (cf. §5.3). While most of our simulations begin with zero perturbation, we have
explored in a few cases the effect of a small magnetic field perturbation—a tearing-type
perturbation with a single X-point and a single magnetic island with a small height (in y)
but a long width (in x). The perturbation, expressed in the vector potential, is A = ẑAz:

Az(x, y) =

[
1 + 0.877a

δ

Ly
cos

(
2πx

Lx

)
cos2

(
2π(y − yc)

Ly

)]
×B0δ

[
ln cosh

(
Ly

4δ

)
− ln cosh

(
y − yc
δ

)]
(2.2)

where a is the perturbation strength. Although a is useful for initializing Az(x, y), it is also
useful to characterize the perturbation in terms of s, the half-height of the initial magnetic
island. For δ ≪ Ly and s ≪ Ly, s and a are related approximately by cosh(s/δ) ≈
exp(0.44a). In the above, a is thus normalized so that when a = 1, we have s/δ = 1; i.e.,
the separatrix extends roughly as far as the initial current sheet.

For a ≲ 1, the initial separatrix lies within the initial current sheet (s ≲ δ). We note
that the “wavelength” of the perturbation in x is Lx—the longest that can fit in the
simulation. For 3D simulations, this perturbation is uniform in z. Unless specifically
noted, a = 0.

At the beginning of each simulation, particle velocities for the background (and
drifting) populations are initialized randomly, drawn from the appropriate (drifting)
relativistic Maxwell-Jüttner distribution. Because of this randomness, two simulations
that are identical in all macroscopic initial parameters (i.e., differing only in random
initial positions and velocities) will not yield completely identical results, even for
global quantities such as the total magnetic energy depletion or total particle energy
spectrum. Although computational expense prohibits running large statistical ensembles
of simulations for every macroscopic parameter choice, one goal of this study is the
estimation of “stochastic variation” due to randomized particle initialization (especially
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in 3D; cf. §5.2). In a limited number of cases, we will therefore show the results of multiple
macroscopically-identical simulations as a means of gauging stochastic variability, and
distinguishing it from systematic effects correlated with macroscopic parameters.
In summary, the reconnection simulation setup is described by the following physical

parameters:
• The nominal gyroradius ρ0 = mec

2/eB0 is fixed for all simulations; its value is
irrelevant—we can trivially scale simulation results to any other value of ρ0.

• The upstream (cold) magnetization (excluding guide field) σ = B2
0/(4πnb0mec

2) =
104 ≫ 1 is fixed in all simulations; its particular value is irrelevant, as long as σ ≫ 1.

• The upstream hot magnetization (excluding guide field) σh = σ/(4θb) = 1 is fixed in
all simulations; its value puts this study in the moderately-magnetized regime. This
implies (for Bgz = 0) plasma β = 1/2 and vA = c/

√
2. (Previous studies of reconnection

in pair plasma have mostly concentrated on the σh ≫ 1 regime, while nonrelativistic
reconnection studies have σh ≪ 1.)

• The initial guide magnetic field Bgz is zero except in §4.4 and in §5.6, when it is varied
up to Bgz = 4B0 in 2D and up to Bgz = B0 in 3D, respectively.

• The initial current sheet overdensity, η = nd0/nb0, is set to η = 5, except when varied
systematically in §4.2, §5.3, and §5.4.

• The average drift speed of particles forming the initial Harris sheet is βdc = 0.3c, except
when varied in §4.2, §5.3, and §5.4.

• The initial current sheet half-thickness δ = (ηβd)
−1σρ0 is (2/3)σρ0 except when η and

βd are varied as noted above.
• The initial magnetic field perturbation strength a (see Eq. 2.2) is zero except when
varied in §4.2 and §5.3.

• The system size Lx determines the overall system size, and is desired to be as large
as possible, but limited by computational resources; its value will be noted in each
subsection, where we generally compare simulations with the same Lx. However, the
effect of varying Lx is specifically investigated in §4.3.

• The system aspect ratio Ly/Lx = 2 in all simulations.
• The system aspect ratio Lz/Lx is considered to be zero in all 2D simulations; in 3D
simulations the value of Lz/Lx is noted in each case, although we most commonly use
Lz = Lx; we systematically explore the effect of varying Lz/Lx in §5.5.

• For 2D simulations, a simulation time T ≈ 10Lx/c is usually sufficient; 3D simulations
were run for longer times, 20–50Lx/c (the longest runs are shown in §5.5).

For the various choices of above parameters, important plasma length scales will be
summarized in table 1 (in §4.2).
Using periodic boundary conditions offers theoretical and numerical simplicity; and it

is usually the simplest way to simulate a mesoscopic box—i.e., a small part of a system
whose global inhomogeneity scale along the layer is much larger than the computational
box. For application to real systems, the effect of these or any boundary conditions must
ultimately be studied, e.g., by examining simulation size dependence or by comparing
simulations with different boundary conditions; alternatively, running simulations for less
than one light-crossing time (t ≲ 1Lx/c) can lessen effects of boundaries, but at the cost
of exacerbating the effect of the initial conditions. In this work, we run simulations well
beyond 1Lx/c for two primary reasons: (1) the very early evolution, t ≲ 1Lx/c, may
be heavily influenced by initial conditions (which are uniform in the third dimension)
and may fail to capture the most interesting and important 3D phenomena, and (2)
the evolution in 3D can be relatively slow. Over long times, boundary conditions might
well be expected to affect system evolution significantly, and, this being the case, there
is a trade-off between possibly more realistic but complicated boundaries (like “open”
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boundaries, e.g., Daughton et al. 2006) and the simpler, better-understood periodic
boundaries. However, the effect of periodic boundaries is arguably realistic for long
simulations, e.g., t ∼ 30Lx/c, if the inhomogeneity scale of the real system is larger
than ∼ 30Lx. Determining the effect of various boundary conditions on current sheet
evolution in 3D is important, but beyond the scope of this work.
Finally, we summarize the numerical parameters. The grid resolution ∆x = ∆y =

∆z = σρ0/3 marginally resolves the background Debye length and skin depth de/
√
3 =

λD = σρ0/2 as well as the background gyroradius ρb = (3/4)σρ0 and the initial current
sheet [usually δ = (2/3)σρ0]. This marginal resolution allows us to simulate the largest
system sizes with the computational resources available; Appendix A shows that this
resolution is sufficient. The timestep ∆t = ∆x/(c

√
d), where the dimensionality d is

2 or 3, is determined by the Courant-Friedrichs-Lewy condition (all 2D simulations
compared directly against 3D simulations were run with d = 3). Simulations were
initialized with 20×4 = 80 macroparticles per cell: 20 background electrons and positrons,
plus 20 “drifting” electrons and positrons. The initially-drifting particles were weighted
(depending on their y-position) to represent the non-uniform current sheet density, and
particles with negligibly-low weights were deleted from the simulation. Thus our largest
simulation (Lx = Lz = 512σρ0, with 1536× 3072× 1536 cells, cf. §5.1) contained about
300 billion macroparticles. Energy is not precisely conserved by the PIC algorithm, but
with these numerical parameters it is approximately conserved in all simulations to better
than 1 per cent—and in almost all but the larger 2D simulations, energy is conserved to
better than 0.1 per cent.

3. Diagnostics

In this section we will define terms used to characterize reconnection (in §3.1) and
then provide detailed descriptions of diagnostics that we will use: the central surface of
the “layer” or current sheet, yc(x, z, t) (§3.2); global volume-integrated characteristics as
functions of time—unreconnected flux (§3.3) and various energy components (§3.4); the
reconnection onset time tonset (§3.5); the local bulk velocity of the plasma (§3.6); and
the power-law index and high-energy cutoff of a particle energy distribution (§3.7).

3.1. Terminology

Before describing diagnostics for reconnection, we offer explicit definitions or clari-
fications of some often-used terms, so that we can avoid lengthy qualifications in the
text.

Transverse: the x and y directions, transverse to z, the direction of the guide magnetic
field.
Transverse magnetic field energy UBt: the energy in the Bx and By components

of the magnetic field—the volume integral of (B2
x +B2

y)/8π over the entire system. Even
in simulations with substantial guide magnetic field, it is mainly the transverse magnetic
energy (and not energy in Bz) that is depleted during reconnection.

Guide magnetic field energy UBz: the energy in the Bz components of the
magnetic field. Because Bz(x, y, z) is initially uniform and the flux

∫
Bzdxdy through

any transverse plane is exactly conserved in the simulation, UBz can only increase from
its initial value (in practice it does not increase much and the increase can often be
neglected).
Plasma energy: the total kinetic energy of individual plasma particles.
Magnetic energy conversion: the conversion of (transverse) magnetic field energy

UBt to plasma energy. Because the guide magnetic field energy UBz cannot decrease, it
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is essentially equivalent to refer to magnetic energy conversion or transverse magnetic
energy conversion.
Plasma energization: the conversion of (transverse) magnetic energy to plasma

energy.
Released magnetic energy: (transverse) magnetic energy that has been converted

to plasma energy.
Magnetic energy depletion: (transverse) magnetic energy conversion, with em-

phasis on the reduction in magnetic energy (as it is converted to plasma energy). This
is nearly a synonym for “dissipation,” except that “dissipation” refers to irreversible
heating, whereas “depletion” or ”conversion” also include conversion to bulk flow kinetic
energy (in this paper, however, we will not measure the difference between depletion and
dissipation).
Unreconnected (magnetic) field (line): a magnetic field line that crosses the entire

simulation domain in the x direction (possibly diagonally), without reversing (in x). As
we discuss in §3.3, this is an imperfect, approximate, but practical definition.
“Reconnected” (magnetic) field (line): any magnetic field line that is not unre-

connected (according to the definition above). In 2D reconnection, a reconnected field
line is a closed loop around one or more magnetic islands or plasmoids, and our definition
of a “reconnected” field line identifies most closed loops accurately. In 3D, however, there
may be many field lines that are “not unreconnected” but do not resemble closed loops
or even spirals around flux ropes; we nevertheless call them “reconnected” and will often
use quotation marks as a reminder that they do not necessarily resemble reconnected
field lines in 2D reconnection.
Upstream: the upstream region includes all points on “unreconnected” field lines. By

extension, upstream plasma is the plasma in this region, upstream magnetic energy is
the magnetic energy in this region, etc.
Upstream value: When we refer to specific upstream values, such as the upstream

σh, B0, nbe, or θb, we mean the asymptotic or far upstream values.
Current sheet (or sheets): the region containing currents that support the reversal

in magnetic field. We often refer to the initial current sheet, which is well defined, and
otherwise use the term to refer to sheet-like regions where Jz is strong.

The layer (reconnection layer, current layer): the complement of the upstream
region—i.e., the region containing “reconnected” field lines. This region contains the
current sheet (or current sheets) as well as reconnection outflows and plasmoids. We
think of “the layer” as the evolved current sheet. Each (double-periodic) simulation
contains two layers—the upper and lower layers.
Separatrix: the surface between the “upstream” region and “the layer,” i.e., that

separates “reconnected” and “unreconnected” magnetic field lines. In 2D this is a smooth,
well-defined surface. In 3D that may not be the case, but none of our analysis will be
sensitive to the precise location of the separatrix.
Unreconnected flux: the integral of Bx over the x = 0 plane intersected with the

“upstream” region; i.e., the integral is over all (and only) unreconnected field. See §3.3
for more detail.
Reconnected flux: the flux of magnetic field around the major (largest) plasmoid.

This concept is well defined and easily measured in 2D, where the unreconnected plus
reconnected flux is conserved (cf. §3.3). It is nontrivial, however, to define and measure
this in 3D, and we will not do so.
Upstream magnetic energy UBt,up: the transverse magnetic energy in the upstream

region. We exclude guide field energy from this quantity, because we are primarily
interested in conversion of magnetic energy to plasma energy.
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Magnetic energy in the layer UBt,layer:, the transverse magnetic energy in the
layer; UBt,up + UBt,layer = UBt. We exclude guide field energy from this quantity.
Reconnection: technically, “reconnection” should involve the conversion/rearrangement

of “unreconnected field lines” to “reconnected field lines” in a way that conserves the
total unreconnected plus reconnected flux. In 2D reconnection, this conservation is
easily verified. However, in 3D it is nontrivial to decide precisely how to characterize
reconnection, much less to measure true reconnection rates. Rather than argue for any
particular precise definition of reconnection, we will focus on more tangible properties
of the current layer, such as magnetic energy and plasma energy. We will use the words
“3D reconnection” loosely to refer to any magnetic-energy-depleting evolution of thin
current sheets that, in principle, could or would undergo 2D-like reconnection. However,
any discussion of reconnecting flux or field lines will refer specifically to the 2D-like
flux-conserving process.
Flux annihilation: the utter disappearance of upstream (unreconnected) magnetic

flux by unspecified means. In contrast, 2D reconnection does not annihilate flux (it
conserves flux as described above). For example, magnetic diffusion in a plasma with finite
resistivity can directly annihilate flux; although this process is far too slow to explain
observed magnetic energy releases (assuming neat laminar current sheets), it could be
considerably enhanced, e.g., by effective turbulent magnetic diffusivity. Incidentally, the
flux

∫
Bxdydz through any x-plane in the simulation is exactly conserved—however, by

virtue of the reversing magnetic field, this flux is zero, and it tells us nothing about how
much flux is reconnected or annihilated.
(Upstream) flux depletion: the depletion of the upstream magnetic flux, without

regard to the process (e.g., reconnection or annihilation).

3.2. Current sheet (layer) central surface

It is useful to analyse some field quantities at the current sheet “centre” (in y), even as
the layer kinks and deforms. In the initial state, the current sheet (or layer) central surface
yc(x, z, t = 0) is the location where Bx(x, yc, z, t = 0) = 0, i.e., where Bx crosses through
zero in the y direction, reversing sign. At later times, we continue to define yc(x, z, t)
in the same way, with the following complication. The layer may become extremely
distorted by the nonlinear development of the kink instability so that it folds over on
itself, resulting in multiple field reversals. Because the upstream magnetic field never
changes sign, Bx(x, y, z, t) will always reverse sign at least once along y; however, it may
reverse sign an odd number of times at each layer. If there are multiple reversals in y
at some (x, z) and time t, we take yc(x, z, t) to be the middle reversal [e.g., if there are
three reversals, yc(x, z, t) will be at the second reversal].
We define the displacement of the central surface, ∆yc(x, z, t) ≡ yc(x, z, t)−yc(x, z, 0).
In §5.5 we look at ỹc(kz, t), the Fourier spectrum of ∆yc(x, z, t) in z, averaged over x,

at a given time t. To find the “Fourier spectrum in z averaged over x,” we take the power
spectrum in z of∆yc(x, z, t) at every x (for a given time t), then average the power spectra
over x, and take the square root. We normalize the result ỹc(kz, t) so that it indicates the
amplitude of the sinusoidal component with kz. E.g., if ∆yc(x, z, t) = A sin(kzz), then
ỹc(kz, t) = A.

3.3. Unreconnected flux and reconnection rate

Reconnection breaks upstream (unreconnected) field lines and reconnects them in a
different configuration in the downstream outflows. Defining and measuring unrecon-
nected flux is straightforward in 2D using the vector potential Az(x, y), which is constant
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along field lines. In 3D, however, it is much more difficult to define unreconnected flux
precisely, and so we adopt the following practical definition. An unreconnected field line
is a field line that runs from x = 0 to x = Lx without changing direction in x (Bx

never changes sign). In 2D, this definition is unambiguous and almost always agrees with
the method using Az (disagreement could occur in the rare case of an unreconnected
field line with an Ω-shaped kink; we believe such cases are negligibly rare in 2D, but we
have not studied whether they are also rare in 3D). In 2D, a field line that runs from
x = 0 to x = Lx wraps around via periodic boundary conditions exactly onto itself;
therefore, this definition unambiguously determines whether the entire field line has the
same sign for Bx. In 3D, this is not necessarily true; nevertheless this method captures
the most obviously-unreconnected upstream field lines with |By| ≪ |Bx|, that run across
the simulation box with little deflection in the y direction.
Specifically, we trace a field line from each grid node (0, y, z) in the x = 0 plane,

following it in the +x direction; if the field line ever reverses direction in x, then the field
line is considered to be “reconnected.” If the sign of Bx does not reverse, then the field
line must eventually reach x = Lx, at which point we stop and consider the field line to
be “unreconnected.” The unreconnected flux is then estimated as

∑
y,z Bx(0, y, z)∆y∆z

where the sum is over nodes (y, z) on unreconnected field lines, and ∆y∆z is the cell face
area. We add the flux for all unreconnected field lines between the central surfaces of the
two layers (cf. §3.2) to obtain the total unreconnected flux.
During this process of tracing field lines, we note the index of every cell that is

penetrated by an unreconnected field line and consider any such cell to be part of the
“upstream” region; any cell not penetrated by any unreconnected field line is considered
part of the “layer.” In this way we can calculate, for example, the magnetic energy
in upstream and layer regions. The boundary between regions of unreconnected and
reconnected field lines is (an approximation of) the separatrix, which can be clearly seen
in Fig. 4; (in 2D, at least) the separatrix bounds magnetic islands (O-points or plasmoids)
and goes through X-points.
This analysis is rigorously based on 2D reconnection; in 3D it still paints a useful

picture, even though the notions of “unreconnected” and “reconnected” are no longer
precisely well-defined, and the analysis does not distinguish between reconnection and
annihilation of upstream flux (i.e., between reconnected flux and annihilated flux). In
2D, any field line that is not unreconnected is reconnected, forming a closed loop in a
magnetic island (when Bz is ignored). Moreover, we find that in 2D, flux is conserved—
specifically, the flux between the major O-points of the two layers (in the double-
periodic simulation) is conserved. This flux can be divided into two parts: the upstream
unreconnected flux between the two layers, plus the reconnected flux between the major
O-point and separatrix for each layer, and the sum of these parts remains constant, at
least within our measurement precision, which is better than 1 per cent of the initial flux.
Therefore, in 2D, flux is not annihilated or destroyed (in a more resistive plasma, flux
would be annihilated; and even in a “collisionless” PIC simulation, numerical resistivity
will eventually annihilate flux, but only over extremely long times). In 3D, field lines
that are “not unreconnected” do not necessarily form a closed loop around an O-point
or flux rope, but again, for brevity we will still use the term “reconnected” for such field
lines. Periodically we include quotation marks around “reconnected” as a reminder that
it really means “not unreconnected.” In addition (spoiler alert!), we will find that in 3D,
flux is not conserved in the way it is in 2D: some flux is outright annihilated.
When we refer to a “reconnection rate,” we mean the rate at which the upstream mag-

netic flux decays—regardless of whether this flux depletion occurs due to reconnection
(as always in 2D collisionless reconnection) or to annihilation (as might be happening
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in 3D simulations). The reconnection rate represents the rate at which upstream flux is
changing, and therefore represents an electric field along an X-line by Faraday’s law, if a
suitable X-line (or reasonable approximation) exists.
We use the symbol βrec for the dimensionless reconnection rate normalized to cB0:

βrec ≡ −(cB0Lz)
−1dψ/dt, where ψ(t) is the flux upstream of one layer (or half the flux

between the two layers). Usually we obtain values of βrec averaged over some time—
for example the time over which ψ(t) falls from 0.9ψ0 to 0.8ψ0, or alternatively, 0.8–
0.7ψ0 (the choice between intervals often depends on whether all simulations being
compared actually reached 0.7ψ0). Sometimes we also quote (c/vA)βrec, the dimensionless
reconnection rate normalized to B0vA, where vA is the Alfvén velocity.

3.4. Energy

Energy is a powerful diagnostic because of its physical importance, because it is
conserved (to a good approximation in these simulations), and because it is generally
straightforward and unambiguous to measure. We will calculate various energy com-
ponents integrated over the entire simulation volume (at any given time t), including
total particle energy Uplasma(t) and electric field energy UE(t). The component of most
frequent interest is the magnetic field energy UB(t), and more specifically the transverse
magnetic field energy, UBt(t) ≡

∫
dV (B2

x +B2
y)/8π; it is mainly UBt that gets converted

to particle energy Uplasma, while UBz ≡ UB−UBt remains relatively constant (or at least
negligibly small) over the course of a simulation. For zero guide field, UBt ≈ UB and it
does not much matter which we use; when comparing simulations with different guide
fields, however, it is more illuminating to compare UBt.
We also calculate the upstream magnetic energy UBt,up in transverse magnetic field

components of unreconnected field lines, and then define the magnetic energy in the layer
(i.e., in “reconnected” field lines) to be UBt,layer = UBt − UBt,up (see §3.3).

3.5. Onset time tonset

Sometimes the initial current sheet configuration strongly affects the time it takes
reconnection to start; when comparing time evolution of simulations with different initial
configurations, it is sometimes helpful to compare different cases relative to the onset
time rather than t = 0. We define the onset time as the time tonset when the transverse
magnetic energy UBt(t) has declined by 1 per cent from its initial value UBt0. Although
this value is somewhat arbitrary, no results will depend strongly on this choice, as long
as it is used consistently. Occasionally the time axis of graphs will be shifted by tonset to
allow more revealing comparison between different simulations, which may have similar
time evolution apart from different onset times.

3.6. Bulk Velocity

We compute electron bulk velocities ve = Je/ρe (in each grid cell), where Je and ρe
are the current and charge density due to electrons; similarly, the positron velocity is
vi = J i/ρi. The plasma velocity is then computed as the average of electron and ion
velocities, v ≡ (ve+vi)/2. More accurately, this average should be weighted by the mass
(or γm) of particles in each cell; however, in this paper, quasineutrality and the symmetry
between electrons and positrons make the simple average a reasonable approximation.

3.7. Particle energy spectra and power-law fitting

Particle energy distributions f(γ) are shown integrated over the entire simulation box
at single time snapshots (where the Lorentz factor γ is a proxy for particle energy γmec

2).
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The energy spectra often display power laws f(γ) ∼ γ−p extending to high energies (well
above the average energy).
We determine the power-law index p by finding the longest, straightest segment on a

log-log plot (Werner et al. 2018). We compute the local slope, p(γ) = −d ln f/d ln γ and
search exhaustively for the interval [γ1, γ2] with the largest γ2/γ1 such that p(γ) remains
within a range of ∆p over the entire interval. We then choose “the” power-law index p
to be the median p(γ) over [γ1, γ2]. We do this separately for ∆p =0.1, 0.2, and 0.4, as
well as using spectra at different nearby times, considering variation in p—whether due
to time variation or choice of ∆p—as uncertainty in the measurement. In this paper,
we display “error bars” on p comprising the middle 68 per cent of all the values of p
measured.
To find the cutoff of the high-energy power law, we fit f(γ) over [γ1, γ2] to the form

Aγ−p, where p is determined as above (thus only the normalization A must be found).
We then consider the cutoff γc to be the energy at which f(γc) = e−1Aγ−p

c .

4. 2D reconnection with moderate magnetization: basic evolution
and NTPA

Before exploring 3D reconnection, we investigate reconnection—in ultrarelativistically-
hot pair plasma with σh = 1—in 2D, systematically varying a number of parameters.
We will begin with an overview of 2D reconnection (§4.1); then we will investigate the
effects of different initial current sheet configurations in §4.2. In §4.3 we study system-size
effects, and finally in §4.4 we report on the effects of guide magnetic field.

This 2D reconnection study serves multiple purposes. First, it is of interest in its own
right to characterize 2D reconnection in the ultrarelativistically-hot σh = 1 regime (most
previous reconnection studies have focused on σh ≪ 1, usually in nonrelativistic electron-
ion plasma, or σh ≫ 1). Second, much larger simulations are possible in 2D; only in 2D,
therefore, can we really explore system-size dependence. And last, to determine whether
3D reconnection is different, we need to compare with 2D simulation; this 2D study
provides a baseline for the subsequent 3D study (§5).

4.1. Overview of 2D reconnection with σh = 1

We begin by reviewing the familiar behaviour of plasmoid-dominated reconnection in
2D, for a single representative simulation with Lx = 1280σρ0; other initial parameters
are: Bgz = 0, η = 5, βd = 0.3, δ = (2/3)σρ0, a = 0. This simulation exhibits the
familiar behaviour of 2D plasmoid-dominated reconnection—it is qualitatively similar
to plasmoid-dominated reconnection at small and large σh. The simulation lingers in
its initial state until the tearing instability triggers reconnection, resulting in a chain of
plasmoids (magnetic islands or O-points) in each layer. (In the following, we describe
just one of the layers in the double-periodic system; both layers behave qualitatively
similarly.) Reconnection occurs at X-points in thin, elementary current sheets between
plasmoids: at X-points, upstream magnetic field lines are broken, and reconnected in
a different topology, with reconnected field lines wrapping around plasmoids in the
reconnection outflows. In this process, some of the upstream magnetic energy is converted
to particle/plasma energy, while some of it ends up as magnetic energy in the layer
(i.e., in “reconnected” field in plasmoids). Secondary tearing breaks up the elementary
current sheets when they become too long and too thin, detaching the small plasmoids
from the X-point that fed them magnetic energy and reconnected flux. Thereafter, those
plasmoids no longer grow via reconnection, but instead grow by merging with other
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Figure 1. The left panel shows the unreconnected flux (normalized to the initial unreconnected
flux ψ0) diminishing over time as reconnection occurs. Horizontal dashed lines mark the levels
ψ = 0.9ψ0, 0.8ψ0, and 0.7ψ0; the dimensionless reconnection rates averaged over each of these
0.1ψ0 drops are βrec =0.03 and 0.02 (cf. §3.3), and dashed lines with those slopes are drawn. The
middle panel shows the energy in various components versus time (normalized to

∫
dV B2

0/8π),
and the right panel shows the changes in those components from their initial values. Energy
components shown are total energy (Utotal, dash-dotted black line), magnetic (UB , solid blue),
plasma/particle (Uplasma, dashed green), and electric (UE , dotted red—in the middle panel, UE
is magnified by a factor of 20).

plasmoids via the coalescence instability, which conserves the flux around O-points. A
hierarchy of different-sized plasmoids thus develops, and eventually a single monster
plasmoid dominates the simulation, continuing to grow as it consumes (i.e., merges with)
smaller plasmoids. If Ly/Lx is large enough, this major plasmoid eventually grows to
a size of order Lx, and reconnection can no longer continue; the angle of the magnetic
separatrix at the major X-point opens to 90 degrees, and reconnection effectively stops
(actually, systems often oscillate with low amplitudes about the final state, with magnetic
energy and flux sloshing between the major plasmoid and the upstream). If Ly ≫ Lx

(even if Ly ≳ 2Lx), there will still be significant upstream “unreconnected” magnetic field
that could in principle be reconnected were it not prevented from doing so by reaching
a stable magnetic configuration (at least on reconnection timescales; magnetic diffusion
might deplete additional magnetic energy on much, much longer timescales).
During this evolution, upstream magnetic flux is reconnected and some upstream

magnetic energy is converted into plasma energy, while some ends up permanently stored
in the magnetic field of the major plasmoid. To describe this process more quantitatively,
we will rely heavily on several important diagnostics. These will be essential throughout
the rest of the paper, as we explore reconnection over a very large parameter space, to
help us compare and contrast reconnection with different parameters including a, η, βd,
Lx, Bgz, and (in 3D) Lz. We will measure, for example, the amount of magnetic flux
that is reconnected over time (cf. §3.3). However, perhaps of even more importance is the
behaviour of various energy components—for example, the plasma or magnetic energy
versus time (cf. §3.4). In addition, we further decompose the plasma energy into the
energy distribution of particles to distinguish thermal heating from NTPA (cf. §3.7). In
the following, we describe these diagnostics for the single representative simulation.
The behaviour of magnetic flux and energy is qualitatively similar to that observed

in other 2D regimes, such as σh ≫ 1 (e.g., Guo et al. 2014; Werner et al. 2016;
Werner & Uzdensky 2017; Werner et al. 2018). Figure 1 shows unreconnected flux versus
time as well as the energy (and energy changes) versus time in various components,
including the energy in magnetic fields and particles. The unreconnected (upstream)
magnetic flux ψ(t) decreases over the course of reconnection, finally down to about
55 per cent of its initial value (i.e., reconnecting 45 per cent of upstream flux). (We
note that these values are specific to this representative simulation; reconnection with
other parameters may yield different values while being qualitatively similar.) During
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this time, the magnetic energy falls to about 70 per cent of its initial value, with the
30 per cent loss converted almost entirely to plasma energy. This occurs within a time of
roughly 8–12 Lx/c over which the rate of reconnection continually slows (in this closed
system). The dimensionless reconnection rates (cf. §3.3), averaged over the time it takes
for unreconnected flux ψ(t) to fall from 0.9ψ0 to 0.8ψ0, and from 0.8ψ0 to 0.7ψ0 (as
measured in Werner et al. 2018), are βrec ≡ −(cB0Lz)

−1ψ̇ = 0.032 and 0.22, respectively
(here the dimensionless rate is normalized to B0c). Normalized to B0vA instead of B0c,
where B0vA = B0c

√
σh/(1 + σh) = B0c/

√
2, the reconnection rates over these same

intervals are (c/vA)βrec = 0.045 and 0.031. The normalized-to-B0vA reconnection rate
around 0.03–0.05 is on the order of, but less than the oft-cited nominal value of 0.1
for fast reconnection (Cassak et al. 2017)—a value that is realized for ultrarelativistic
reconnection with σh ≫ 1.
By way of comparison, we note that, with the same aspect ratio Ly/Lx = 2, a similar

setup with σh ≫ 1 depletes roughly 40 per cent of magnetic field energy (Werner &
Uzdensky 2017) and reconnects 55 per cent of the initial flux (Werner et al. 2018).
Energy conversion in high-σh reconnection occurs within about 3Lx/c, with normalized
reconnection rates around 0.10–0.12.
An important aspect of 2D reconnection is that the upstream field lines are indeed

broken and reconnected in the following precise sense: the decrease in upstream flux
equals the increase in flux around the O-points in magnetic islands (plasmoids). In
2D simulations we can measure these fluxes accurately using the z-component of the
magnetic vector potential (see §3.3), and we find that the sum of these fluxes—which
is precisely equivalent to the total flux between the major O-points in each layer—is
conserved to better than 1 per cent. This is not surprising; the only way the total flux
can change is (by Faraday’s law) if Ez ̸= 0 at the major O-points (e.g., Ez could be
non-zero due to resistivity, which would allow annihilation of magnetic flux via magnetic
diffusion, but typically the rate of annihilation is very slow, especially in a collisionless
plasma).
The reconnection rate measurements quoted in this paper are defined in terms of

an upstream field of B0, although in these closed systems, the actual (far) upstream
field diminishes over time (although not very much for large systems). For simulations
presented in this paper, the upstream magnetic field decays only to ≈ 0.9B0, which affects
the calculation less than the measurement uncertainty. There are also questions about
whether “the upstream field” should be far upstream or at some upstream point closer
to the current sheet (Liu et al. 2017; Cassak et al. 2017), and the difference between far
upstream and near upstream might potentially depend on σh. However, we must leave a
better understanding of the precise σh-dependence of the 2D reconnection rate to future
work.
When σh is not large, particles cannot gain much energy on average during recon-

nection. E.g., for σh = 1 and 30 per cent of magnetic energy depleted, the average
particle energy (averaged over the entire simulation) increases by a relative fraction
of only ∆γ/γb = 0.30(2/3)σh = 0.20 (where γb = 3θb = 0.75σ is the initial average
Lorentz factor). Nevertheless, some particles reach energies well above the average energy,
γ̄ ≈ 0.7–0.9σ, as shown by the particle energy spectra in Fig. 2. Reconnection in the
σh = 1 regime clearly generates NTPA; a high-energy nonthermal power-law f(γ) ∼ γ−p

becomes apparent within a time of 1–2Lx/c, with approximately the same power-law
index p ≈ 4 as at later times; the power law extends up to a cutoff energy exceeding
4σ (cf. Werner et al. 2016). The power-law index of p ≈ 4 is quite steep; to distinguish
small changes (when comparing other simulations), we will usually graph γ4f(γ), so that
if p were exactly 4, the graph would be a horizontal line. The high-energy cutoff of the
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Figure 2. The particle energy spectra f(γ) at logarithmically-spaced times, compensated by
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power law has been observed, for simulations with high σh ≫ 1 and very large Lx, to
grow rapidly to an energy ∼ 4σ (Werner et al. 2016), and then to continue to grow slowly
(sublinearly) in time (Petropoulou & Sironi 2018; Hakobyan et al. 2021); our results are
consistent with this.
Importantly, the high-energy cutoff measured in our simulations is far below the

extreme particle acceleration limit for this simulation size and duration—i.e., below the
energy a particle could gain in the nominal reconnection electric field of Erec over the
simulation duration T (which is usually proportional to simulation size Lx). Such an
“extremely-accelerated” particle would gain maximum energy mec

2∆γext = eEreccT . We
can estimate∆γext using βrec to relate Erec and B0, i.e., Erec = βrecB0. Sincemec

2/eB0 ≡
ρ0, ∆γext ∼ βreccT/ρ0 ∼ 0.02(cT/Lx)Lx/ρ0. In our simulations, βrec decreases over time
(as reconnection slows to a stop), but above we measured βrec ≈ 0.02 in the middle
of active reconnection; and in this simulation, Lx = 1280σρ0, so ∆γext ∼ 26(cT/Lx)σ.
Thus, after T ∼ 10Lx/c, the maximum energy gain would be around ∆γext ∼ 250σ.
However, rather than estimate βrec and the active reconnection time T , it is convenient

to consider that by Faraday’s law,
∫ T

0
Erecdt = −∆ψ/(cLz) where ∆ψ is the change

in unreconnected upstream flux; in a 2D simulation, the simulation size Lz in the
unsimulated third dimension is arbitrary, but the upstream flux is also proportional to
Lz—the flux upstream of the initial current sheet is ψ0 ≈ B0LzLy/4. Therefore, ∆γext ≈
(Ly/4Lx)(∆ψ/ψ0)(eB0Lx/mec

2) = 0.5(0.45)(Lx/ρ0), or ∆γext ≈ 0.2(1280σ) ≈ 250σ.
In this simulation, we observe ∆γ ≲ 40σ, far below the extreme acceleration limit,

∆γext ≈ 250σ. However, some particles undergo extreme acceleration up to at least
γ ∼ 4σ (but not beyond γ ≈ 20σ) in a time consistent with constant acceleration in Erec.
We can infer from Fig. 2 that a tiny fraction of particles reach nearly γ ≈ 20σ by time
0.44Lx/c. At this time, ∆ψ/ψ0 = 0.039, so we estimate γext = 0.5(0.039)(1280σ) = 25σ,
close to the observed γ ≈ 20σ (which we emphasize is not the power-law cutoff, but the
maximum energy gained by any particle in the simulation). This suggests that particles
are in fact “extremely-accelerated” up to some energy less than but on the order of
γ ≈ 20σ. However, no particle ever exceeds γ ≈ 40 significantly, even after much longer
times. We note that: (1) we measured ∆ψ with a time cadence of 0.44Lx/c, so we cannot
examine extreme acceleration on smaller timescales, and (2) ideally we would prefer to
know about extreme acceleration in the middle of the simulation rather than at the
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beginning, but we present this result for the very beginning because it is the only time
that we can know that a particle with γ ≈ 20 accelerated to that energy within 0.44Lx/c.
Thus our results are consistent with particles experiencing extreme acceleration up to
an energy around γ ∼ 4σ (Werner et al. 2016), and experiencing slower acceleration
thereafter (as described by Petropoulou & Sironi 2018; Hakobyan et al. 2021).
Incidentally, we also note that all particle gyroradii are much smaller than the system

size. A particle with energy γ has gyroradius ∼ γρ0 (in field B0), and so a particle would
need γ = 640σ for its gyroradius to equal Lx/2; therefore, the system size is much larger
than the gyro-orbits of even the most energetic particles.
In the rest of this paper, we will be comparing the flux reconnected versus time, as well

as the conversion of magnetic to plasma energy and the resulting particle energy spectra,
for reconnection simulations with different initial parameters (including 3D simulations
with different lengths Lz). In the following subsections, we consider 2D simulations all
with the same upstream plasma conditions as in this subsection, but with different initial
current sheet configurations (§4.2), and different system sizes (§4.3); then, we consider
the addition of different guide field strengths (§4.4). We will find that for large systems,
the initial current sheet configuration and system size Lx have relatively weak effects on
reconnection, including on energy conversion and NTPA; in contrast, (sufficiently strong)
guide magnetic field will significantly slow energy conversion and inhibit NTPA.

4.2. 2D reconnection: dependence on initial current sheet configuration

In this subsection we show that 2D reconnection behaviour is largely (but not com-
pletely) determined by the background (upstream) plasma and not the configuration
of the initial current sheet. We will compare results from 2D simulations with varying
initial magnetic perturbation strength a, and varying initial current sheet parameters
(i.e., density nd0 or, equivalently, η = nd0/nb0, temperature θd, drift speed βdc, and half-
thickness δ). All simulations in this subsection have identical background plasma (i.e.,
σ = 104, σh = 1, hence upstream βplasma = 0.5, and Bgz = 0, as well as Ly/Lx = 2).
The initial magnetic field perturbation a [cf. Eq. (2.2)], can be varied independently

of all other parameters, as in the following substudy (2D-a); however, increasing a shifts
the system away from the Harris equilibrium. In contrast, we always maintain the initial
equilibrium when altering η, θd, βd, and δ. The equilibrium satisfies pressure balance, or
ηθd/γd = σ/2, and Ampere’s law, which requires δ = σρ0/(ηβd). Thus, the initial current
sheet, though fully specified through four parameters, has only two independent degrees
of freedom in this study; usually we specify η and βd. For reference we have listed the
relevant parameters corresponding to different values of η and βd in table 1.

It is useful to compare the sheet half-thickness δ with the characteristic gyroradii of
the upstream plasma and the drifting (initial current sheet) plasma. The characteristic
gyroradius of the upstream plasma is ρb = 3θbρ0 = (3/4)σρ0 ∼ σρ0; the average
gyroradius of the drifting plasma is ρd = 3θdρ0 = 3γd/(2η). The ratio of sheet thickness
to upstream plasma scales is δ/σρ0 = 1/(ηβd), and the ratio to drifting plasma scales
is δ/ρd = 2/(3γdβd). In substudy (2D-b), below, we vary η while keeping βd constant,
which changes δ with respect to upstream scales but not with respect to drifting plasma
scales. On the other hand, in substudy (2D-c), we vary βd ∝ η−1, changing δ/ρd but
leaving δ/σρ0 constant.
(2D-a) Varying the initial perturbation. For a = 0, the magnetic field lines are initially

entirely parallel to x. Increasing a perturbs the field so that there is a magnetic island
and an X-point in the layer. As described in §2, when a = 1, the initial island half-height
s (the maximum height of the separatrix above the initial midplane) equals the current
sheet half-thickness, s = δ; for a ≲ 1, the separatrix that bounds the island is contained
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η = nd0/nb0 0.5 1 3.1 5 10 0.33 0.5 1 2 4
βd — 0.3 — 0.9 0.6 0.3 0.15 0.075

θd/θb 4.2 2.1 0.68 0.42 0.21 14 5.0 2.1 1.01 0.50
ρd/σρ0 3.1 1.6 0.5 0.31 0.16 10 3.8 1.6 0.76 0.38
de,d/σρ0 2.6 1.2 0.40 0.24 0.12 5.5 2.8 1.2 0.62 0.31
δ/σρ0 6.7 3.3 1.1 0.67 0.33 — 3.3 —
δ/ρd — 2.1 — 0.32 0.89 2.1 4.4 8.9
δ/de,d — 2.7 — 0.58 1.2 2.7 5.4 11

Table 1. Initial temperature and length scales of the drifting (current sheet) plasma resulting
from various combinations of initial peak current sheet density nd0 = ηnb0 and drift speed βdc
used in this study. Listed are (normalized) values of the initial temperature θdmec

2, the average
gyroradius ρd = 3θdρ0, and the skin depth of the drifting plasma forming the current sheet,
de,d =

√
3λDd = [3θdmec

2/(4πne2)]1/2, as well as the initial sheet half-thickness δ (relative to
the fiducial upstream plasma length scale σρ0 and drifting plasma length scales ρd and de,d). We
note that θd/θb = 2γdσh/η and ηδ = σρ0/βd. For comparison, the background plasma gyroradius

is ρb = 0.75σρ0 and the skin depth de =
√
3λD = 0.87σρ0; the cell size is ∆x = 0.33σρ0.

Boldface entries indicate the two configurations used to study the effect of varying perturbation
strength a.

within the initial layer. We investigate the effect of varying a over a wide range, for two
different initial current sheets: the first [βd = 0.3, η = 5, δ = (2/3)σρ0, θd = 0.10σ] was
chosen to be like most simulations in this paper, marginally resolving the initial sheet
with δ/∆x = 2; the second [βd = 0.3, η = 1, δ = (10/3)σρ0, θd = 0.52σ] was chosen to
resolve the current sheet with δ/∆x = 10. In both cases we used modest system sizes
with Lx = 320σρ0. To help distinguish between the effect of a and stochastic variation,
we ran two simulations for each a, identical except for random initial particle velocities
(the source of randomness is discussed later in detail in §5.2).
For the denser, thinner sheet (βd = 0.3, η = 5, used in most simulations here), we

ran simulations with a ∈ {0, 0.22, 0.55, 1.1, 2.2, 5.5, 11, 22, 55, 110}, corresponding to
s/δ ∈ {0, 0.44, 0.72, 1.1, 1.6, 3.1, 5.4, 10, 23, 43}, respectively. For a < 0.3, we note that
s < ∆x, so the simulation can hardly tell the difference between a = 0 and a = 0.22;
and for a = 110, the separatrix extends out to s = 43δ = 29σρ0 ≈ 0.1Lx. In Fig. 3(a)
we observe that the evolution of magnetic energy versus time is nearly the same for the
two simulations with a < 0.3; it is also the same, up to stochastic variation, within the
group of simulations with 0.55 ≲ a ≲ 22. The simulations with a < 0.3 exhibit slightly
slower magnetic energy conversion for 1 ≲ tc/Lx ≲ 4Lx/c than the simulations with
0.55 ≲ a ≲ 22, but by t ≳ 5Lx/c they have all converted the same amount of energy, so
while noticeable, this is a very minor difference. For a ≳ 55 (very large perturbations), we
observe an increasingly quick onset of reconnection and more rapid magnetic depletion.
The particle energy spectra in Fig. 3(b) are all very similar [considering that differences
are enhanced by showing γ4f(γ) instead of f(γ)], although very large perturbations result
in an almost imperceptibly harder spectrum with a slightly smaller fraction of particles
reaching the very highest energies. We conclude that for all but very large perturbations,
the initial perturbation does not have a very substantial effect on energy conversion or
NTPA.

For the less dense, initially-thick current sheet, [βd = 0.3, η = 1, δ = (10/3)σρ0,
θd = 0.52σ], we explored a ∈ {0, 0.04, 0.11, 0.22, 0.44, 1.1, 2.2, 4.4, 11, 22}, corresponding
to separatrix heights s/δ ∈ {0, 0.2, 0.31, 0.44, 0.63, 1, 1.6, 2.5, 5.1, 9}. The results are
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Figure 3. (a) Transverse magnetic energy versus time, and (b) electron energy spectra f(γ),
compensated by γ4, at times t when UBt(t) = 0.75UB0—marked by the horizontal grey line in
(a)—for different initial magnetic field perturbations in 2D simulations with an initially dense,
thin current sheet (η = 5, δ/σρ0 = 2/3). Panels (c) and (d) show the same for a less dense,
thicker layer (η = 1, δ/σρ0 = 10/3), with spectra at UBt(t) = 0.77UB0.

shown in Fig. 3(c,d). Here, s > ∆x as long as a > 0.011 (i.e., for all the nonzero a used);
for a = 22, the separatrix extends to s = 9δ = 30σρ0 ≈ 0.1Lx. The less dense, thicker
sheet leads to a slower onset of reconnection; increasing the initial perturbation strength
tends to hasten reconnection onset. However, once reconnection is triggered, the energy
evolves very similarly for zero and large perturbations, as seen in Fig. 3(c), which shows
magnetic energy versus time, shifted relative to tonset, the time at which the magnetic
energy has fallen by 1 per cent (cf. §3.5). With this time shift, the magnetic energy
curves are almost identical in all cases except for the largest perturbation, a = 22. Not
surprisingly, the particle spectra in Fig. 3(d) are similarly identical (within stochastic
variation). We again conclude that the strength of perturbation (at least for a ≲ 20) has
negligible effect on energy conversion and NTPA—aside from having a strong effect on
the time to reconnection onset.
For both overdensities η = 1 and η = 5, the initial perturbation has significant

consequences for the evolution of the plasmoid hierarchy, even though this does not seem
to alter the overall energy conversion rate and NTPA. Without perturbation (Fig. 4, left),
a number of roughly equal-sized plasmoids form at the onset of reconnection, with sizes
determined by the fastest-growing wavelength of the tearing instability. These plasmoids
undergo the coalescence instability and merge in pairs, resulting in a smaller number of
larger plasmoids, each of which contains a similar fraction of the initially-drifting particles
that made up the initial current sheet. In contrast, even a very small initial perturbation
will favour one plasmoid (the “major” plasmoid), which is always larger than the others
(Fig. 4, right); it may contain many or most of the initially-drifting particles. In this case,
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Figure 4. Magnetic field lines superimposed over the density nde of the initially-drifting
electrons that form the initial current sheet (i.e., excluding background electrons), for cases (left)
without an initial magnetic perturbation (a = 0), and (right) with a small initial perturbation
a = 5.5 or s/δ = 3 [cf. Fig. 3(a)], at times t = 0.44Lx/c (top) and t = 1.2Lx/c (bottom). In
both cases, the drifting particles are well contained in plasmoid cores. With zero perturbation
(left), the first plasmoids formed are roughly equal in size, and they generally merge in pairs
so that at any time, there is some number of equal-sized largest plasmoids, each containing
a similar fraction of the drift particles. In contrast, a small perturbation (right) favours one
plasmoid, which remains always larger than all other plasmoids, and rapidly gathers most and
then all of the drifting particles. Magnetic field lines in the layer (i.e., within the separatrix)
are solid green, with the separatrix being solid cyan; upstream of the separatrix, field lines are
dashed blue. These simulations have size Lx = 320σρ0, with an initially thin current sheet,
δ = (2/3)σρ0.

subsequent plasmoid mergers tend to be between different-sized plasmoids; plasmoids
form at the major X-point, and move toward the major plasmoid (with mergers between
smaller plasmoids sometimes occurring before they reach the major plasmoid). We note
that the final state has just a single monster plasmoid, regardless of initial perturbation.
Summarizing (2D-a), we see that (for Lx ≳ 320σρ0) the initial perturbation (if not

terribly large, i.e., a ≲ 20, or s/δ ≲ 9) does not significantly alter global energy evolution
(after reconnection onset) or NTPA. However, the initial perturbation can reduce the
time it takes reconnection to start, and it can also have a significant effect on the nature
of plasmoid formation and subsequent evolution. Similar differences in plasmoid evolution
caused by artificial triggering with a locally reduced pressure have been previously studied
in 2D semirelativistic electron-ion reconnection (Ball et al. 2019); there NTPA was found
to be similarly insensitive to triggering, at least for weak guide field.
(2D-b) Varying current sheet density η with fixed βd = 0.3; i.e., varying δ/σρ0 for fixed

δ/ρd = 2.1. We now look at the effects of different initial current sheets, keeping βd = 0.3
constant and varying η ∈ {0.5, 1, 3.1, 5, 10} (considering η < 1 is unusual in reconnection
research, but we include η = 0.5 to show that it is not that different from η = 1, although
it does start to indicate a trend for the limit η → 0). Table 1 shows how other quantities
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Figure 5. For simulations with varying η (hence varying initial current sheet half-thicknesses
δ; cf. table 1): (left) transverse magnetic energy versus time (shifted by tonset; cf. §3.5), and
(right) electron energy spectra times t when UBt(t) = 0.75UB0 (indicated by the horizontal grey
line in the left panel). Dotted grey-on-yellow lines indicate power-law slopes of 4.1 and 4.8. All
simulations have size Lx = 1280σρ0.

such as δ vary as η is varied in this study. Increasing η directly increases the current sheet
density nd0 (relative to the upstream plasma density nb0, which remains the same). As η
increases, the temperature θd decreases to maintain pressure balance across the current
sheet against the upstream magnetic field, θd = γdσ/(2η) ≈ 0.52σ/η; this reduces the
fundamental length scales (and hence also time scales) of the current sheet. (We note,
for context, that if background plasma with nb0 and θb were adiabatically compressed
with adiabatic index 4/3, appropriate for relativistically-hot plasma, to a density nad
and temperature θad sufficient to balance the upstream magnetic pressure B2

0/8π as well
as the upstream plasma pressure nb0θbmec

2, this would yield ηad ≡ nad/nb0 = 2.28 and
θad/θb = 1.3.)
As η varies (with fixed βd), we have θd ∝ η−1 and so δ as well as the fundamental

length scales of the current sheet plasma (e.g., both the gyroradius ρd and collisionless
skin depth ded) all scale ∝ η−1 (as long as γd ≈ 1). Therefore, δ/ρd = 2.1 and δ/ded = 2.7
remain constant (see table 1), although the current sheet thickness changes with respect
to upstream plasma scales (e.g., ρb = 0.75σρ0) as well as Lx and ∆x.

For this investigation we use a larger system size, Lx = 1280σρ0, so that Lx, Ly ≫ δ for
all δ explored; other fixed parameters are: βd = 0.3 and Bgz = 0. We used the exact same
initial magnetic field B(x, y) in all cases, with the same small perturbation: aδ/Lx =
0.0052 — the dependence a ∼ δ−1 ensures that the initial field is independent of δ—i.e.,
s/Lx is fixed [cf. Eq. (2.2)]. Based on (2D-a) above, we expect our conclusions for this
subsection would be the same for other small perturbations, including zero perturbation.
Figure 5 shows (left) the magnetic energy evolution and (right) NTPA spectra for

simulations with a range of η = 0.5–10, corresponding to δ/σρ0 = 6.7–0.33. We first
note, as above, that reconnection onset is delayed by less dense, thicker current sheets,
but that once magnetic energy depletion begins, energy evolution and NTPA are very
similar and almost independent of η. However, closer examination shows a tentative
trend of decreasing NTPA efficiency with decreasing η; this trend is very small for η > 1,
but becomes noticeable for the η = 0.5 case (with θd/θb = 4.2 and δ ≈ 7σρ0), which
reconnects a little slower and generates slightly less efficient NTPA. Specifically, η = 0.5
yields a power law p = 4.6±0.1, whereas denser layers with η ⩾ 1 yield p = 4.4±0.1. Also,
denser initial sheets seem to lead to slightly more overall magnetic energy depletion. This
weak η-dependence hints at a more severe behaviour in the limit of underdense current
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sheets: in a simulation (not shown here) with η = 0.1 and δ = 33σρ0, reconnection did
not even start, despite a simulation duration longer than 10Lx/c—hence no magnetic
energy was depleted.
We thus conclude that the initial current sheet density has a negligible effect on total

energy conversion and NTPA efficiency as long as η ≫ 0.1; however, for small η, NTPA
efficiency and total energy conversion decrease as η decreases, and the thick, low-density
current sheet may eventually become effectively stable against tearing and reconnection.
(2D-c) Varying βd ∝ η−1; i.e., varying δ/ρd for fixed δ/σρ0 = (10/3)σρ0. The moti-

vation for this particular parameter space exploration is a little complicated. Essentially,
we would like to study the influence of βd on reconnection. After substudy (2D-b), which
varied η but not βd, it would be natural to hold η constant while varying βd. However,
we will instead vary η ∝ β−1

d to keep ηβd constant. Importantly, this fixes δ = σρ0/(ηβd)
with respect to upstream plasma scales. In particular, δ/∆x = 10 and Lx/δ = 384 will
be the same in every case, so that, as βd and η vary, the initial current sheet will remain
well-resolved but very thin compared with Ly = 2Lx. Satisfying these two criteria will
be important in 3D (§5.3–5.4) when we will focus on the evolution of the current layer
at early times as it undergoes large deformations due to RDKI, requiring δ/∆x≫ 1 and
δ/Ly ≪ 1; in addition, it will be more straightforward to compare layer deformation and
its interaction with the upstream plasma for different simulations when the current sheets
begin with the same thickness. Although neither RDKI nor extreme layer deformation
will occur in 2D, this substudy provides a baseline against which to compare the 3D
simulations.

Therefore, we simultaneously vary η along with βd to keep the product ηβd constant.
Maintaining constant ηβd fixes δ/σρ0, while essentially varying the drifting plasma length
scales [such as gyroradius ρd = 3θdρ0] with respect to δ—i.e., varying δ/ρd = 2/(γdβd).
We compare five configurations with the same background plasma (with zero guide

field), system size Lx = 1280σρ0 = 384δ, and zero initial magnetic perturbation (a = 0).
We vary βd ∈ {0.075, 0.15, 0.3, 0.6, 0.9}; to keep ηβd constant, the overdensities η are
{4, 2, 1, 0.5, 0.33}, yielding the same δ = (10/3)σρ0 = 10∆x for all five cases. Other
parameters are (see also table 1): θd/θb ∈ {0.5, 1.0, 2.1, 5.0, 14} and δ/ρd ∈ {8.9, 4.4,
2.1, 0.89, 0.32}, respectively.
At βd = 0.075, η = 4, the gyroradius and collisionless skin depth of the drifting plasma

are at their smallest values of ρd = 0.38σρ0 and ded = 0.31σρ0, both near the grid
resolution ∆x, and the half-thickness δ is 10 times larger than those scales. At the other
end of the parameter scan, βd = 0.9, η = 0.33, the microphysical scales of the initial
current sheet become somewhat larger than δ: δ ≈ 0.3ρd ≈ 0.6ded.
To characterize the effects of varying βd (with η), we focus on the time history of

magnetic and plasma energy, and on the resulting NTPA; and again, we find little
variation among this set of simulations (see Fig. 6). All cases show very similar magnetic
depletion rates and NTPA (within stochastic variation), except for the case βd = 0.9
(η = 0.33), which is a little different; this case ends up with a bit more energy in
plasmoids, although the rate at which upstream magnetic energy and unreconnected flux
decrease is similar to the others. The βd = 0.9 case has significantly hotter (though lower
density) drift particles (cf. table 1), which results in correspondingly hotter and less dense
plasmoids cores, since the initially-drifting particles, being close to the initial midplane,
are among the first to be swept into plasmoids and remain near the plasmoid cores (the
original drift kinetic energy may also be converted to thermal energy, contributing to
even hotter cores).
Summary of 2D-a,b,c. We have seen that in 2D, the details of the initial current sheet

can affect the time delay before the onset of reconnection, as well as the evolution of the
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Figure 6. (Left) Transverse magnetic energy versus (shifted) time, and (right) electron energy
spectra when 23 per cent of the initial magnetic energy has been converted (see the horizontal
grey line in the left panel), for simulations with varying initial current drift βd, but constant
initial sheet thickness δ = (10/3)σρ0. (Table 1 shows how initial temperatures and gyroradii vary
with βd.) Dotted grey-on-yellow lines indicate power-law slopes of 4.2 and 4.6. All simulations
have size Lx = 1280σρ0.

plasmoid hierarchy. Nevertheless, the initial current sheet configuration has relatively
little effect on the long-term magnetic energy conversion and NTPA in 2D reconnection;
after a short initial stage, reconnection energetics are dominated by the upstream plasma,
regardless of the very early current sheet evolution. This conclusion may seem to be at
odds with that from Ball et al. (2019), which found subtle but significant differences
in NTPA due to initial perturbation and varying initial sheet thickness; however, Ball
et al. (2019) studied transrelativistic electron-proton reconnection, with low upstream
plasma beta and non-zero guide magnetic field (Bgz/B0 =0.1 and 0.3). They used
a small pressure imbalance as an initial perturbation, and found that its influence
diminished with diminishing guide field, potentially consistent with our zero-guide-field
results here. The impact of varying sheet thickness (keeping η constant) was also seen at
the larger guide field, Bgz = 0.3B0, so there are several potentially important differences
between these two studies: transrelativistic electron-proton versus ultrarelativistic pairs,
low upstream plasma beta versus beta of 0.5 (σh = 1), weak-to-moderate versus zero
guide field, and pressure versus magnetic field perturbation.

4.3. 2D reconnection: system-size dependence

In this subsection we investigate how reconnection depends on system size Lx, to
estimate the applicability of our kinetic simulations to astrophysical systems, which
may be much larger than even the largest supercomputers can possibly simulate while
including full kinetics. We present results for system sizes ranging over a factor of 30,
from Lx/σρ0 = 80 to 2560. These simulations achieve a substantial scale separation
between the system size Lx and all the microphysical scales, which are of order σρ0
(cf. §2). Such large scale separations are feasible because, for σh = 1, all the kinetic
scales are comparable, hence they can all be resolved by a cell size ∆x only marginally
smaller than σρ0. All simulations presented in this subsection are 2D with zero guide
field, starting with an initial current sheet half-thickness δ = (2/3)σρ0, η = 5, βd = 0.3,
and zero perturbation.
Before discussing how Lx affects typical reconnection behaviour, we note that stochas-

tic evolution of the plasmoid hierarchy affects energy conversion and NTPA, especially
over short timescales. For example, in the Lx = 1280σρ0 simulation, the magnetic energy
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Figure 7. For different system sizes Lx: (left) transverse magnetic energy versus time, with an
inset showing Lx = 1280σρ0 alone, and (right) unreconnected flux versus time. The horizontal
dashed lines indicate the periods over which the average reconnection rate is given in Fig. 8,
and slopes corresponding to βrec = 0.04 and 0.02 (cf. §3.3) are shown as grey dotted lines.

depletion slows (compared with earlier times) between t ≈ 3Lx/c and t ≈ 5Lx/c, so that
UBt(t) is distinctly higher at t = 5Lx/c than in all the other simulations (Fig. 7 left,
inset). At t ≈ 3Lx/c, the lower layer in the simulation domain for Lx = 1280σρ0 has
two large, roughly equal-sized plasmoids, separated by ≈ Lx/2 (while the upper layer
already has only one final plasmoid at this time). In principle, one of the plasmoids could
either move left to merge with the other, or (since the simulation is periodic in x) it
could move right. Thus they reach a “Buridan’s Ass” metastable state that seems to
slow reconnection evolution for a short time. However, by 4.4Lx/c, the two plasmoids
have decided which way to move, and by 4.8Lx/c they have started to merge, causing
a burst of magnetic energy depletion; by the time the merger is nearly complete at
6.1Lx/c, UBt(t) has “caught up” to all the other simulations. Over short times, the
reconnection dynamics thus depends on the detailed behaviour of large plasmoids, which
has an element of randomness; however, the random plasmoid behaviour does not alter
the long-term behaviour of reconnection.
Figure 7 shows the evolution of transverse magnetic energy UBt(t) and unreconnected

flux ψ(t) for a range of Lx. Although UBt(t) often decreases fitfully, ψ(t) tends to decrease
more smoothly. Initially, ψ(t) falls very rapidly as reconnection is dominated by the initial
current sheet, and the rate of fall slows a little as the upstream plasma begins to dominate
reconnection (the larger Lx/δ is, the sooner this happens relative to the total duration of
reconnection). Eventually, the system reaches a stable magnetic configuration and ψ(t)
approaches a constant value; therefore, the reconnection rate must decrease over time,
eventually toward zero (in a closed system). The reconnection rates over two different
time intervals are shown in Fig. 8(left), namely for the two intervals 0.9 > ψ(t)/ψ0 > 0.8
and 0.8 > ψ(t)/ψ0 > 0.7, i.e., between the horizontal dashed lines in Fig. 7(right). As the
system size Lx/σρ0 increases from 160 to 2560, βrec (cf. §3.3) falls from ≈ 0.04 to ≈ 0.03
in the earlier interval, and from βrec ≈ 0.03 to βrec ≈ 0.02 in the later interval. However,
βrec stabilizes within the uncertainty of measurement by Lx ≳ 640σρ0.
Reconnection continues until approximately 0.27UB0 and 0.42ψ0 have been depleted;

the fractions of lost energy and flux are practically independent of Lx (Fig. 8, right),
although we note that they are specific to the fixed aspect ratio Ly/Lx = 2. The largest
simulation, Lx = 2560σρ0 shows slightly less loss in UBt and ψ, likely because it had not
quite finished reconnecting when it halted around 10Lx/c (cf. Fig. 7).
Importantly, the upstream magnetic energy and flux are both depleted by the same
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dashed lines in Fig. 7(right). (Right) The fraction of initial (transverse) magnetic field energy
converted to plasma energy (blue diamonds) and of upstream flux depleted (red plusses) during
reconnection versus system size Lx (for aspect ratio Ly/Lx = 2, with two layers). The largest
system size, Lx = 1280σρ0 had not quite finished reconnection when the simulation halted
around 10Lx/c; it would have depleted slightly more energy and flux if given more time.

amount—42 per cent. However, of that 0.42UB0 initially associated with magnetic field
lines that eventually undergo reconnection, only 0.27UB0 is converted to plasma energy;
the remaining 0.15UB0 ends up stored in the “reconnected” magnetic field around and
within plasmoids.

Turning our attention to NTPA, Fig. 9 shows the electron energy spectra f(γ) at
t = 6Lx/c for simulations with different Lx [the left panel shows γ2f(γ), and the middle
shows γ4f(γ) to enhance small differences]. Aside from the smallest, all simulations have a
clear high-energy nonthermal power-law f(γ) ∼ γ−p; for the largest simulation, it extends
over almost a decade in energy. At t = 6Lx/c, the power-law index p steepens slightly
as Lx/σρ0 increases from 160 to 2560, from p ≈ 4.0 to p ≈ 4.5 (Fig. 9, right—cf. §3.7).
This steepening may be caused by a different acceleration mechanism that operates over
long times (hence only in very large simulations), as we will discuss presently.

The time evolution of power-law index p and high-energy cutoff γc (cf. §3.7), for all
the Lx, are shown in Fig. 10 (left and middle panels). The initial development of the
power law, as the first particles reach high energies, results in p(t) rapidly falling (i.e., the
power law hardens/flattens) to approach an index between 3.9 and 4.5. From its minimum
value, the slope appears to steepen slowly over time, mostly notably for simulations with
Lx ⩾ 640σρ0, all of which show p(t) rising by about 0.2 from its minimum.

Correspondingly, the cutoff γc(t) grows rapidly as the power law develops, attaining
after only 1–2Lx/c a value ranging from γc = 6σ for Lx = 80σρ0 to γc = 15σ for
Lx = 2560σρ0. For Lx ⩾ 1280σρ0, γc(t) continues to grow over time, and even the
case Lx = 640σρ0 experiences some limited growth after about t = 7Lx/c. Thus at late
time t = 9Lx/c, γc ranges from 6σ to 33σ as Lx increases by a factor of 32, consistent
with γc ∼

√
Lx; importantly, although γc increases with Lx, the increase is clearly

sublinear. This is consistent with very rapid (extreme) acceleration up to γc ∼ 4σ (Werner
et al. 2016; Uzdensky 2020), at which energy particles become trapped in plasmoids
and cease extreme acceleration, but undergo much slower acceleration inside plasmoids
(Petropoulou & Sironi 2018; Hakobyan et al. 2021; Uzdensky 2020). Interestingly, the
slow growth in γc(t) seems to correspond to the slow steepening in p(t), suggesting that
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the slower acceleration mechanism may yield a steeper power law. The increase in p
with Lx seen in Fig. 9(right) may simply reflect the increasing influence of the slower
acceleration mechanism after longer times (accessible in large systems).

Very large reconnection simulations sometimes suffer at late times from slow-growing
instabilities. The largest case, Lx = 2560σρ0, exhibited potentially troubling energy
nonconservation, with the total energy growing by almost 1 per cent between t = 7Lx/c
and t = 10Lx/c. We find that this typically results in unphysical heating of the lowest-
energy particles but does not affect the high-energy spectrum. To rule out this possibility,
we compare the simulation with fiducial resolution ∆x = σρ0/3 to one with higher
resolution, ∆x = σρ0/4 in Fig. 10(right); both show essentially similar evolution of p(t)
and γc(t), although the higher-resolution case suffered only a 0.05 per cent increase in
total energy.

In summary, the system-size dependence of 2D reconnection with σh = 1 is weak but
not entirely insignificant for Lx ≳ 160σρ0. The reconnection rate (normalized to cB0) is
βrec ≈ 0.03 or (c/vA)βrec ≈ 0.04. During reconnection, some particles are very rapidly
accelerated into a power-law energy spectrum ∼ γ−p with p ≈ 3.9–4.4, extending up to a
cutoff around γc ≳ 6σ. This rapid acceleration presumably ends when particles become
trapped in plasmoids. Over time, a much slower acceleration mechanism continues to
accelerate particles trapped in plasmoids (Petropoulou & Sironi 2018; Hakobyan et al.
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2021), resulting in a slight steepening of p (up to ≈ 4.6 in our largest simulation) and
slow but significant growth in γc (up to ≈ 33σ in our largest simulation).

4.4. 2D reconnection: guide magnetic field

We now investigate the effect of adding an initial uniform guide magnetic field Bgzẑ,
considering Bgz/B0 ∈ {0, 0.25, 0.5, 0.75, 1, 1.5, 2, 3, 4}. All simulations presented in this
subsection are 2D with Lx = 1280σρ0, starting with an initial current sheet half-thickness
δ = (2/3)σρ0 (η = 5, βd = 0.3), and zero perturbation (a = 0).

A weak guide field Bgz ≲ 0.25B0 has very little effect on the magnetic energy evolution.
A strong guide field, however, slows reconnection and inhibits overall magnetic energy
conversion, as shown in Fig. 11. The left panel shows the transverse magnetic energy
UBt versus time, for simulations with Bgz/B0 ranging from 0 to 4; as Bgz increases
above ≃ 0.5B0, UBt(t) falls more slowly, and ultimately decreases by a smaller amount.
Correspondingly (cf. Fig. 11, right), the unreconnected flux decreases more slowly, and
less flux is reconnected overall.

This slowing of reconnection has been previously attributed to the decrease in the
effective component (x-projection) of the Alfvén velocity (Liu et al. 2014; Liu et al.
2015; Werner & Uzdensky 2017). The upstream Alfvén velocity, including B0 and Bgz,

is vA = c
√
(B2

0 +B2
gz)/(B

2
0 +B2

gz + 4πh), where h is the plasma enthalpy density (h =

4nbθbmec
2 in the ultrarelativistic limit). The projection of vA/c along B0 is therefore
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(4.1)

where, following Werner & Uzdensky (2017), we define heff ≡ h+B2
gz/4π to be an effective

enthalpy density including a contribution from the guide field. Then, defining σh,eff ≡
B2

0/(4πheff), we have vA,x = (σ−1
h,eff + 1)−1/2, which reduces to vA/c = (σ−1

h + 1)−1/2

for Bgz = 0.

Figure 12 quantifies the reconnection rates (left panel) and amount of magnetic energy
and upstream flux depleted (right). The left panel shows the reconnection rates, averaged
over the time interval during which ψ(t) falls from 0.9ψ0 to 0.8ψ0. The reconnection rate,
normalized to B0c (blue circles) falls from roughly 0.03–0.04 for Bgz ≲ 0.75B0 to around
0.01 for Bgz = 4B0. The red squares show reconnection rates normalized to B0vA,x.
For Bgz/B0 ≳ 1, (c/vA,x)βrec is relatively constant around 0.03; however, (c/vA,x)βrec is
closer to 0.04 or even 0.05 for Bgz/B0 < 1. As a compromise, Fig. 12 shows a dashed
line at (c/vA,x)βrec = 0.038; the dotted line shows the corresponding βrec.

According to Eq. (4.1), the guide field should not significantly suppress reconnection

for Bgz/B0 ≪ σ
−1/2
h = 1. We note that a much stronger guide field would be needed to

suppress nonrelativistic reconnection (where σh ≪ 1). On the other hand, our previous
work (Werner & Uzdensky 2017) considered σh ≃ 25, and correspondingly observed that
even Bgz = B0/2 significantly suppressed reconnection, slowing the reconnection rate
and reducing the overall magnetic depletion (although Bgz = B0/4 had only a weak
effect).

Figure 12(right) shows that the total fraction of UBt converted to Uplasma decreases
with stronger guide field—from around 27 per cent for Bgz = 0 to only about 6 per cent
for Bgz = 4B0; similarly, the amount of flux reconnected decreases from 42 per cent
to around 21 per cent. We find that the fractional loss in ψ is fit fairly well by
0.86(Lx/Ly)(1 + 2B2

gz/B
2
0)

−1/5, and the loss in UBt by 0.56(Lx/Ly)(1 + 4B2
gz/B

2
0)

−2/5;
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Figure 12. (Left) Reconnection rate versus Bgz: blue circles show the reconnection rate βrec
(normalized to B0c), and red squares show (c/vA,x)βrec—cf. Eq. (4.1). The blue dotted line
shows what βrec would be if (c/vA,x)βrec were constant at 0.038 (the red dashed line). The
reconnection rates are averages over the period during which ψ(t) falls from 0.9ψ0 to 0.8ψ0 (i.e.,
between the horizontal grey, dashed lines in Fig. 11, right). (Right) The fractional amount of
transverse magnetic energy UBt (blue x’s) and upstream magnetic flux (red plusses) lost during
reconnection, versus Bgz, along with empirical fits for both.

these functional forms are meant for convenient comparison with future results and we
offer no justification for them.
Even a weak guide appears to enhance the reconnection rate slightly. However, because

stochastic variability can yield different reconnection rates, more work is needed to
determine whether this trend is statistically significant.

With stronger guide field, reconnection ends (or reaches a stable configuration) with a
smaller amount amount of magnetic energy and flux depletion. This may be caused by
the increased pressure of the guide magnetic field in plasmoids. The guide magnetic field
pressure resists compression with adiabatic index Γ = 2, compared with only Γ = 4/3 for
relativistic plasma alone [e.g., compressing a flux tube with uniform magnetic field from
volume Vi to Vf while preserving the magnetic flux inside requires work ∝ (Vi/Vf )

Γ−1−1
where Γ = 2; whereas compressing the plasma in the tube requires work ∝ (Vi/Vf )

4/3−1−
1]. As a result, for the same amount of (transverse magnetic field) flux reconnected, the
major plasmoid will be larger when the guide field is stronger. Therefore, the growth
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Figure 13. (Left) Particle energy spectra f(γ) at t = 12Lx/c, for different imposed guide
magnetic fields, show that increasing guide field inhibits NTPA, resulting in steeper power
laws. Slopes with power-law indices of 4.4, 4.8, and 7 are shown for comparison. (Right) The
steepening is quantified by power-law indices fit to the high-energy part of f(γ), with error bars
encompassing the middle 68 per cent of fitted indices over times from 4 to 10Lx/c. The line
4.4+2Bgz/B0 is shown as a guide, but it is important to remember that precise measurement of
steep power laws is very difficult, and in fact the cases with Bgz/B0 ⩾ 1.5 are not very different
from the initial Maxwellian at t = 0 (shown in dashed grey).

of the major plasmoid reaches the system-size scale earlier (in terms of amount of flux
reconnected, not time) and shuts down reconnection.
Perhaps not surprisingly, the slowing of reconnection inhibits NTPA, as shown in

Fig. 13, which displays the final particle energy spectra (left panel) and the fitted
power-law indices (right). Overall, less energy is transferred from the magnetic field
to the plasma, and at any given well-above-average energy, stronger guide field results
in a smaller fraction of particles at that energy, hence NTPA is less efficient. As Bgz

increases, the power law steepens from p ≃ 4 to p ≳ 10 at Bgz = 4B0. The line
p ≈ 4.4+2Bgz/B0 very roughly captures this trend, although it is important to remember
that the uncertainty in measuring steep power laws (p ≳ 4) can be quite high (our
fitting method returns consistent values characterizing the spectra, but fundamentally
one should question what it means to measure a steep power law, e.g., ∼ γ−8 as γ varies
over just a half decade). This general trend was also observed for σh = 25 reconnection
in Werner & Uzdensky (2017), where the steepening was fairly well described by p =

1.9+0.7σ
−1/2
h,eff ; however, this formula provides a very poor fit for the σh = 1 simulations,

perhaps because we are in the regime of very steep power laws that cannot be reliably
measured at higher energies without orders of magnitude more simulated particles.

5. 3D reconnection with moderate magnetization

Despite many similarities between 2D and 3D in the σh = 1 regime (especially in
NTPA), current sheet evolution in 3D sometimes shows substantially different behaviour.
Reconnection still begins fairly rapidly in 3D, perhaps urged on (at very early times)
by the thin tearing-unstable current sheet of the initial state, but the rate of magnetic
energy conversion at early times is only about half that in 2D. However, while 2D systems
approach a non-reconnecting, relaxed steady state after 5–10Lx/c, 3D systems continue
to convert magnetic energy at a slower rate (by an order of magnitude or more) for many
tens of Lx/c. During 2D reconnection, part of the upstream magnetic energy is transferred
to the plasma, and part is pumped into “reconnected fields”—i.e., into plasmoids—where
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it remains in magnetic form (see, e.g., Sironi et al. 2015). In 3D reconnection, plasma is
also energized, but upstream magnetic energy pumped into plasmoids (or flux ropes) is
subsequently converted to plasma energy (rather than building up as in 2D; the decay
of 3D flux ropes was also observed for σh ≫ 1 in Guo et al. 2020). Thus, while 2D
reconnection simulations (in a closed periodic box) end up in a relaxed steady state with
substantial magnetic field stored in one large plasmoid (for each initial current sheet),
3D reconnection results in a thickened, roughly uniform, much less structured, turbulent
current layer with greatly diminished magnetic field. This thickened layer continues slowly
to convert magnetic energy to plasma energy; ultimately more magnetic energy can
be converted in 3D than in 2D. Despite a lower reconnection rate in 3D (hence lower
reconnection electric field), NTPA remains robust.
While 2D reconnection can be bursty due to stochastic creation, movement, and

merging of plasmoids, these events tend to be random blips in a predetermined course
of evolution toward a unique final state. In contrast, 3D reconnection exhibits greater
variability, with stochastic events leading to a thicker turbulent layer in different ways. In
particular, we have often observed the following behaviour. Because of RDKI, the current
layer sometimes develops large-amplitude kinking in z, resulting in the layer dramatically
folding over on itself like a breaking wave. This tends to deplete very rapidly almost all the
magnetic energy within the original amplitude of oscillation, resulting in a thick turbulent
layer. However, this behaviour is not inevitable; sometimes the kink amplitude grows but
stops short of folding over on itself, resulting in much slower energy conversion and layer
growth. It remains unclear—because it might require running simulations for hundreds
or thousands of Lx/c—whether a simulation that does not undergo “layer-folding” will
ever convert as much energy or thicken the layer as much as one that does.
In the following subsection, we present an overview of differences between 2D and 3D

current sheet evolution, using our largest simulations. To study the effect of “3D-ness”
we consider four configurations that are identical but for different values Lz. The two
smallest Lz behave similarly (i.e., like 2D reconnection), whereas the two largest exhibit
3D effects. Following the overview (§5.1), which will describe magnetic energy conversion
and NTPA as well as plasma and field evolution, we include a brief discussion of increased
stochastic variability, or sensitivity to initial conditions, in 3D (§5.2). Then, using an
extensive set of slightly smaller simulations, we will specifically explore the dependence
of energy conversion and NTPA on the initial current sheet configuration (§5.3 and §5.4),
on the aspect ratio Lz/Lx (i.e., the “3D-ness,” §5.5), and finally on guide magnetic field
(§5.6).

We note that the 3D generalization of a plasmoid or magnetic island that forms in 2D
reconnection is a flux rope. However, we continue to use the term “plasmoid” to refer to
flux ropes or any concentrations of plasma in 3D reconnection, both for simplicity and
because we have not yet thoroughly investigated these objects to determine whether they
truly have the magnetic structure of flux ropes.

5.1. Overview of 3D reconnection with σh = 1, and comparison with 2D

In this section we begin with an overview of basic 3D current sheet behaviour for one
specific configuration, namely: σh = 1, zero guide field (Bgz = 0), zero initial perturbation
(a = 0), an initially-thin current sheet δ = (2/3)σρ0 (η = 5), and Lx = 512σρ0 = Ly/2
(the largest Lx of any 3D simulations in this paper). We will show results from simulations
with Lz/Lx = 0 (a 2D simulation), 1/32, 1/8, and 1; we will show in particular that
Lz = Lx/32 behaves essentially like the 2D simulation, while the two largest simulations
are similar to each other but quite different from the smaller two, presumably because
of 3D effects that appear for sufficiently large Lz.
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−∆UBt,up

UB0

∆UBt,layer

UB0
−∆UBt

UB0
≈ ∆Uplasma

UB0
−∆ψ
ψ0

βrec,0.95−0.90

nearly 2D
(
Lz
Lx

= 0, 1
32

)
: 0.44–0.47 0.17–0.20 0.27 0.37–0.41 0.043–0.047

fully 3D
(
Lz
Lx

= 1
8
, 1
)
: 0.18–0.21 0.01 0.18–0.20 0.14-0.16 0.01–0.02

Table 2. The fractional loss in transverse magnetic field energy UBt in the entire simulation
(nearly equal to the gain in plasma energy Uplasma), divided into upstream and layer regions
(UBt,up+UBt,layer = UBt), and the loss in unreconnected magnetic flux ψ, over the first 10Lx/c,
for simulations with Lx = 512σρ0 and Bgz = 0. Changes are shown normalized to initial
magnetic energy UB0 and initial unreconnected flux ψ0. The fully 3D simulations would continue
to deplete magnetic energy if run longer (cf. §5.5). Also shown is βrec (cf. §3.3), averaged over
the time during which ψ(t) drops from 0.95ψ0 to 0.90ψ0.

Before looking at the evolution of 2D and 3D current sheets, it is helpful to see how
global energies and unreconnected flux vary in time. We begin by looking at global field
energies versus time, normalized to initial magnetic energy UB0, in Fig. 14(a)-(c). In
these simulations without guide field, almost all the field energy is contained in UBt, the
energy in the transverse magnetic field Bt = Bxx̂+Byŷ. In all cases UBz(t) < 0.003UB0,
and the energy in the electric field E (not shown) also remains below 0.003UB0. The Bz

and E field components can nevertheless be substantial within the (the small volume
of) the layer. Further investigation of Bz is left for future work, but we note that there
should be no Bz at all in a 2D MHD description (for pair plasma with no initial guide
field, Zenitani et al. 2009), while 2D PIC simulations do develop non-zero Bz (Zenitani
& Hesse 2008).
Figure 14(a) shows UBt decreasing over time in all cases as it is converted to plasma

energy. The simulations with larger Lz/Lx = 1/8, 1 show similar magnetic depletion,
and those with smaller Lz/Lx = 0, 1/32 closely resemble each other; in this and other
diagnostics we will see that the former (Lz/Lx = 1/8, 1) exhibit 3D behaviour, while the
latter are essentially 2D. We find that magnetic energy depletes roughly half as fast in
3D as in 2D, at early times up to ∼ 4Lx/c (Fig. 14a; see also table 2, which compares
energy changes and reconnection rates). While the 2D simulations have mostly finished
reconnection by t ∼ 4Lx/c (approaching a final state a few Lx/c later), the 3D simulations
embark upon a second stage of prolonged slow energy conversion (cf. Liu et al. 2011),
converting magnetic energy to plasma energy an order of magnitude still more slowly
for many tens of Lx/c. Were these simulations to run many times longer (which they
did not, because of prohibitive computational cost), the 3D simulations would eventually
convert more magnetic energy than the essentially 2D simulations; we will see in §5.5,
using smaller simulations (Lx = 341σρ0), that 3D simulations convert more magnetic
energy over ∼ 50Lx/c than 2D simulations.

More magnetic energy conversion is possible in 3D because the magnetic energy
pumped into plasmoids can be depleted in 3D, whereas in 2D plasmoids remain stable. To
demonstrate how little magnetic energy remains stored in plasmoids in 3D, we separately
measure the transverse magnetic energy in the upstream and in the layer regions (cf. §3.1):
UBt = UBt,up + UBt,layer. With no guide field and no initial perturbation, the initial
magnetic energy UB0 = UBt0 is entirely in unreconnected transverse field. During
magnetic reconnection in 2D, part of this gets converted into plasma energy Uplasma,
and part into UBt,layer in plasmoids. Over the first 10Lx/c, the (nearly) 2D simulations
take the initial upstream magnetic energy UB0 and convert about ∆Uplasma ≈ 0.27UB0

to plasma energy while building up a comparable amount, ∆UBt,layer ≈ 0.20B0, in
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Figure 14. Energy in various magnetic field components versus time for 4 different Lz/Lx,
normalized to UB0 ≈

∫
dV B2

0/8π: (a) UBt =
∫
dV (B2

x + B2
y)/8π, (b) UBz =

∫
dV B2

z/8π, and
(c) UBt,layer, the magnetic energy in the layer (cf. §3.1). The electric field energy (not shown)
is always less than 0.003UB0. Finally (d), the unreconnected magnetic flux ψ(t); dotted grey
lines indicate dimensionless reconnection rates, (cB0Lz)

−1(dψ/dt), of 0.045 and 0.015, which
are roughly the rates of nearly 2D and 3D simulations, respectively, between the grey dashed
lines, and also 0.002, roughly the 3D rate at later times.

plasmoids, where it remains trapped. Since the energized particles are also trapped in
plasmoids, we estimate that the magnetic energy in plasmoids is about 2/3 of the plasma
energy in plasmoids. Over the same time, fully 3D simulations convert∆Uplasma ≈ 0.2UB0

to plasma energy, but magnetic energy in the layer quickly decays, leaving a strikingly
smaller upper bound on the amount of energy, ∆UBt,layer ≈ 0.01UB0, that could be in
plasmoids (see Fig. 14c and table 2). Although 3D simulations deplete upstream energy
UBt,up more slowly, they thus convert it more completely to plasma energy.
Along with magnetic energy, we can also measure the unreconnected magnetic flux,

which decreases over time, faster in 2D than in 3D. In 3D, as in 2D, some of the upstream
flux is promptly reconnected, ending up in plasmoids, as in 2D. Unlike in 2D, however, in
3D some upstream flux may be promptly annihilated, and also (only in 3D) reconnected
flux is subsequently annihilated as plasmoids or flux rope structures become unstable
and decay. It is nontrivial to measure how much upstream flux is annihilated promptly
without first undergoing reconnection, but we can conclude from the relatively small
amount of magnetic energy in the layer that ultimately, in 3D, most of the lost upstream
flux is annihilated (versus being stored permanently in plasmoids). Figure 14(d) shows
the unreconnected flux ψ(t) diminishing as reconnection occurs for the four different
values of Lz/Lx. Table 2 shows that up to t = 10Lx/c, the nearly 2D simulations lose
40 per cent of the initial unreconnected flux, and fully 3D simulations lose only about
15 per cent (though, over time, they would reconnect and/or annihilate more upstream
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Figure 15. The displacement ∆yc(x, z, t) of the current sheet central surface from the original
midplane (cf. §3.2), for Lz = Lx at two different times, t = 0.3Lx/c (left) and 0.6Lx/c (right),
shows increasing rippling due to the RDKI.

flux, whereas the 2D simulations have essentially finished). The reconnection rate βrec at
early times, measured between ψ(t) = 0.95ψ0 and ψ(t) = 0.90ψ0 (the horizontal dashed
lines in Fig. 14d) and normalized to B0c, is about 0.045 for the nearly 2D simulations,
and 0.015 for 3D (see table 2); later, around t = 8Lx/c, βrec is on the order of ∼ 0.002
for the 3D simulations (and fluctuating around zero for 2D).

Having shown significant differences (as well as qualitative similarities) between 2D
and 3D energy and upstream flux depletion, we will describe the evolution of the current
sheet. First, we will describe the kinking of the sheet, which cannot occur in 2D at all;
then we will spend some time describing 3D behaviour that resembles 2D reconnection.

Perhaps the most expected (by now) new effect in 3D is the kinking of the current
sheet in the z direction due to the RDKI (Zenitani & Hoshino 2007, 2008). Simulating
the z dimension enables the RDKI, which can occur because of the relative movement of
electrons and positrons in the z-direction and causes rippling of the sheet. Figure 15
shows (for the case with Lz = Lx) a current sheet rippling due to RDKI with an
amplitude ∆y ≈ σρ0 at t = 0.3Lx/c, growing to 3σρ0 at t = 0.6Lx/c [for comparison,
the initial current sheet thickness was δ = (2/3)σρ0]. It had originally been thought that
RDKI—at least in cases with weak guide field—might out-compete the tearing instability,
thereby suppressing reconnection (Zenitani & Hoshino 2008). However, later, larger
3D simulations (in the high-σh regime) found that, despite active RDKI, reconnection
ultimately does not seem to be inhibited, even with zero guide field (Sironi & Spitkovsky
2014; Guo et al. 2014, 2015; Werner & Uzdensky 2017).

Indeed, 3D simulations do exhibit behaviour that, at least locally, shares many char-
acteristics with 2D reconnection. Although energy is clearly transferred from magnetic
fields to plasma, determining whether and where reconnection occurs is nontrivial in
3D. We tentatively suggest, based on our 3D simulations, that reconnection occurs in
patches within the layer—patches that may be the analogues of elementary current sheets
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in 2D reconnection (i.e., the smallest inter-plasmoid current sheets, which are not further
broken up by secondary tearing). It is possible that reconnection is slower (overall) in
3D because the area of actively-reconnecting regions (patches) is smaller, while the local
reconnection rate remains as high as in 2D (such patchiness with locally high reconnection
rates has been observed for σh ∼ 1 by Yin et al. 2008). Our results are consistent with
this hypothesis, but so far we have been unable to measure local reconnection rates
with enough certainty to conclude this definitively; we leave a dedicated investigation
of this problem to future studies. However, we offer evidence that reconnection does in
fact occur (though in patches), and that the patches evolve over time, and continue to
exhibit signatures of reconnection even at late times during the “slow 3D reconnection
stage” (e.g., t > 4Lx/c). Specifically, we will see that actively-reconnecting regions are
areas where the current sheet is thin, that they exhibit outflows (roughly) in the ±x
directions, and that they are the areas with strongest parallel (to B) electric fields and
E · J > 0.
Figure 16 shows the electron density ne, normalized to nbe0 = nb0/2, at five different

times (tc/Lx = 0.3, 0.6, 1.1, 2.3, and 4.6) in x-y slices, at z = 0 for the nearly 2D
simulation with Lz = Lx/32, and at z = 100σρ0 and z = 300σρ0 for Lz = Lx. A sample
of magnetic field lines (traced while ignoring Bz) shows that ne ≲ nbe0 in the upstream
region, where flux is unreconnected (cf. §3.3), while ne > nbe0 in most of the layer.
Therefore, looking at density is a good if rough way to track the gross evolution of the
shape of the layer.
For Lz = Lx/32, the picture is practically the same as in 2D: the initial current sheet

tears, small plasmoids form and merge into larger plasmoids, until there is just one
plasmoid (and a monster one at that) in the layer. Between plasmoids, the layer is thin
at X-points (really, X-lines extended in the z direction) where reconnection takes place.
For Lz = Lx, the picture is initially very similar to that in 2D, when viewed in an x-y
slice. For example, at t = 0.3Lx/c, a similar number of plasmoids is visible (although
a slice at any value of z looks qualitatively similar, these structures do not appear to
extend uniformly in z; i.e., at early times we do not observe long flux ropes of length
Lz). Soon (by t = 0.6Lx/c), however, the 3D layer shows general thickening without the
clear plasmoid structures so familiar in 2D. At some rare places (e.g., x ≈ z ≈ 100σρ0,
tc/Lx = 1.1–2.3), the layer remains very thin, as at X-points in 2D. In the vicinity of these
thin places we still see some ballooning of the layer, resembling a larger plasmoid, but
smaller (in y) than in 2D, and with much less distinct density structure. After 2.3Lx/c,
most of the layer is thick, but not as thick as plasmoids in 2D.
The Lz = Lx/32 simulation is fairly uniform in z, consistent with its behaviour

resembling 2D reconnection. The 3D simulation, however, is very nonuniform, as we
will see in a series of plots showing various fields at time t = 2.3Lx/c, at the centre of
the layer, i.e., at yc(x, z, t) such that Bx(x, yc, z, t) = 0.
Figure 17 shows various quantities at the layer central surface, yc(x, z, t) (cf. §3.2),

versus x and z, for the Lz = Lx case, at t = 2.3Lx/c. We focus particularly on region
A, a patch of size (at this time) ≃ 100σρ0 located around x ≈ z ≈ 100σρ0, which we
believe to be an actively-reconnecting region; we saw in Fig. 16 that it is a site where
the layer is near its thinnest. Panel (a) shows the current density Jz in the z-direction,
which is indeed most prominent in this reconnecting region, consistent with the layer
being thin. (We note that current sheets are locally not necessarily parallel to z, but are
nearly parallel to z in many places.) Panel (b) shows strong outflows from this region in
the ±x directions, as one would expect from reconnection; similarly, region B, around
x ≈ 320σρ0 and z ≈ 400σρ0 with size (at this time) similar to patch A, has a high
current density and strong outflows. There are also smaller reconnecting regions—e.g.,
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Figure 16. A time sequence of electron density ne in the x-y reconnection plane, in
nearly 2D (Lz = Lx/32, left column) and 3D (Lz = Lx, middle and right) simulations
for tc/Lx = 0.3, 0.6, 1.1, 2.3, 4.6. Blue lines follow magnetic field lines, ignoring Bz (with a
higher density of lines shown closer to the midplane). The left column shows z = 0 (which
looks fairly similar to all other z values for this nearly 2D case); the middle column shows
z = 100σρ0 ≈ 0.2Lz and the right column shows z = 300σρ0 ≈ 0.6Lz.

at x ≈ 260σρ0 and z ≈ 280σρ0. The “line” between the outflows thus appears to be a
stagnation line, which is commonly associated with an X-line in the classic 2D picture
of (symmetric) reconnection. Panel (c) shows ∥E∥, which is sizeable (∼ 0.1B0) over a
significant region, especially in the neighbourhood of large, strong outflows. However,
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Figure 17. Field quantities versus x and z at the layer central surface, i.e., at y = yc(x, z, t) such
that Bx(x, yc, z, t) = 0 (cf. §3.2). A and B indicate—roughly—examples of actively-reconnecting
regions. (a) The current density in the z-direction, Jz, is highest in reconnecting regions, where
the layer is thin. (b) vx = (ve,x+vi,x)/c, the average of electron and positron x-velocities, shows
strong outflows from reconnection regions. (c) The electric field, ∥E∥ is largest in reconnecting
regions and also in strong outflows. (d) Although small, E∥, the magnitude of the component
of E parallel to the local B, is stronger in reconnecting regions. (e) E · J indicates dominant
power transfer from fields to plasma, mostly in reconnecting and outflow regions. (f) E∥ · J∥
is positive and strongest in reconnecting regions, indicating significant plasma energization by
parallel electric fields (or electric fields where B ≈ 0). All plotted quantities were averaged over
yc − σρ0 < y < yc + σρ0.

(panel d) the parallel electric field |E∥| (parallel to the local B) is largest only in a region
much closer to the stagnation line, as expected. Panel (e) shows that E · J has more
strongly-positive areas than negative, indicating energy transfer from electromagnetic
fields to the plasma; this transfer occurs around X-lines and extended outflows, but as
panel (f) shows, the region where E∥J∥ is most positive is limited to areas closer to the
largest stagnation lines (in regions A and B). Figure 17 thus suggests that reconnection
is occurring in patches (such as regions A and B), perhaps not with such neat geometry
as in 2D, but exhibiting basic signatures, such as a thin layer with high current density,
strong outflows, particle energization, and indeed particle energization by parallel electric
fields or by electric fields in a region of weak magnetic field.

Very early in time, the layer exhibits many small patches of active reconnection. At
any point in time, a patch tends to have roughly the same size in x and z (the x-extent
can be seen in Fig. 16). For example, patches have size ∼ 20σρ0 at t = 0.3Lx/c. It is
perhaps therefore not surprising that the simulation with Lz = Lx/32 = 16σρ0—which
is smaller than the patch size even at this early time—behaves like 2D reconnection.
Over time (for Lz = Lx), the number of reconnecting patches decreases rapidly, but the
surviving patches grow in size, in both x and z. By 2.3Lx/c, the 3D simulation has 2
major patches (regions A and B), with perhaps a few much smaller, probably less active
ones. By 4.6Lx/c, only region A remains, although it seems to have shrunk in the z
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direction, perhaps spreading its current density a little wider in x. Importantly, region A
does continue to exhibit signs of active reconnection at these late-stage times, when the
global reconnection rate is relatively slow in 3D. We leave a systematic investigation of
the behaviour and statistics of these patches to future work.
Although the above-described patches in 3D locally resemble elementary reconnecting

current sheets in 2D, important differences emerge away from these patches. As previously
mentioned, we do not see the long-term storage of magnetic energy in highly-structured
plasmoids as in 2D; for example, in 3D reconnection we do not see clear signatures of
persistent, growing structures extended across the simulation in the z-direction (as we
would expect flux ropes to be), e.g., in Fig. 17. In (nearly) 2D, the magnetic field is
somewhat diminished far upstream of major X-lines, e.g., to ≈ 0.7B0 more than 100σρ0
upstream at t = 4.6Lx/c; at the same time, the magnetic field rarely falls below 0.3B0

anywhere (Fig. 18, left). In 2D, plasmoids continue to grow roughly up to the size of
the simulation, when the magnetic configuration prevents further reconnection. In 3D,
however, the current layer becomes a somewhat thickened turbulent region with relatively
sharp boundaries (where most current flows) inside which the magnetic field is generally
diminished. The magnetic field is practically full strength outside of the sharp boundaries,
while being less than 0.3B0 in a large fraction of the volume within the boundaries
(Fig. 18, middle and right).
The evolution of current sheets in 3D is complicated, and demands much more study.

For now, however, we will move on to consider one of the most important consequences
of current sheet evolution and resulting energy conversion, namely NTPA.
Reconnection-driven NTPA is a promising candidate to explain, e.g., high-energy

X-ray and gamma-ray emission from a variety of astrophysical sources. It has been
previously suggested that NTPA in 3D might be suppressed by the RDKI interfering
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3.4, 4, and 4.4 are shown for reference, as in Fig. 19. Even though reconnection is much slower
after 4Lx/c than before, significant NTPA occurs between tc/Lx =4.3 and 8.6.

with reconnection (Zenitani & Hoshino 2007, 2008). And since the reconnection electric
field responsible for accelerating particles is proportional to the reconnection rate, and
we have shown here that the global reconnection rate is slower in 3D than in 2D,
we have another reason to suspect that NTPA might be considerably less efficient
in 3D. However, that is emphatically not the case here. Figure 19 shows electron
energy spectra f(γ) (compensated by γ2)—compared both at the same time (t =
9Lx/c) and after the same amount of magnetic energy has been given to particles
(∆Uplasma ≈ 0.17 UB0). Remarkably, all the spectra are pretty similar, exhibiting high-
energy nonthermal behaviour with a power-law slope ≈ −4 [i.e., f(γ) ∼ γ−4]. However,
though the difference may be small, 3D reconnection yields more particles with very
high energies than 2D; in addition, since ultimately 3D reconnection can convert more
magnetic energy to plasma energy than 2D, 3D reconnection may accelerate more
particles overall (not just at the very highest energies).
NTPA continues to occur (in 3D) even during the second stage of reconnection, when

the global rates of reconnection and magnetic energy conversion are smaller by an order of
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magnitude compared with the first stage. Figure 20 shows the spectra for Lz = Lx at four
different times, tc/Lx = 1.1, 2.3, 4.3, 8.6, chosen so that between successive times, Uplasma

increases by equal amounts, namely 0.04UB0—i.e., ∆Uplasma/UB0 = 0.05, 0.09, 0.13, 0.17.
Even after t ≃ 3Lx/c, when the magnetic energy is at 89 per cent and after which the
reconnection rate drops significantly, we see that f(γ) continues to increase at high
energies. Indeed, the increase in f(γ) preserves the power-law slope at high energies; the
high-energy slope of f(γ) does not decrease after 3Lx/c, nor does the high-energy cutoff
decrease (if anything, the opposite occurs, possibly indicating re-acceleration of already-
energetic particles that have returned coincidentally to actively reconnecting regions).
It is possible that NTPA in 3D is at least as efficient as in 2D, despite the slower

(global) reconnection rate in 3D, because in 3D the local reconnection rate is as high as
in 2D within actively-reconnecting patches. Thus NTPA may be occurring in a similar
manner in 2D and in 3D, but in a relatively smaller region in 3D. This result is consistent
with Yin et al. (2008); the global reconnection rate drops because there are fewer/smaller
patches, not because local reconnection rates drop.

Furthermore, the stark contrast in plasmoid evolution in 2D and 3D might promote
more efficient NTPA in 3D. In 2D, ballooning plasmoids expand deeply into the upstream,
and can contain higher magnetic field than the upstream region; the magnetic fields of
large plasmoids can trap high-energy particles (with Larmor radii a large fraction of
the plasmoid size; Sironi et al. 2016; Uzdensky 2020). In 3D, however, any structures
(flux ropes) formed from reconnected magnetic field decay (see also Zhou et al. 2020);
high-energy particles may be confined to the layer by the upstream magnetic fields, but
probably not by distinct sub-structures within the current layer. The lack of trapping
may result in more particle acceleration in 3D; whereas a particle trapped in a plasmoid
does not get accelerated by reconnection (but could be accelerated by a different,
slower mechanism; Petropoulou & Sironi 2018), untrapped particles could potentially
pass multiple times through reconnecting layers, thus experiencing a sort of multi-stage
acceleration (Dahlin et al. 2015; Zhang et al. 2021).

It is worth estimating, from a Hillas criterion perspective (Hillas 1984), the energy gain
of a particle in a typical reconnection electric field Erec ∼ 0.04B0, traversing an entire
patch of active reconnection. By t = 2.3Lx/c, there is a patch (region A in Fig. 17) in the
simulation with Lz = Lx that is about ℓ ∼ 100σρ0 in size. Thus we estimate an energy
gain eErecℓ ∼ 4σmec

2, which is roughly consistent with the high-energy cutoff (a similar
result was given for elementary current sheets in 2D, for high-σh reconnection; Werner
et al. 2016). We do not suggest this proves that all particles are being accelerated directly
by the reconnection electric field; the acceleration mechanism is beyond the scope of this
paper and remains under debate (see, e.g., Drake et al. 2006; Nalewajko et al. 2015; Ball
et al. 2018, 2019; Guo et al. 2019; Sironi & Beloborodov 2020; Kilian et al. 2020; Guo
et al. 2020; Uzdensky 2020; Zhang et al. 2021), but at least for 2D and 3D reconnection
with weak guide field, above-average-energy particles probably have gyroradii larger than
the layer thickness and will experience more acceleration by the motional electric field
of plasmoids, E = −(1/c)v × B (Guo et al. 2019; Kilian et al. 2020; Guo et al. 2020;
Uzdensky 2020). We offer this estimate simply as a way to compare system size to particle
energies.
Thus we have seen both striking similarities and striking differences between 2D and 3D

reconnection. Both convert significant amounts of magnetic energy to plasma energy, but
the conversion rate is slower in 3D. Many of the signatures of reconnection at 2D X-points
(or X-lines) are apparent in 3D simulations, but what happens in reconnection outflows
is very different. While 2D simulations beget a growing, highly-structured hierarchy of
distinct plasmoids containing energized particles and reconnected magnetic field, 3D
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simulations only form small plasmoid-like features, which subsequently decay, allowing
magnetic field energy in the layer to be converted to plasma energy. As a result, 3D
simulations ultimately convert more magnetic energy than in 2D. The decay of plasmoids
in 3D means that the reconnected flux in those plasmoids is annihilated, while in 2D, flux
is almost perfectly conserved, such that all the lost upstream flux ends up as reconnected
flux inside plasmoids. In 3D, the lost upstream flux is mostly annihilated (and it is yet to
be determined what fraction is directly annihilated and what fraction is first reconnected
and later annihilated). Interestingly, perhaps the strongest similarity between 2D and
3D reconnection is NTPA; the spectrum of high-energy particles is very similar in both
cases, especially if compared at times when the depleted magnetic energy is the same.
With this overview finished, we will continue to examine differences between 2D and 3D
reconnection in more depth.

5.2. 3D reconnection: stochastic variability

An important difference between 2D and 3D current sheet simulations is the greater
stochastic variability in 3D. When initializing the simulations, the initial electric and
magnetic fields are precisely determined. However, the particle positions and velocities
representing the plasma distribution in Monte Carlo fashion are chosen randomly (accord-
ing to a precisely-given distribution). Thus two “identical” simulations will not be exactly
the same, and the initial microscopic randomness can lead to variability at macroscopic
scales.
In 2D reconnection, two “identical” simulations will yield different plasmoid formation,

motion, and merging; this can affect the global reconnection and energy conversion
rates. Smaller simulations often show greater stochastic variation in global quantities
such as energy versus time, because there are fewer plasmoids overall, increasing the
influence of erratic individual plasmoids. We have often observed that the process of
plasmoid merging (especially in simulations without initial perturbation; cf. §4.2) results
in two monstrously large plasmoids in a layer spaced apart by nearly Lx/2. These two
plasmoids will ultimately merge; but by symmetry due to periodic boundary conditions,
one plasmoid can either move left or right to merge with the other. This symmetry is
always eventually broken to yield a lower-energy magnetic configuration, but its breaking
can be ultimately traced to the initial microscopic randomness. As these plasmoids decide
which way to go for the final merger, the magnetic energy often stagnates at a roughly
constant level for a short time before rapidly declining during the final plasmoid merger
(see, e.g., Fig. 7, Lx/σρ0 = 640, 1280, and 2560, around 3–5Lx/c). However, due to
randomness, sometimes the final two plasmoids are not created so symmetrically, and
the magnetic energy decline continues smoothly. Thus we often describe reconnection
as “bursty”; in radiative reconnection, where high-energy particles cool rapidly, e.g. via
inverse Compton radiation, this burstiness is visible even in the spectrum of high-energy
particles (Werner et al. 2019).
Thus initial random particle positions and velocities lead to macroscopic variability

in 2D at system-size scales. However, although significant, this stochastic variability is
a sequence of random short detours on a path to essentially the same final state. In
fact, §4.2 showed that varying the initial current sheet configuration (varying more than
just different random velocities from the same distribution) still had little effect on the
overall evolution of reconnection. Looking at coarse time scales of O(Lx/c), the overall
rate and amount of energy depletion are fairly independent of initial conditions (for the
same upstream conditions).
In contrast, in a 3D reconnection simulation, random initialization can lead to sig-

nificant macroscopic differences that persist for long times—at least as long as we have
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Figure 21. 3D reconnection exhibits significant stochastic variability, as shown by three
simulations (A, B, and C) with Lx = 256σρ0 and Lz = Lx/4, with otherwise identical
parameters, but different initial random particle positions and velocities. Panels show: transverse
magnetic energy (left) and unreconnected flux (middle) versus time, and (right) particle energy
spectra at 20Lx/c, compensated by γ4.

been able to simulate. While a detailed study of random variation in large ensembles of
“identical” simulations is beyond the scope of this paper, we present here an anecdote of
high variability in 3D in a case with Lx = 256σρ0 and Lz = Lx/4, which we ran three
times with “identical” set-ups (Bgz = 0, η = 5, βd = 0.3, a = 0). The three simulations
ultimately exhibit very different magnetic energy and flux evolution (Fig. 21) even over
scales of tens of Lx/c; this variation is much greater than we see in 2D (although not
perfectly comparable, Figs. 3, 5, and 7 place a rough upper bound on variability in 2D;
also see Fig. 22). Nevertheless, despite these differences, the particle energy spectra are
similar despite different energy evolution (Fig. 21, right), with the exception of one case
exhibiting a bump above γ ≳ 10σ. At early times, the evolutions of magnetic energy and
flux (Fig. 21, left and middle) are reasonably similar, but they diverge after ≃ 5Lx/c.
Simulation (A) starts off with the highest magnetic conversion rate but ends up converting
the least amount (30 per cent) of magnetic energy after 30Lx/c. Simulation (B) rapidly
converts about 40 per cent of the magnetic energy within 10Lx/c, and then continues to
convert energy at a much slower rate for at least the next 20Lx/c. And simulation (C)
exhibits a medium-slow stage of energy conversion between 5 and 15Lx/c, followed by a
stagnant or very slow final stage similar to the others.
One mechanism that can result in large random variation in 3D is the following.

We will show in §5.4 that in some cases RDKI causes the layer to kink to very large
amplitudes (comparable to the kink wavelength). At some amplitude, the instability
becomes highly non-linear, resulting in severe distortion of the current sheet, somewhat
resembling breaking waves; when this happens, magnetic energy is rapidly depleted,
leaving a much-thickened layer that is much more stable against tearing and RDKI. This
process rapidly transforms the layer, putting the simulation in a very different state.
Some initial configurations (e.g, with higher βd, as we will see in §5.4) seem to make this
transformation more likely, but there appears to be a large range of conditions under
which it is possible but not inevitable. Thus two “identical” simulations, one that suffers
this transformation and one that does not, may evolve very differently over long times
(e.g., 50Lx/c).
In light of this, we try to be careful in this study about not drawing conclusions from

small differences between individual 3D simulations.

5.3. 3D reconnection: dependence on initial current sheet configuration

We showed in §4.2 that an initial magnetic perturbation barely affects energy con-
version rates and NTPA in 2D reconnection, despite some differences in the evolution
of the plasmoid hierarchy (but see Ball et al. 2018, and our comparison to it at the
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end of §4.2). Similarly, other parameters describing the initial current sheet can vary
over a wide range without much affecting 2D reconnection. Here, we explore a range of
different current sheet configurations, as in §4.2, but now in 3D, all the while keeping the
upstream/background plasma the same. In the substudies (3D-a,b,c) below, we will vary
the same parameters as in §4.2, (2D-a,b,c). However, the range of varied parameters will
be much more limited because of the increased cost of simulation in 3D; for instance, we
examine only two different perturbation strengths in (3D-a) and two different values of
η in (3D-b). As in §4.2, we set Bgz = 0. We will see that the initial current sheet has
more long-term influence in 3D than in 2D.
(3D-a) Varying the initial perturbation. In this substudy we will see that, in 3D, an

initial magnetic field perturbation (uniform in z) significantly alters the subsequent
evolution—unlike in 2D, where the initial perturbation is relatively unimportant, as
shown in §4.2(2D-a). Perhaps the easiest way to describe the effect of a perturbation
in 3D is that (in simulations with no guide magnetic field) the perturbation tends to
make reconnection more like 2D reconnection. Figure 22 shows energies and flux versus
time, for perturbed and unperturbed initial current sheets, in a fully 3D (Lz = Lx)
simulation and—for comparison—in a nearly 2D (Lz = Lx/16) simulation—all with
Lx = 341σρ0, η = 5, βd = 0.3, and Bgz = 0. We consider only one non-zero perturbation
strength, a = 12, for which the initial magnetic separatrix height extends to about
s = 6δ = 4σρ0 ≈ Lx/85, beyond the current sheet but still very far from Ly/4. To
give an idea of stochastic variability, we show two simulation runs for the nearly 2D
case without perturbation, and two for the 3D case with perturbation. As expected
from the 2D simulations in §4.2(2D-a), the nearly 2D cases are almost identical in all
three panels—the total transverse magnetic energy UBt(t), the magnetic energy in the
layer UBt,layer(t), and the upstream flux ψ(t); the perturbation has no significant effect
on energy or flux evolution in 2D. In contrast, the 3D cases with s = 0 and s/δ = 6
differ markedly; the s = 0 case initially converts magnetic energy more slowly, with
a correspondingly slower decline in unreconnected flux. Interestingly, the early energy
evolution in 3D with perturbation (s/δ = 6) is very similar to the nearly 2D cases
(with and without perturbation). After ∼ 3Lx/c, the initially-perturbed 3D simulation
starts to exhibit slower energy conversion (compared with earlier times or with the 2D
case at times up to t ≲ 6Lx/c), as shown in Fig. 22(left). Whereas the unperturbed 3D
case never has much magnetic energy UBt,layer in the layer, the perturbed 3D simulation
builds up energy in UBt,layer until 3Lx/c, just as in 2D (Fig. 22, middle). After 3Lx/c, the
perturbed 3D case continues to deplete magnetic energy by converting upstream magnetic
field energy to plasma energy and also by converting UBt,layer to plasma energy. The
amount of unreconnected flux ψ(t) in the perturbed 3D case also follows the 2D cases up
until 3Lx/c; after that the decline of ψ slows substantially in 3D but continues apace in
2D for another 3Lx/c. Although not shown here, the total magnetic energy continues to
fall after 10Lx/c in both 3D cases; for example it falls to 67 per cent of its initial value
after 25Lx/c for the perturbed simulation and after 50Lx/c for the unperturbed 3D case
(and continues to drop further). The uniform-in-z initial perturbation thus appears to
kick-start reconnection in 2D mode, creating long flux ropes that, being more uniform in
z, are more stable; eventually 3D effects appear, however, and the plasmoid structures
decay along with their associated magnetic fields.
The electron energy spectra are fairly similar for all cases, as shown in Fig. 23, especially

when comparing spectra at the same amount of total energy depleted (UBt = 0.75UB0).
The 3D simulations have perhaps slightly more efficient NTPA than the nearly 2D
simulations (e.g., they have more particles with γ ≈ 10σ), but this enhancement might
be attributable to stochastic variation. The high-energy spectrum for the unperturbed
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Figure 22. In 3D a perturbation (which is uniform in z) makes simulations behave more like
2D simulations, especially at early times. These plots show energies and flux versus time for
four simulation configurations: with perturbation (s/δ = 6, dashed lines) and without (s = 0,
solid), for 3D (Lz = Lx, blue) and nearly 2D (Lz/Lx = 1/16, red) simulations. All have
Lx = 341σρ0, η = 5, βd = 0.3, Bgz = 0. For two of the configurations—Lz/Lx = 1, s = 0 and
Lz = 1/16, s/δ = 6—two runs are shown (identical except for initially randomized particles).
The transverse magnetic energy, UBt(t)/UB0 (left), is very similar for the 3D simulation with
perturbation and both 2D simulations, but the 3D simulation without perturbation converts
magnetic energy much more slowly. The magnetic energy in the layer, UBt,layer(t)/UB0 (middle),
however, shows that the 3D case with perturbation initially resembles the 2D simulations,
but after 3Lx/c depletes the “reconnected” magnetic field energy in the layer. Similarly, the
unreconnected magnetic flux ψ(t)/ψ0 (right) shows that the 3D case with perturbation lies
between the 2D cases and the 3D case without perturbation.
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Figure 23. Electron energy spectra (compensated by γ4) for the same (perturbed/unperturbed,
2D/3D) simulations as in Fig. 22, are all fairly similar at the time when UBt/UB0 = 0.75
(left)—the differences at high energy would hardly be remarkable were it not for the γ4. Spectra
are also shown (right) at t = 9Lx/c, at which time simulations that have converted more
magnetic field energy have more high-energy particles. For comparison, the grey/dashed line
shows the initial spectrum at t = 0 in all simulations; and, a power-law segment with index
p = 3.6 (green/dotted) demonstrates a ten per cent (i.e., small) difference from p = 4 (which
would be horizontal). We note, since Fig. 22 shows only the first 10Lx/c, that the 3D case with
s = 0 does not reach UBt(t) = 0.75UB0 until about t = 20Lx/c, while all the other simulations
convert 0.25UB0 in about 5Lx/c.

3D simulation grows more slowly (than either the perturbed 3D simulation or 2D
simulations), consistent with the slower energy conversion, and this is reflected in less
NTPA at t = 9Lx/c relative to the other cases. Similarly, the perturbed 3D simulations
have converted more magnetic energy to plasma energy at t = 9Lx/c than the other
cases, and they correspondingly show more particles at high energies. Differences in the
high-energy spectra are magnified by plotting γ4f(γ); although the perturbed 3D cases
appear to show significantly more NTPA than the 2D or unperturbed 3D cases, the
difference is less than a 10 per cent change in power-law index p ≈ 4.
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To avoid the early similarities between 2D and 3D with an initial perturbation,
simulations discussed in the rest of §5 will have zero initial perturbation.
(3D-b) Varying current sheet density η with fixed βd = 0.3; i.e., varying δ/σρ0 for fixed

δ/ρd = 2.1. Varying the overdensity η = nd0/nb0, and fixing βd = 0.3 while maintaining
the Harris equilibrium, was seen to have relatively little effect on 2D reconnection in
large systems, as long as η ≫ 0.1 (see §4.2)—with the notable exception that decreasing
η (increasing δ/σρ0) merely delayed reconnection onset. As noted in §4.2 (also see table 1),
the initial gyroradius ρd and skin depth ded of the current sheet plasma, as well as its
half-thickness δ, all vary as η−1 when the upstream nb0 and θb are kept constant (hence
associated time scales also vary as η−1, explaining the onset delay). As η varies, the
thickness δ thus varies relative to upstream plasma scales, but not relative to the drifting
plasma scales.

Here we examine overdensities η = 1 and η = 5, in 3D (Lz = Lx) simulations with
Lx = 256σρ0, βd = 0.3, Bgz = 0, and zero initial perturbation. The choice of zero initial
perturbation differs from §4.2(2D-b), and is motivated by (3D-a), which showed that
an initial perturbation can suppress 3D effects, at least temporarily. Figures 24 and 25
compare energy and flux versus time, and resulting NTPA, for 3D simulations with dense
[η = 5, δ = (2/3)σρ0, θd = 0.10σ] and less dense [η = 1, δ = (10/3)σρ0, θd = 0.52σ] initial
current sheets; for comparison, nearly 2D simulations are shown for the same parameters
as the 3D simulations, except Lz = Lx/16. To estimate stochastic variability in 3D, we
show the results of three simulations with η = 5 and Lz = Lx (but just one run each for
η = 1 and both nearly-2D cases).
The total transverse magnetic energy (Fig. 24, left) shows that energy conversion is

generally slower in 3D than in 2D, as expected (e.g., averaged over the first 10Lx/c). Also,
energy conversion is slower for η = 1 than for η = 5. However, the difference between the
η = 1 and η = 5 cases is roughly the same in 3D as it is in 2D; and we saw in §4.2 that in
2D this difference vanishes for larger systems. Therefore, any effect of η could be entirely
caused by the small system size; there is no indication that η has a different effect in 3D
than in 2D.
Most telling, the magnetic energy in the layer (Fig. 24, middle) is nearly independent

of η in 3D; i.e., varying η does not appear to enhance or inhibit 3D effects significantly.
Although we did not explore the effect of η on 3D simulations with an initial perturbation,
we expect that a perturbation would make 3D simulations more closely resemble 2D
simulations, which have at most a weak dependence on η.
The decay of upstream flux ψ(t) (Fig. 24, right) also indicates no η-dependence in

3D beyond what exists in 2D. The 2D cases have very similar ψ(t); ψ(t) is also similar
for the 3D cases, which exhibit slower decay than the 2D cases (e.g., averaged over the
first 10Lx/c). As with total magnetic energy, the decay of upstream flux continues over
much longer times than in 2D, at a slower pace than at early times.
Although it appears that η = 1 current sheets result in more efficient NTPA (Fig. 25),

we note again that the difference in 3D between η = 1 and η = 5 is almost the same as
the difference in 2D (a factor of ∼ 2 in particle energy). This is especially clear when
comparing particle energy spectra at the same amount of magnetic energy converted
(namely, when UBt/UB0 = 0.85). In fact, for each η, the spectra from corresponding 2D
and 3D simulations are nearly the same, aside from a small burst of particles accelerated
up to γ ≃ 10σ for the 2D, η = 1 case; however, this burst is probably the result of some
randomness that would be averaged out in a larger simulation—moreover, the “burst”
is less than a factor of 2 in energy, and f(γ) is already very low by such high energies.
Thus we conclude that the effects of η are no different in 3D than in 2D; and we note
that the effects of η diminish in 2D for larger systems (§4.2, 2D-b).
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Figure 24. As in 2D, varying overdensity η in 3D does not dramatically affect the overall
energy and flux evolution (differences shown here are attributable to finite system size). These
plots show energies and flux versus time for four simulation configurations: η = 1 (solid lines)
and η = 5 (dashed), 3D (Lz/Lx = 1, blue) and nearly 2D (Lz/Lx = 1/16, red). All have
Lx = 256σρ0, βd = 0.3, Bgz = 0, and a = 0. Three different runs are shown for the 3D, η = 5
case. The magnetic energy evolution UBt(t) (left) shows slower energy conversion in 3D than in
2D as expected; but the difference between η = 1 and η = 5 in 3D is comparable to the difference
in 2D (also it is comparable to the stochastic variation among the three 3D, η = 5 cases). The
difference in 2D vanishes in larger systems (see §4.2, 2D-b). The magnetic energy in the layer,
UBt,layer(t) (middle), evolves similarly in all the 3D cases, very unlike the 2D cases, which store
significant energy in “reconnected” field. Similarly, the unreconnected flux ψ(t) (right) is similar
for all 3D cases, which differ greatly from the nearly identical 2D cases.
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Figure 25. Varying overdensity η does not have any more effect on NTPA in 3D than it has in
2D; and in 2D, the effect vanishes for larger system sizes (see §4.2, 2D-b). These plots show the
electron energy spectra (compensated by γ4) for the same simulations (η ∈ {1, 5}, 2D/3D) as in
Fig. 24, at the time when UBt(t)/UB0 = 0.85 (left), and at t = 10Lx/c (right). The grey/dashed
line shows the initial spectrum at t = 0 in all simulations.

To summarize: considering energy and particle acceleration, we detect no differences
between η = 1 and η = 5 that are clearly linked to 3D effects. However, an ensemble of
larger 3D simulations may be needed to rule out significant 3D effects of η.
(3D-c) Varying βd ∝ η−1; i.e., varying δ/ρd for fixed δ/σρ0 = (10/3)σρ0. When we

vary η ∝ β−1
d , we see dramatic differences in the evolution of 3D current sheets, although

NTPA will turn out to be similar in all cases. As described in §4.2(2D-c), changing βd
and η together, to maintain a constant product ηβd = 0.3, keeps δ = σρ0/(ηβd) constant
(with respect to upstream plasma scales), while δ/ρd = (2/3)(β−2

d − 1)1/2 varies. This
allows us to study the evolution of different current sheet configurations while ensuring
that the initial current sheet is always well resolved (δ/∆x = 10) and of constant size
relative to the simulation box [(Ly/4)/δ = 39].
We consider cases that, in large 2D simulations in §4.2(2D-c), yielded essentially similar

results; in 3D we use smaller systems, Lz = Lx = 256σρ0, but as in (2D-c), Bgz = 0 and
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there is no initial perturbation. We scan over βd ∈ {0.075, 0.15, 0.3, 0.6}, which implies
η ∈ {4, 2, 1, 0.5}, respectively; corresponding parameters (see table 1) are δ/σρ0 = 10/3,
δ/ρd ∈ {8.9, 4.4, 2.1, 0.89}, and θd/θb ∈ {0.50, 1.0, 2.1, 5.0}. For comparison, we also
show 2D simulations with identical set-ups except for Lz = 0.

Looking at overall characteristics, we notice first (in Fig. 26, left) that the amount
and rate of magnetic energy conversion is almost identical for the 2D simulations, but
varies drastically with βd in 3D. Correcting for the difference in reconnection onset times,
we see that over the first few Lx/c after onset, the rate of magnetic energy conversion
generally increases with βd. For βd = 0.6, the rate is even faster than in 2D; for βd = 0.3
and βd = 0.15, it is a little slower than in 2D; and for βd = 0.075, the initial rate is the
slowest of all. After a few Lx/c, all 3D cases exhibit a slower stage of energy conversion;
however, the behaviour becomes more complicated, depending non-monotonically on βd.
(It might not be useful to try to ascribe a direct βd-dependence to the later time evolution.
The dependence could involve an element of randomness, and it could depend on the state
of the system after early evolution that did strongly depend on βd. For example, it often
happens that a simulation that converts more energy at early times will convert energy
more slowly at later times—for example, comparing βd = 0.6 and βd = 0.15, or comparing
βd = 0.3 and βd = 0.075.) The βd = 0.6 (3D) case drastically slows down after 2Lx/c,
almost as in 2D, except that, being 3D, it can convert somewhat more magnetic energy
than in 2D. The βd = 0.3 case also slows fairly drastically (though not quite as much
as βd = 0.6) and as a result converts much less energy over 20Lx/c. In contrast, the
βd = 0.15 case slows a bit, but maintains a more moderate magnetic energy conversion
rate, and catches up to the βd = 0.6 case in terms of total magnetic energy conversion
after ≃ 15Lx/c. The βd = 0.075 case goes from slow to slower, and, like βd = 0.3, does
not convert as much energy over 20Lx/c as the other cases.

The magnetic energy in the layer (Fig. 26, middle) is again almost identical for all the
2D cases. In 3D, however, we see some differences. The βd = 0.6 case, which has such
rapid energy conversion at very early times, shows a 2D-like increase for ≃ 1Lx/c, before
decaying in a characteristically 3D manner. The βd = 0.15 case shows a smaller, slower
rise before decaying, while the other cases (βd =0.075, 0.3) never have much magnetic
energy in the layer. Despite the differences, all 3D cases strongly contrast with the 2D
cases, which store significant amounts of magnetic energy in the layer. Thus 3D cases
can convert more magnetic energy overall even while the upstream flux is less depleted.

The upstream magnetic flux evolution (Fig. 26, right) is consistent with the overall
magnetic energy depletion. As usual, more upstream flux must be reconnected in 2D
simulations to convert the same amount of magnetic energy, because in 2D much more
of the upstream magnetic energy ends up stored in plasmoids. As we discussed above,
in 2D, flux is very nearly conserved, with an increase in reconnected flux corresponding
precisely to the decrease in upstream flux ψ. In 3D, however, the lost upstream flux is
eventually mostly annihilated (although some of it may first be reconnected before being
subsequently annihilated).

Particle energy spectra are shown in Fig. 27—both at times when 15 per cent of
the initial magnetic energy has been lost (left panel), and at the same time, t =
10 Lx/c (right). All cases exhibit fairly similar NTPA, although when the spectra are
compensated by γ4, differences are quite apparent. The trend is non-monotonic with the
input parameters βd and η, which is not surprising given the non-monotonic dependence
of energy conversion on these parameters. There is evidently a good deal of stochastic
variation in these cases, and more work needs to be done to settle this issue. However,
given that the time over which 15 per cent of the magnetic energy is converted differs by
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Figure 26. Varying βd while varying η (to hold ηβd = 0.3 constant) dramatically alters
reconnection in 3D, but not in 2D. These plots show energies and flux versus time, for eight
simulations: βd ∈ {0.075,0.15,0.3,0.6} (hence η ∈ {4,2,1,0.5}), for both Lz = Lx (3D) and
Lz = 0 (2D). All simulations have Lx = 256σρ0, Bgz = 0, and a = 0. The magnetic energy,
UBt(t) (left), is very similar for all 2D cases, but the 3D cases differ substantially in terms of
rates and amounts of magnetic energy conversion. The magnetic energy in the layer, UBt,layer(t)
(middle), is again similar for all 2D cases; the 3D cases all exhibit the characteristic depletion of
reconnected field energy, but differ by small amounts at early times. The unreconnected flux ψ(t)
(right) qualitatively resembles the magnetic energy, except that the 2D simulations reconnect
relatively more flux.
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Figure 27. Although varying βd with η (holding ηβd constant) dramatically affects energy
conversion versus time, NTPA is less affected, especially when compared at the same UBt/UB0.
These plots show the electron energy spectra (compensated by γ4) for the same simulations
(βd ∈ {0.075, 0.15, 0.3, 0.6}, 2D/3D) as in Fig. 26 at the time when UBt/UB0 = 0.85 (left), and
at t = 10Lx/c (right). For comparison, the grey/dashed line shows the initial spectrum at t = 0;
and, a power-law segment with p = 4.6 (green/dotted) demonstrates a 15 per cent (i.e., small)
difference from p = 4 (which would be horizontal).

a factor of ≃ 10 for 3D simulations with βd = 0.6 and βd = 0.075, the energy spectra are
remarkably similar.

The substantial differences in energy and flux depletion (in 3D simulations with
βd = 0.6 and βd = 0.075) are very intriguing, and worthy of discussion in a separate
section, §5.4. Before that, we briefly summarize the results of this subsection.

Summary of 3D-a,b,c. In contrast to 2D, we have seen here and in §5.2 (and will see in
more detail in §5.4) that current sheets in 3D display a greater variety of behaviours, and
that the overall evolution is less inevitable, than in 2D. Rather, the current sheet evolution
can take very different paths, depending on initial conditions and stochastic variability.
For example, simulations with identical upstream conditions can convert rather different
amounts of magnetic energy over ∼ 20Lx/c, whereas 2D simulations with a wide variety
of initial current sheets convert nearly the same magnetic energy when averaged over ∼



50 G. R. Werner and D. A. Uzdensky

2Lx/c time windows, despite some random variability on shorter timescales (e.g., Figs. 3,
5, 6, 7).
An initial magnetic field perturbation, uniform in the z dimension, triggers time

evolution resembling 2D reconnection at early times; however, at later times when
2D reconnection would slow and approach a final stable magnetic configuration with
substantial magnetic energy in plasmoids, 3D simulations generally deplete the magnetic
energy in the layer (as well as in the upstream). The effect of varying the overdensity
η = nd0/nb0 for fixed βd (hence varying δ/σρ0 but constant δ/ρd = 2.1) is less clear, hard
to distinguish amid stochastic variability and moderate system size, but our simulations
did not show any effect of η in 3D beyond what is observed in 2D (which is very minimal
in large systems). In contrast, varying βd ∝ η−1 (hence varying δ/ρd while keeping
δ/σρ0 = 10/3 fixed) had a pronounced effect on current sheet evolution, with larger βd
leading to faster initial magnetic energy conversion and more conversion over 20Lx/c—
and we will explore this next.
Overall, global NTPA is surprisingly consistent given the variety of behaviours evolving

from different initial current sheet configurations. This is especially true if particle spectra
are compared at times when the same amount of magnetic energy has been converted to
plasma energy.

5.4. 3D reconnection: the effect of varying βd on RDKI amplitude

The linear and nonlinear stages of RDKI growth were investigated in detail in Zenitani
& Hoshino (2007, 2008), both in theory and in 2D and 3D simulation, including the effect
of RDKI on NTPA. However, by exploring a range of initial parameters, specifically a
range of initial drift speeds, βdc, we find that the evolution from the linear to the nonlinear
stage can have varied and often important consequences for later evolution.
Varying βd ∝ η−1, as in §5.3(3D-c), to keep ηβd = 0.3 constant, hence fixing δ/σρ0 =

10/3, leads to dramatic differences in current sheet evolution, including differences in the
evolution of global quantities such as magnetic energy. Here, we show these differences
in more detail, and attribute them to the maximum amplitude to which RDKI can grow
before becoming nonlinearly saturated. In the following, ∆yc is the amplitude of the
rippling of the current sheet central surface, yc(x, z) (see §3.2).

We start by looking at the same 3D simulations run for §5.3(3D-c), with common
parameters Lz = Lx = 256σρ0, ηβd = 0.3, δ/σρ0 = 10/3, Bgz = 0, and zero initial
perturbation. We focus on the two extreme cases: βd = 0.6 (η = 0.5, δ/ρd = 0.89),
which shows very rapid, substantial magnetic energy conversion, followed by very slow,
limited energy conversion; and βd = 0.075 (η = 4, δ/ρd = 8.9), which shows slower
energy conversion and less conversion overall after 20Lx/c (see table 1 for values of other
relevant parameters).
The reason for these differences is illustrated in Fig. 28, which shows Bx(0, y, z) in

the x = 0 plane at the three different times when 0.2, 3, and 11 per cent of the initial
magnetic energy has been converted to plasma energy, for the βd = 0.6 case (top) and
βd = 0.075 (bottom). For βd = 0.6, the layer kinks with long wavelength (λz ≫ δ)
and the RDKI amplitude ∆yc can grow to a relatively large value, ∆yc∗ ∼ λz, before
becoming highly nonlinear; the nonlinear development causes the highly-distorted layer
to fold over on itself, rapidly depleting magnetic energy in a layer of thickness ∼ λz ≫ δ.
It is this process, and not 2D-like reconnection (perhaps surprisingly, given that the
energy conversion versus time resembles that in 2D reconnection), that results in rapid
energy dissipation at early times. In contrast, for βd = 0.075 (Fig. 28, bottom), the initial
sheet kinks with short wavelength (λz ≲ δ); since ∆yc cannot grow much beyond λz, the
instability saturates before it can distort the sheet much (compared with δ). In this
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Figure 28. Bx(y, z) in the x = 0 plane for 3D (Lz = Lx) for two cases, (top row) βd = 0.6,
η = 0.5 and (bottom row) βd = 0.075, η = 4, each at three times, when the total magnetic energy
UB has fallen to fractions 0.998, 0.97, and 0.89 of its initial value UB0. For large βd (top) the
kink wavelength is much longer than the current sheet thickness, and the sheet ripples with large
amplitude ∆yc while converting very little magnetic energy to plasma energy, until nonlinear
development causes the sheet to fold over on itself, rapidly converting magnetic energy 0.08UB0

over a time 0.4Lx/c. For small βd (bottom) the kink wavelength is short, and ∆yc does not
increase much beyond the original sheet thickness, resulting in slower magnetic energy conversion
(0.08UB0 over 5.4Lx/c).

case, the nonlinear RDKI can deplete magnetic energy only within a layer of thickness
∼ λz ≲ δ.
Zenitani & Hoshino (2007) derived the most unstable wavelength for RDKI in rel-

ativistic plasma (using two-fluid theory with an assumption that the current-carrying
particles execute Speiser orbits within a sublayer of half-thickness

√
ρdδ, and ignoring
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the background plasma; an improved approximation for βd ≳ 0.8 can be found in Hoshino
2020): λz,RDKI = 16πγdβ

2
dδ = (32π/3)βdρd, which can be significantly larger than ρd.

For βd = 0.6, λz,RDKI ≈ 23δ = 75σρ0 (in Fig. 28, we see λz ≈ 50σρ0). For βd = 0.075,
λz,RDKI ≈ 0.3δ = σρ0 (in Fig. 28, we estimate very roughly, λz ∼ 7σρ0). While the
measured instability wavelength does not precisely match the theory, the qualitative
behaviour is in agreement, and in any case, there is a strong correlation between λz/δ
and the rate and amount of magnetic energy conversion.
In both these simulations we find that the maximum ∆yc is on the order of half

the wavelength in the z-direction. For the βd = 0.6 case, the kink grows roughly to a
maximum ∆yc∗ ≈ 20σρ0 ≈ 0.4λz; for the βd = 0.075 case, ∆yc∗ ≈ 3σρ0 ≈ 0.4λz. Given
the uncertainty in these measurements, we might as well say ∆yc∗ ≈ λz/2 for simplicity.
We note that the largest kink amplitudes (for βd = 0.6) are a fraction ∆yc∗/(Ly/4) ≲ 0.2
of the global system; this fraction is sizeable, but not so close to 1 that we need to worry
about the lower and upper current layers interacting.
We hypothesize that in 3D, RDKI at some wavelength λz grows linearly, without

substantial magnetic energy conversion or NTPA due to RDKI, until it nears a critical
amplitude, ∆yc∗ ∼ 0.5λz. If the kink mode grows beyond ∆yc∗, RDKI becomes highly
nonlinear and the current layer severely distorts, folding over on itself and rapidly
depleting magnetic energy within |y| < ∆yc∗. This yields a turbulent layer of thickness
≃ 2∆yc∗ with greatly diminished magnetic field. After this time, magnetic energy
continues to be converted to plasma energy, but at a much slower rate because of the
much thicker layer. Importantly, RDKI does not inevitably grow to ∆yc∗; depending
on the initial layer parameters and also on stochastic behaviour, it may not reach the
nonlinear stage that severely distorts and rapidly transforms the initially-thin current
sheet.
This phenomenon of extreme nonlinear kinking can occur even in a 2D simulation in

the y-z plane, where tearing (at least in the x-direction) is forbidden and reconnection
cannot occur (Zenitani & Hoshino 2007). Although a systematic examination of RDKI
without reconnection in 2Dyz simulations is beyond the scope of this paper (but see,
e.g., Zenitani & Hoshino 2005a, 2007, 2008; Cerutti et al. 2014b), we compare to one
such 2D simulation, identical in set-up with βd = 0.6 and η = 0.5 (but lacking any
x-dependence). There we see clear development of the kink instability growing to large
amplitudes and developing highly nonlinear behaviour in Fig. 29 (which looks similar to
Fig. 28, for βd = 0.6).

Indeed, this 2Dyz configuration rapidly depletes magnetic energy, at least when it
reaches the extreme nonlinear stage where the current layer is massively distorted. For
comparison, in Fig. 30 we overplot results for the same set-up [βd = 0.6, η = 0.5,
δ/ρd = 0.89, δ = (10/3)σρ0, a = 0, Ly = 512σρ0] but different dimensionalities: (1)
2Dxy with Lx = Ly/2 and Lz = 0, (2) 3D with Lx = Lz = Ly/2, and (3) 2Dyz with
Lz = Ly/2 and Lx = 0. First, in panel (a), we see that magnetic energy is converted
to particle energy more rapidly (presumably triggered by RDKI) in the 2Dyz and 3D
simulations than by reconnection in 2Dxy, but that all cases exhibit rapid magnetic
energy conversion (a decline in UB) of roughly similar amounts. E.g., they all convert
about 20–25 per cent of UB0 in less than 5 Ly/2c after onset and ultimately convert
20–27 per cent of UB0 within 20 Ly/2c of onset; the initial energy conversion rate is
somewhat slower for the 2Dxy case than for the others, while the total energy converted
to plasma energy is slightly higher for the 3D simulation (most notably for t ≳ 5Ly/2c).
Looking at the energy UBy stored in By field components (UBy is a proxy for UBt,layer in
the 2Dxy and 3D cases), we see (panel b) that the 2Dyz simulation has almost no UBy

(as expected), while the 3D simulation develops a small UBy that decays, and the 2Dxy
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Figure 29. Bx(y, z) for 2D (y-z plane) simulations at two different times, 1.5Lz/c and
2.3Lz/c, for an initial current sheet of thickness δ = (10/3)σρ0 with βd = 0.6 and η = 0.5.
Without x-dependence, tearing and reconnection are forbidden, but RDKI is allowed. The kink
instability grows to large amplitudes, where the current layer becomes highly deformed (from
the small-amplitude sinusoidal perturbation), folding over onto itself and depleting magnetic
energy (compare to Fig. 28).

simulation stores UBy permanently. Thus the 2Dxy simulation sees a larger decrease in
upstream magnetic energy than other cases, but some of that energy is transformed to
“reconnected field” energy rather than being converted to plasma energy.
The similarities among these three cases are striking, especially considering that the

2Dxy simulation exhibits classic reconnection, which is forbidden in 2Dyz. The 2Dxy
case conserves flux, while the 2Dyz simulation directly annihilates upstream flux. We see
clear suggestions of both these 2D behaviours in 3D—plasmoid formation and the growth
of UBt,layer (as in the 2Dxy case) and rapid magnetic energy depletion due to nonlinear
kinking of the current sheet (as in the 2Dyz case; see §5.5 for more detail). Thus in 3D, we
expect that classic reconnection occurs to some extent, converting upstream flux to flux
around plasmoids (as in 2Dxy), and that some upstream flux is directly annihilated (as
in 2Dyz); furthermore, there is a unique 3D effect, namely the dissipation of plasmoids
and annihilation of the associated “reconnected” flux. Without much more extensive
diagnostics, it is difficult to determine how much upstream flux is directly annihilated as
opposed to reconnected and then annihilated, i.e., to determine precisely the extents to
which the different 2D-like processes occur in 3D.
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Figure 30. A comparison of energy conversion and NTPA for 2Dxy, 3D, and 2Dyz simulations
with the same set-up and size, except for unsimulated dimensions. Upper left: (transverse)
magnetic energy UBt(t); upper right: energy UBy(t), stored in By field components, a rough
indicator of the amount of magnetic energy stored in the layer; lower left: particle spectra
(compensated by γ4) when UBt has fallen to 0.84UB0 (cf. the grey dash-dotted line in the
upper left); lower right: spectra at t = 11.4 (Ly/2)/c. The 2Dxy simulations exhibit familiar 2D
reconnection but not RDKI; the 2Dyz simulations can undergo RDKI but not reconnection.

Interestingly, all these cases exhibit similar NTPA, despite the fact that very different
mechanisms come into play in (at least) the 2Dxy and 2Dyz simulations. Compensating
f(γ) by γ4, however, we do see some differences. If we compare the spectra at times
when the magnetic energy has fallen by 16 per cent (Fig. 30c), we find that NTPA is
strongest for 2Dxy, followed by 2Dyz, and weakest for 3D; here, differences in f(γ) reach
an order of magnitude, but this is not as significant as it might seem, considering the
steepness f(γ) ∼ γ−4—the spectra are separated by less than a factor of 2 in γ (or
energy). Over time, the 3D case develops stronger NTPA, and the three cases look fairly
similar; differences in f(γ) are less than a factor of a few, which, again, is relatively little
considering the steep slope. At late times [e.g., around 11Ly/2c, Fig. 30d], the 3D case
has the hardest spectrum (shallowest slope).

Whereas Zenitani & Hoshino (2007, 2008) also observed RDKI becoming nonlinear,
those works observed little NTPA due to RDKI (for zero guide field)—in the linear stage,
but also specifically in the nonlinear stage. In contrast, when a long-wavelength RDKI
mode (λz ≫ δ) reaches the nonlinear stage, we observe much more rapid magnetic energy
declines than in the linear stage, and the nonlinear stage generates significant NTPA.

Although we must leave a systematic exploration of 2Dyz simulations to future work,
we note that 2Dyz simulations with lower βd often do not show the violent nonlinear
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growth of the kink instability at large amplitudes (as in 3D; see Fig. 28). In these cases,
less magnetic energy is converted overall, although slow magnetic energy conversion can
continue for tens of light-crossing times (as in 3D), and there is often no significant NTPA
at all.

When looking at 3D simulations with different βd, and comparing them to 2D re-
connection, the similarly rapid magnetic energy conversion in 2D reconnection and 3D
simulations with large βd (small δ/ρd) might seem to suggest that these 3D simulations
exhibit 2D-like reconnection. This is (mostly) not the case here. The 3D simulation with
large βd = 0.6 has relatively long λz,RDKI and exhibits extreme nonlinear kinking that
much more closely resembles the 2Dyz simulation; it bears little resemblance to the 2Dxy
simulation in terms of magnetic field structure. While magnetic reconnection could be
playing a role at small scales in the 3D simulation with βd = 0.6, its strong resemblance
to the 2Dyz simulation suggests that reconnection may be unimportant at early times
when magnetic energy conversion is dominated by the nonlinear RDKI.

If long-wavelength kink modes grow to large amplitudes and distort the current
layer enough to suppress reconnection, in the process converting magnetic energy and
producing NTPA, then we will need to understand how this extreme-kinking mechanism
compares with large-scale reconnection (considering both 2D and 3D reconnection mod-
els). If, as the βd = 0.6 simulation in this section suggests, extreme kinking results in
similar NTPA and overall energy conversion (in terms of both rate and amount) as 2D
reconnection, then this mechanism becomes a competing candidate to explain phenomena
for which reconnection has been invoked as an explanation. One important difference is
that guide magnetic field is believed to curtail RDKI rather severely (Zenitani & Hoshino
2008). Another important difference is that the layer distortion appears to be self-limiting
in the following sense: it depletes magnetic energy within a thickness 2∆yc ∼ λz,RDKI ,
resulting in a much thicker layer no longer highly unstable to RDKI. (The same might
be said of the tearing instability, which would saturate when the plasmoids fed by
an elementary reconnecting current sheet grow to a height in y comparable to the
elementary current sheet length in x; however, in a large reconnecting system, the
plasmoids detach from the elementary current sheet before growing so large and coalesce
with other plasmoids, thus always maintaining thin current sheets. Consequently tearing
and reconnection do not saturate until the plasmoids become comparable to the system
size.) For our 3D simulations, λz,RDKI happens to be a significant fraction of the system
size, and so this mechanism yields dramatic conversion of magnetic to plasma energy.
However, if the most unstable wavelength λz,RDKI is independent of system size, then
in the limit of astronomically-large systems, this mechanism may convert a negligible
fraction of available magnetic energy, while suppressing reconnection. In contrast, 2D
reconnection is self-limiting (in a closed system) only when plasmoids grow to a size
∼ Lx that scales with the system size. We believe reconnection would continue for an
arbitrary time, given a large-enough system. (This is perhaps a remarkable property of 2D
reconnection—that the macroscopically-large plasmoids do not destroy the kinetic-scale
current sheets where reconnection occurs.)

On the other hand, because the maximum kink amplitude depends on the wavelength,
∆yc∗ ∼ λz/2, it might be a mistake to assume that the most prominent or influential
wavelength corresponds to the RDKI mode with the highest growth rate. The most
unstable mode might saturate without thickening the layer much, while a more slowly-
growing mode with a longer wavelength might eventually reach a much larger amplitude.
This possibility needs further study; however, we will show in the following section that
some simulations (with βd = 0.3) initially kink on a scale λz ≪ Lz, but nonetheless over
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time develop large-amplitude kinking on the scale of the system, λz = Lz. Whether such
behaviour can scale with system size remains an outstanding question.
If large-amplitude kink modes are not inevitable, as some of our simulations suggest,

it may be that short-wavelength RDKI modes develop and rapidly saturate, before their
amplitudes grow much past the current sheet thickness. In this case, RDKI may have
a negligible effect on reconnection; although it appears that reconnection in this regime
is slow (though perhaps locally fast, as suggested in §5.1), this slowness may not have
anything to do with RDKI.

5.5. 3D reconnection: Lz-dependence

In this subsection, we systematically vary Lz to explore when and how 3D effects arise
with increasing Lz. We consider Lz/Lx ∈ {0, 1/32, 1/16, 3/32, 1/8, 1/4, 1/2, 1, 3/2}
(where Lz = 0 means 2D) for system size Lx = 341σρ0, η = 5, βd = 0.3, δ = (2/3)σρ0,
Bgz = 0, and zero initial perturbation.
We begin by looking at magnetic energy versus time in Fig. 31 (we note that the total

and transverse magnetic energy, UB and UBt, are nearly the same; in all these cases,
UBz < 0.004UB0). In the left panel, we see that in 2D and nearly-2D (i.e., Lz/Lx ≪ 1),
UBt(t) decays rapidly over ∼ 8Lx/c; after this time, reconnection releases very little
additional magnetic energy. As Lz increases, the initial rate of magnetic energy depletion
slows, but ultimately more magnetic energy is converted to particle energy—the case
Lz = Lx/2 is an outlier, transferring almost half the initial magnetic energy to particles
(compared with less than 0.3UB0 for 2D). In these large-Lz cases, we often see a stage of
relatively fast magnetic energy conversion (≲ 5Lx/c), followed by a later stage of much
slower energy conversion. Even after 50Lx/c, slow energy conversion continues.

It is important to remember that, in the large-Lz (3D) regime, stochastic variability
can be considerable (cf. §5.2). Because of high computational costs, we were unable to
run multiple simulations for each value of Lz; e.g., determining whether the dramatic
energy release is caused by the special value of Lz/Lx = 1/2 or is merely a statistical
outlier, will have to be left to future studies. In the meantime, we can have confidence
only in clear, monotonic trends with Lz. A possible reason for the increased stochastic
variability in 3D was discussed in §5.4, and we will explore this further at the end of this
subsection.
The clearest signature of the effect of Lz is the “reconnected magnetic field energy”

(Fig. 31, middle), which (at any fixed time t) decreases nearly monotonically with Lz/Lx.
We interpret this as follows, as discussed previously in §5.1. In 2D, reconnection results
in magnetic energy being stored in plasmoids; in the fully 2D simulation, the magnetic
energy in the layer (predominantly in plasmoids) thus grows monotonically. In 3D,
reconnection can pump magnetic energy into plasmoids, but these magnetic structures
are unstable (at least in the absence of appreciable guide field): they decay, converting
their magnetic energy over time into plasma energy. The almost-2D simulation with
Lz = Lx/32 pumps nearly as much energy into plasmoids as the fully 2D simulation,
but after 10Lx/c this energy starts to decay slowly. As Lz/Lx becomes larger, the peak
energy stored in plasmoids decreases.
We remind the reader that our measure of “reconnected-field energy” is the magnetic

energy that is not in unreconnected field lines. It is thus an upper bound on the energy
stored in structures formed from reconnected magnetic field; it could also contain, e.g.,
turbulent magnetic energy in the current layer.

The unreconnected magnetic flux (Fig. 31, right) shows the expected overall decay over
time as flux is reconnected or annihilated. At any fixed time t, the remaining upstream
flux tends to increase with Lz/Lx (i.e., larger Lz/Lx implies a slower reconnection rate)—
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Figure 31. Total transverse magnetic energy UBt(t) (left), magnetic energy in the layer
UBt,layer(t) (middle), and unreconnected flux ψ(t) (right), for simulations with the same
Lx = 341σρ0, Bgz = 0, η = 5, βd = 0.3, a = 0, but varying Lz/Lx. Cases Lz/Lx =1/16
and 1/8 each show two simulations identical except for random initialization of particles. In
the plot of UBt (left), the horizontal grey dashed line indicates UBt = 0.75UB0—NTPA spectra
are shown in Fig. 33 when UBt(t) crosses this line. In the flux plot (right), the intersections
of the two horizontal grey, dashed lines with ψ(t) indicate where the average reconnection rate
is measured for Fig. 32; three grey, dotted lines show the slopes for constant reconnection
rates βrec ∈ {0.04,0.004,0.0004} normalized to cB0.
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Figure 32. Reconnection rates, normalized to B0c on the left axis and to B0vA on the right
(cf. §3.3), versus Lz/Lx, averaged over the period during which the upstream flux falls from 0.9ψ0

to 0.8ψ0 (between the horizontal grey dashed lines in Fig. 31, right), for simulations with
Lx = 341σρ0. N.B. For 3D cases, the values of the instantaneous reconnection rate may vary
significantly over the averaging time, and stochastic variability may also introduce significant
uncertainty.

with the striking exception of Lz/Lx = 1/2, and the less striking exception of Lz/Lx =
3/2. Also, at very late time (≃ 40Lx/c) we see the Lz/Lx = 1/4 case overtaking Lz/Lx =
1/8 in the amount of flux decay. This may represent a trend with increasing Lz/Lx up to
some minimally-3D value Lz/Lx ∼ 1/4, above which results are independent of Lz/Lx

(but with high stochastic variability); a statistical ensemble of simulations with large
Lz/Lx will be needed to distinguish the real trend.
Normalized to B0c, the reconnection rates βrec (cf. §3.3) for all cases start out between

0.025–0.05, with larger Lz/Lx already exhibiting slightly lower βrec; this is at very
early times, probably dominated by the initial thin Harris sheet. Within 10Lx/c, the
reconnection rates have all fallen below 0.01—because reconnection has finished in nearly-
2D cases, and because 3D cases enter a stage of much slower reconnection. Figure 32 shows
reconnection rates averaged over the time for the unreconnected flux to fall from 0.9ψ0

to 0.8ψ0, as a function of Lz/Lx (we note that, for Lz/Lx ⩽ 1/8, ψ(t0.8) = 0.8ψ0 for
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f(γ) ∼ γ−3.4; local power-law indices in the high-energy spectrum range from roughly 4.2 to 3.4.

2D 0.1 1
Lz/Lx

10-4

10-3

fra
c.

 p
ar

tic
le

s γ
>

10
σ

t= 20Lx/c
UBt(t) = 0.75UB0

Figure 34. The fraction of particles with Lorentz factor γ > 10σ for the spectra shown in
Fig. 33—blue circles for spectra at time t such that UBt(t) = 0.75UB0, and red x’s for spectra
at t = 20Lx/c. Although the trend with Lz/Lx appears fairly robust, the significance of these
results must be carefully considered due to the steep power law. For example, increasing the
threshold from 10σ to 12σ lowers the fraction of threshold-exceeding particles by a factor of 4–6
(for all Lz/Lx).

t0.8 < 4Lx/c). For 3D simulations, the average rates should be used with caution, because
the reconnection rate can change substantially during this time (cf. Fig. 31, right). In
any case, it shows clearly how much slower 3D reconnection can be. At later times, the
cases Lz/Lx ⩾ 1/4 eventually exhibit reconnection rates βrec ∼ 10−3 (this measurement
does not necessarily guarantee that 2D reconnection is actually taking place; flux could
be depleted by direct annihilation as well as 2D-like reconnection—cf. §3.1, 5.1). It is
notable that by ≳ 30Lx/c, e.g., the Lz/Lx = 1 simulation has “used up” only about
half the upstream flux as the 2D simulation, but has converted more magnetic energy to
particle energy, because in 2D more magnetic flux and energy remains in plasmoids.
Figure 33(left) shows particle energy spectra at times when 25 per cent of the initial

magnetic energy has been depleted—i.e., when UBt(t) = 0.75UB0; the times can be esti-
mated from the intersection of UBt(t) and the horizontal grey dashed line in Fig. 31(left),
and range from t =5–8Lx/c for Lz/Lx ⩽ 0.5, and t = 15–18Lx/c for Lz/Lx ∈ {1, 1.5}.



3D reconnection with σh = 1 59

We see first that all these spectra are fairly similar, especially for γ ≲ 10σ; and even
above γ ≳ 10σ, spectra vary by less than a factor of 2 in energy, with the exception
of Lz/Lx = 1/4, which accelerates some particles to unusually high energies (we note
that a different case, Lz/Lx = 1/2, is the outlier in total magnetic energy depletion).
Second, however, there is a trend of increasing numbers of high-energy particles (say
with γ ≃ 10σ) as Lz/Lx increases, at least for small Lz/Lx. Looking at spectra at the
same time, 20Lx/c, we see differences enhanced somewhat, with competing effects: larger
Lz/Lx yields slightly more high-energy particles, but larger amounts of magnetic energy
conversion also yield more high-energy particles.
Although the somewhat short range of the high-energy power-law section prevents us

from measuring precise power-law indices in a useful way, we can roughly characterize the
local power-law indices as varying between 4.2 and 3.4 (in Fig. 33, horizontal represents a
power law γ−4, and dotted grey lines show γ−3.4). Whereas simulations with Lz/Lx ⩽ 1/8
have power-law indices closer to 4, those with larger Lz/Lx ⩾ 1/4 appear to exhibit
harder power laws with indices around 3.4 in the range 3 ≲ γ/σ ≲ 8—however these
same simulations also have slightly steeper power-law indices around 4.2 in 2 ≲ γ ≲ 3.
An alternative measure of NTPA efficiency is the fraction of particles accelerated beyond
some high energy, e.g., γ = 10σ. Figure 34 shows that this fraction increases significantly
with Lz/Lx until saturating around Lz/Lx ≈ 0.1; thus 3D simulations accelerate almost
an order of magnitude more particles beyond γ = 10σ.
Enhancement of electron NTPA in 3D, relative to 2D reconnection, has been previously

observed in subrelativistic electron-ion plasma with Bgz = 0 as well as with guide
field Bgz/B0 ⩽ 1.5 (Dahlin et al. 2015; Dahlin et al. 2017; Li et al. 2019), and has
just recently been seen in pair plasma with σh = 10, Bgz/B0 = 0.1 (Zhang et al.
2021); high-energy electrons were trapped by plasmoids in 2D, but not in 3D, thus
allowing untrapped electrons to experience more acceleration in 3D. In the subrelativistic
case, there is some disagreement over whether the high-energy spectra in question are
power laws or exponentials; a steep power law with index p ≳ 4 over a relatively small
range in γ can look very much like an exponential decay in γ. An apparently dramatic
f3D(γ)/f2D(γ) = 10 (measured at very high energies by Dahlin et al. 2017) can be
interpreted as particles gaining a less dramatic 20 or 30 per cent more energy in 3D than
in 2D. In the more relativistic σh = 10 case, the shallower/harder power law around
p ∼ 2 shows NTPA more clearly, and the highest-energy particles in 3D gain about 2–3
times more energy than in 2D (Zhang et al. 2021). In our simulations we find, whether
comparing 2D and 3D simulations at the same time or at the same UBt/UBt0, that
usually 0.1 < f3D(γ)/f2D(γ) < 10, and the ratio is often quite close to 1, especially when
comparing the spectra at the same UBt/UBt0. Although these spectra are power laws,
they are steep power laws [f(γ) ∼ γ−4] and so again even a substantial f3D/f2D may
imply only a rather modest increase in particle energy. E.g., if f2D(γ) = aγ−4 for some
constant a, and f3D(γ) = 10f2D(γ), we can write f3D ≈ a(γ/1.78)−4—particles in 3D
need only gain 78 per cent more energy in 3D than in 2D to explain f3D/f2D = 10.
Our results are not inconsistent with increased NTPA in 3D, but from our perspective,

the differences in NTPA between 2D and 3D, compared at the same UBt/UBt0, are fairly
insignificant, on the order of stochastic variation (regardless of guide field, as we shall see
in §5.6). 3D simulations convert magnetic energy less rapidly than 2D simulations, and
so the building-up of the high-energy part of f(γ) occurs more slowly; however, as 3D
simulations convert more magnetic energy to particle energy over long times (compared
with 2D), they ultimately accelerate more particles than 2D simulations. Therefore,
NTPA is enhanced in 3D relative to 2D, but the shape of the high-energy power-law
spectrum and cut-off (up to an overall normalization factor) does not differ significantly.
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Figure 35. (Left) The layer central surface displacement from the original midplane, ∆yc(x, z)
(cf. §3.2), at four times, tc/Lx ∈ {0.86, 2.6, 7.7, 23}, shows low-amplitude short-wavelength
RDKI modes dominating at early times, but at later times the dominant mode has λz = Lz.
At 7.7Lx/c (and thereafter), abrupt spatial variation in ∆yc indicates the layer folding over on
itself. (Right) Fourier spectra magnitudes (cf. §3.2) of the data shown on the left, averaged over
all x (after taking the magnitudes), show that over time, longer-wavelength RDKI modes grow
to larger amplitudes.

We have remarked several times on the stochastic variability in 3D reconnection
(cf. §5.2, 5.3) and have discussed a mechanism for large variability in §5.4. When an
RDKI mode grows beyond an amplitude ∆yc∗ on the order of its wavelength λz, it
becomes extremely nonlinear, and the current layer folds over on itself and rapidly
depletes magnetic energy within |y| ≲ ∆yc∗. In Fig. 31, the simulation with Lz/Lx = 1/2
experienced particularly large energy depletion, converting significantly more magnetic
energy to plasma energy in 20Lx/c than any other simulation did in 50Lx/c, including
simulations with Lz/Lx = 1/4 and 1. Indeed, this simulation (Lz = Lx/2) developed a
large-amplitude RDKI mode with the largest-possible wavelength, λz = Lz, and it be-
came highly nonlinear, rapidly depleting magnetic energy in a thick layer. Figure 35(left)
shows the offset of the layer central surface (§3.2), ∆yc(x, z, t) ≡ yc(x, z, t)−yc(x, z, 0), at
four times: tc/Lx ∈ {0.9, 2.6, 7.7, 23}; then Fig. 35(right) shows the Fourier spectrum (in
z, averaged over x; cf. §3.2) of this quantity for each time. At early times, t = 0.9Lx/c,
RDKI develops prominently at λz ≈ Lz/10 = 17σρ0. At later times, the most prominent
wavelength gets longer; at t = 7.7Lx/c, rippling with λz = Lz is the dominant component.
Indeed, by this time, there are clear signs of nonlinear development and the layer folding
over on itself (causing rapid magnetic energy conversion). By t = 23Lx/c, the layer has
become generally thick and turbulent with weak magnetic field, and the long-wavelength
rippling with λz = Lz is no longer so apparent.
According to Zenitani & Hoshino (2007), the wavelength of the fastest-growing (linear)

RDKI mode is λz,RDKI = 16πγdβ
2
dδ = 4.7δ = 3σρ0. However, this fastest-growing

mode should saturate at an amplitude ∆yc∗ ∼ λz,RDKI/2 (cf. §5.4), whereas longer-
wavelength modes can grow (though possibly at a slower rate) to larger amplitudes.
Indeed, Fig. 35 is very roughly consistent with longer-wavelength modes growing slower,
but to larger amplitudes, ỹc(kz) ∼ k−1

z (where kz = 2π/λz). For some reason, in the
simulation with Lz = Lx/2 = 170σρ0, the mode with λz = Lz grew sufficiently to enter
highly-nonlinear development; presumably in simulations with other Lz/Lx, this did not
happen. Of course, for Lz < Lx/2, no mode can develop to such large amplitude; but the
simulations with Lz = Lx and Lz = 3Lx/2 could have developed λz = Lz/2 as well as
even longer-wavelength modes (and indeed, they did, to some extent—but for some reason
the resulting magnetic energy conversion was not as dramatic). We speculate that beyond
some wavelength (in sufficiently large systems), long-wavelength RDKI modes will simply
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not have time to grow before being disrupted by reconnection or faster-growing, shorter-
wavelength RDKI modes. We leave it to future work to investigate what determines the
nonlinear development of long-wavelength RDKI modes; we expect this to be a difficult
task because we have already seen that stochastic variability can play a large role.
In summary, in 3D (i.e., for large Lz/Lx), with zero guide field and zero initial

perturbation, reconnection and magnetic energy conversion occur more slowly (than in
2D) during the first active reconnection stage; for large Lz/Lx almost all the released
upstream/unreconnected magnetic energy is converted to particle energy (whereas in
2D, roughly half of it is trapped in reconnected magnetic field). Whereas 2D simulations
progress to a final state limited by the magnetic field configuration, with magnetic energy
and flux trapped in plasmoids, 3D current sheet evolution does not have a clear endpoint
(at least not before 50Lx/c), but enters a long-lasting second stage in which gradual
magnetic energy and upstream flux depletion continue at a slower pace. RDKI modes
can play a dramatic role in 3D reconnection—and perhaps it is even misleading to refer
to “3D reconnection” in some cases where RDKI drives the most rapid magnetic energy
conversion. The most rapid and largest magnetic energy releases seem to be related to
a long-wavelength RDKI mode developing nonlinearly when its amplitude reaches the
order of its wavelength, causing extreme distortion of the current layer that quickly
depletes magnetic energy within the mode amplitude. Whether this happens at a given
wavelength depends on Lz, but also has a random element, which explains the stochastic
variability of 3D “reconnection.” If nonlinear RDKI does cause dramatic magnetic energy
conversion, the resulting layer becomes thick and turbulent, and allows only much slower
magnetic conversion thereafter, presumably because of its increased thickness.
Importantly, despite all the complications in 3D, with potentially very different mech-

anisms driving magnetic energy conversion to plasma energy, NTPA efficiency does not
suffer in 3D and actually appears to be slightly enhanced, although it may occur over
somewhat longer times because of the slower reconnection rate. The increase in the
number of high-energy particles does depend on the rate of magnetic energy conversion,
but for a fixed amount of energy gained by the plasma, f(γ) is remarkably insensitive to
Lz (as well as to the initial current sheet configuration, as we saw previously). However, in
3D, more magnetic energy can be converted to plasma energy than in 2D, and ultimately
this leads to more particles at the highest (nonthermal) energies.

5.6. 3D reconnection: guide magnetic field

In this subsection we investigate 3D reconnection with different initial guide magnetic
fields, Bgz/B0 ∈ {0, 0.1, 0.25, 0.5, 0.75, 1}, using system size Lz = Lx = 256σρ0. Other
parameters are as usual: zero initial perturbation, η = 5, βd = 0.3, δ = (2/3)σρ0. The
dependence of 3D reconnection on the guide magnetic field Bgz is nontrivial and non-
monotonic as a result of competing effects. We find that the effect of guide magnetic
field in 3D can be roughly summarized thus: stronger Bgz suppresses 3D effects, so that
reconnection becomes more 2D-like; this may be expected, because guide field suppresses
3D instabilities like RDKI (Zenitani & Hoshino 2008). Stronger guide field promotes
particle transport in z (relative to perpendicular directions) by aligning B increasingly
parallel to z, and this tends to even out variations in z (relative to perpendicular
directions). Again, however, as with Bgz = 0, we find that NTPA continues to be very
similar in 2D and 3D for Bgz > 0.

In 2D, the added inertia of the guide field, being dragged along with the plasma,
slows reconnection significantly when the guide field enthalpy density, B2

gz/4π becomes
comparable to or larger than the upstream plasma enthalpy density, h = 4θbnbmec

2

(expressed here in the ultrarelativistic limit), i.e., when B2
gz/B

2
0 ≳ 1/σh (cf. §4.4 and Liu
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et al. 2015). The guide field enthalpy appears to slow reconnection in 3D as well. However,
because other 3D effects also slow reconnection, the fundamentally 2D effect of guide field
enthalpy is not noticeable at low guide fields; at low guide field, Bgz/B0 ≲ 1/σh, the guide
field actually promotes reconnection by suppressing 3D effects that slow reconnection.
Figure 36(left) shows the time evolution of transverse magnetic energy UBt(t) in 3D,

for all six guide-field values (2D results are shown in fainter colours on the same graph, for
comparison). For Bgz = 0, results from three 3D simulations are shown to give a rough
estimate of stochastic variability, and all three exhibit relatively slow magnetic energy
conversion. Increasing Bgz even to Bgz = 0.1B0 speeds up reconnection (presumably by
suppressing 3D instabilities) and results in significantly more magnetic energy conversion
over the first 20–30Lx/c; by Bgz = B0/4, this trend saturates as the guide field enthalpy
starts to suppress reconnection (this is more noticeable at later times). Somewhere around
Bgz ≳ 0.75B0 (and clearly for Bgz = B0), the guide field is suppressing reconnection as
in 2D, so that for Bgz = B0, 3D reconnection is slower than for Bgz = 0 at all times.
We should keep in mind, however, that without guide field, stochastic variability can
significantly affect system evolution, including energy dissipation (cf. §5.2), and further
work should investigate ensembles of simulations with different guide fields.
We argue that the enhancement of reconnection by moderate Bgz is a consequence of

reconnection becoming more 2D-like, stabilizing flux ropes and preventing 3D instabilities
from interfering. This is supported by Fig. 36(right), which shows the magnetic energy in
the layer versus time, UBt,layer(t). In §5.5 we showed (forBgz = 0) that for 2D simulations,
UBt,layer(t) increases monotonically until it saturates at a significant fraction of the initial
transverse magnetic energy, UBt0; whereas, as Lz/Lx is increased and 3D effects become
important, UBt,layer increases only a little before decaying away. Here we see the same
thing in 3D: for Bgz = 0.1B0, UBt,layer(t) grows a little and then decays over time; as Bgz

becomes stronger, UBt,layer(t) becomes more 2D-like, increasing to a larger value and (for
Bgz/B0 = 1) saturating at a roughly constant value (because the guide field stabilizes
flux ropes containing the reconnected field).
The decay of upstream flux ψ(t) in 3D, shown in Fig. 37(left), is consistent with this

picture. Bgz = 0 has the slowest reconnection rate (∝ −dψ/dt), and, after 30Lx/c, has
the most remaining unreconnected flux upstream. Intermediate guide fields yield faster
reconnection and more “reconnected” flux, but by Bgz/B0 = 1, reconnection is slowed
as the guide field enthalpy becomes significant compared with the relativistic plasma
enthalpy (as in 2D).
We now compare UBt(t) and ψ(t) for these 3D simulations with otherwise identical 2D

simulations, for all six values of Bgz. Figure 36(left) shows UBt(t). In 2D, increasing Bgz

monotonically slows magnetic energy conversion and results in less plasma energization
overall. In 3D, the initial depletion of UBt is generally slower than in 2D, but plasma
energization continues for a much longer time. The Bgz = 0 simulations reconnect so
slowly in 3D that even after 30Lx/c they have converted less magnetic energy than their
2D counterparts. For 0.1 ⩽ Bgz/B0 ⩽ 0.5, early-time conversion rates are slower in
3D, but after 20–30Lx/c, much more magnetic energy is converted in 3D than in 2D.
For Bgz/B0 = 0.75, the 2D and 3D magnetic energy conversion rates are quite similar
at early times, but again the 3D simulation eventually converts much more of UBt0

to Uplasma. Finally, for Bgz/B0 = 1, the initial magnetic energy conversion rate in 3D
is slower than in 2D (which, for reasons we do not yet understand, bucks the trend of
becoming more 2D-like with strong guide field), but the 3D simulation ends up converting
a roughly similar amount of energy as in 2D (because, like 2D simulations, it still stores
a significant amount of energy in relatively stable flux ropes—cf. Fig. 36, right).
The left panel of Fig. 37 shows ψ(t), again for 2D and 3D, for all six Bgz values. As
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to 0.8ψ0 (except, since none of the three 3D, Bgz = 0 cases reached 0.8ψ0, we show βrec for just
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rate; in 3D, a small guide field increases the reconnection rate, but eventually, strong guide
field will reduce the rate. N.B. For 3D cases, the values of the instantaneous reconnection rate
may vary significantly over the averaging time, and stochastic variability may also introduce
significant uncertainty.

Bgz/B0 increases to Bgz/B0 ∼ 0.75, 2D reconnection rates (∝ −dψ/dt) decrease, and
3D rates increase; correspondingly, the total amount of flux reconnected (over 30Lx/c)
decreases in 2D and increases in 3D, until ψ(t) becomes relatively similar in 2D and
3D for Bgz/B0 ≈ 0.75. This trend suggests that for Bgz/B0 = 1, the 2D and 3D cases
should be even more similar, but in fact (compared with Bgz/B0 = 0.75) reconnection
for Bgz/B0 = 1 slows dramatically in 3D while it slows only a little in 2D. We leave
a full exploration of this to future work investigating 3D reconnection with stronger
guide fields, but we speculate that 3D reconnection may not reach the 2D limit until
the purely 2D suppression (which begins for Bgz/B0 ≳ 1/σh and becomes stronger with
higher Bgz) completely dominates over the suppression due to 3D effects. At Bgz/B0 = 1,
we may be seeing the combined effects of guide-field suppression and 3D suppression of



64 G. R. Werner and D. A. Uzdensky

reconnection, while at some larger Bgz, we expect 3D effects to become weaker. This is
exemplified quantitatively in Fig. 37(right), where we graph the normalized reconnection
rates, averaged over the period during which ψ(t) falls from 0.9ψ(0) to 0.8ψ(0). The 2D
reconnection rates fall with stronger Bgz, and the rate for Bgz/B0 = 1 is roughly half
of the maximum rate, which is realized for Bgz/B0 ≲ 0.25. The 3D rate at Bgz/B0 = 0
is an order of magnitude below the maximum 2D rate, but the 3D rate speeds up for
intermediate Bgz so that at Bgz/B0 = 0.75, the 2D and 3D rates differ by less than a
factor of 2. As Bgz/B0 increases from 0.75 to 1, the 2D rate drops smoothly, while the
3D rate drops more dramatically.

It appears likely that magnetic energy and flux would continue to decrease if we ran the
3D simulations for longer times. However, we quantify the “final” amounts of remaining
magnetic energy and flux after a long time, t = 30Lx/c, in table 3—for both 2D and
3D simulations, for all Bgz. In terms of these “final” values, we see that 2D and 3D
reconnection are most similar for Bgz/B0 = 1, with UBt differing by only 3 percentage
points, and ψ(t) by about 8 percentage points. The table also shows that 3D simulations
generally lose less upstream flux but convert more magnetic energy than 2D simulations,
because in 2D, energy in plasmoids is stable, whereas in 3D it is depleted (unless the
guide field is sufficiently strong), as shown in Fig. 36(right).

We have seen that both guide field and 3D effects can suppress reconnection, slowing
the overall rates of reconnection and release of magnetic energy. We find that an initial
guide field suppresses NTPA—to the same extent in both 2D and 3D—whereas 3D effects
do not suppress NTPA, despite slowing reconnection. Figure 38 shows the electron energy
spectra f(γ) (compensated by γ4) for each Bgz, both at the same amount of depleted
magnetic energy, UBt = 0.83UBt0 (left), and at the same time, t = 20Lx/c (right), for the
3D simulations as well as for comparable 2D simulations. Keeping in mind that graphing
γ4f(γ) enhances small differences in f(γ), we consider the 2D and 3D spectra (for the
same Bgz) to be fairly similar in magnitude [separated by less than a factor of 2 in either
γ or in f(γ)], especially at UBt(t) = 0.83UBt0. As the guide field increases, the spectra
in 2D and 3D become even closer, until for Bgz = B0 they are nearly identical. We
cannot make a general statement about whether NTPA is more efficient in 2D or 3D
without going into much more detail regarding the exact times and energies at which
spectra are compared. However, it does appear that, because 3D simulations can convert
more magnetic energy to plasma energy, over long times 3D simulations accelerate more
particles.

Dahlin et al. (2017) observed enhancement of NTPA in 3D, relative to 2D, in subrela-
tivistic electron-ion reconnection at Bgz = 0, and the 3D enhancement became stronger
with increasing guide field, until this effect saturated around Bgz/B0 ≃ 1 [Li et al. (2019)
also observed enhancement in 3D for Bgz/B0 = 0.2]. As we discussed in §5.5, our results
are not inconsistent with these, but the differences between 2D and 3D spectra do not
seem very significant if compared at times with the same amount of magnetic energy
depletion; however, because more magnetic energy can be converted to plasma energy in
3D, 3D simulation can accelerate more particles to high energies. However, as the guide
field becomes stronger, we expect 3D simulations to become essentially identical to 2D
simulations, and then we expect NTPA to be identical as well.

We have not yet investigated the strong guide field regime, Bgz/B0 ≫ 1, because of
the high computational cost associated with larger Lz/Lx and longer simulation times;
it will be important in future work to explore this regime and in particular to confirm or
deny conclusively that reconnection with very strong guide field rigorously approaches
the ideal 2D limit with perfect uniformity in z.
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Figure 38. Particle energy spectra compensated by γ4 at a time (left) when UBt = 0.83UBt0
(i.e., 17 per cent of magnetic energy has been converted to plasma energy), and (right) at
t = 20Lx/c, for a range of guide fields Bgz, for 3D simulations with Lz = Lx (thicker, darker
lines) and, for comparison, for 2D (thinner, fainter). Dotted grey-on-yellow lines show the slopes
of f(γ) ∝ γ−p for p = 5, 5.6, and 6.5 (p = 4 would be horizontal). These simulations are the
same as shown in Figs. 36, 37. The 2D simulation with Bgz = B0 did not reach UBt = 0.83UBt0,
but remained around UBt = 0.85UBt0 from t = 7Lx/c to t = 30Lx/c.

Bgz/B0 0 0 0 0.1 0.25 0.5 0.75 1

loss in UBt (2D) 27% 27% 25% 21% 18% 15%
loss in flux (2D) 44% 43% 43% 40% 36% 33%

loss in UBt (Lz = Lx) 26% 23% 24% 41% 38% 36% 32% 18%
loss in flux (Lz = Lx) 20% 16% 17% 31% 33% 31% 29% 25%

Table 3. The fractional loss in transverse magnetic field energy UBt and unreconnected
magnetic flux ψ over 30Lx/c of reconnection, for various guide fields, for simulations with
Lx = 256σρ0, both 2D and Lz = Lx (for Lz = Lx, three simulations are shown with Bgz = 0 to
give some idea of stochastic variation).

6. Comparison with large magnetization

In this paper we have found that, for σh = 1, 3D reconnection is significantly slower
than 2D reconnection, and lasts for much longer times over which it eventually converts
more magnetic energy to plasma energy (but that NTPA is quite similar in 2D and 3D).
However, relativistic reconnection with large magnetization, σh ≫ 1, has been found to
convert similar amounts of magnetic energy to plasma energy at similar rates in 2D and
3D (Guo et al. 2014, 2015; Werner & Uzdensky 2017; Guo et al. 2020; Zhang et al. 2021).†
It thus may appear that 3D effects play less of a role for large-σh reconnection. However,
as we will discuss in the following, there is a possibility that the 2D-like behaviour for
3D reconnection might be a result of the initial simulation configuration, and not an
inevitable, intrinsic consequence of larger σh.
The recent work by Guo et al. (2020) should be considered when comparing large

† For reasons that are not clear, Sironi & Spitkovsky (2014) measured a slower reconnection
rate in 3D, about 1/4 of the rate in 2D, but in spite of that observed otherwise substantially
similar reconnection in 2D and 3D. We note that recent work with σh = 10 and Bgz/B0 = 0.1
found 3D reconnection rates (c/vA)βrec ∼ 0.075, comparable to but less than (c/vA)βrec ∼ 0.12
found in 2D (Zhang et al. 2021).
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and small σh, since it studied 3D relativistic pair reconnection with σh ranging from
around 1 to 200 (though starting from a transrelativistic temperature θb ∼ 1). There,
high reconnection rates and magnetic energy conversion rates (similar to rates in 2D)
were observed for the entire range of σh. However, that study focused on very early
times; those rates were measured within the first 1Lx/c. Moreover, those simulations
began with an initial field perturbation, uniform in the third dimension, and used a
force-free configuration—i.e., an initial magnetic field with a substantial Bz component
localized to the layer. We have shown that differences in magnetic energy conversion rates
between 2D and 3D are suppressed by an initial perturbation (§5.3) and by an initially
globally-uniform guide field Bgz (§5.6), particularly at early times. Therefore, Guo et al.
(2020) does not address our particular question about whether lower energy conversion
rates might be observed in 3D if simulations ran for long times, especially starting with
no initial perturbation and no guide field.
The very recent work by Zhang et al. (2021) studied reconnection in 3D pair plasma

with σh = 10 (and Bgz/B0 = 0.1). They observed slightly slower reconnection in 3D
(compared with 2D), but not substantially slower. This adds to the evidence suggesting
that for larger σh, 3D reconnection is more similar to 2D reconnection. However, their use
of an initial perturbation and outflow boundary conditions led to an X-line running down
the centre of the box the entire length in z, which could conceivably be the dominant
driver of 2D-like reconnection (i.e., and not the larger σh). The guide field, though weak,
might also favour 2D-like reconnection, but the paper states that simulations with Bgz =
0 did not differ significantly. Thus we cannot confidently attribute the 2D-like speed of
3D reconnection purely to the difference in σh. Zhang et al. (2021) also found NTPA to
be very similar in 2D and 3D—except that, similar to the earlier finding in subrelativistic
electron-ion reconnection (Dahlin et al. 2017), the highest-energy particles in 3D were
accelerated to higher energies (than in 2D) because they escaped from flux ropes (with
finite extent in z) and thus experienced additional acceleration in the reconnection electric
field. Although a full comparison of this acceleration behaviour is beyond the scope of our
work, preliminary analysis suggests that our σh = 1 simulations show similar behaviour
of high-energy particles experiencing (in 3D) additional direct electric field acceleration.
Our own simulations of large-σh relativistic reconnection in 3D pair plasma from a

previous work (Werner & Uzdensky 2017), with σh = 25, also started with a magnetic
field perturbation (a = 2.7, s/δ = 1.9), but used a Harris sheet set-up (as in this
paper) and ran for about 5Lx/c. We also ran some simulations without perturbation, but
mentioned them only in passing. One of those simulations—3D (Lz = Lx), without guide
field (Bgz = 0) and without initial perturbation (a = 0)—did show exceptionally slow
reconnection (perhaps like our σh = 1 simulations in this paper) and much-suppressed
NTPA (unlike our σh = 1 simulations). At the time we attributed the slow reconnection
to the influence of the initial current sheet; i.e., we believed this effect would have
disappeared if we could have run simulations with larger Lx/δ. In light of our σh = 1
results presented above, we revisit these σh = 25 simulations.
Although the larger σh is the most fundamental physical difference between the σh = 1

simulations in this paper and those in Werner & Uzdensky (2017) with σh = 25, practical
considerations necessitated other differences. Large σh required higher grid resolution
(∆x = σρ0/12, to resolve the Debye length of the colder upstream plasma), so the
σh = 25 simulations were significantly smaller, with Lx = 80σρ0 = 120δ; whereas,
our σh = 1 simulations with ∆x = σρ0/3 are 4–6 times larger, with some parameter
scans using Lx = 341σρ0 = 512δ (e.g., §5.5) and the largest 3D simulation reaching
Lx = 512σρ0 = 768δ (cf. §5.1). Because the same overdensity η = 5 was used in the
large-σh regime, the σh = 25 simulations required a much hotter initial current sheet,
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θd = 10.5θb, to balance the relatively strong upstream magnetic pressure; whereas for
σh = 1, the initial current sheet is cooler than the upstream plasma, θd = 0.4θb. The
initial current sheet for σh = 25 thus had, at its peak density, about 50 times the energy
and inertia density of the upstream plasma; for σh = 1, this ratio is only 2. It is therefore
reasonable to expect the initial current sheet to exert greater influence for σh = 25 than
for σh = 1, especially considering that Lx/δ was several times smaller for σh = 25.

The relatively high enthalpy of the initial current sheet plasma for σh = 25, relative
to the background plasma, may play a critical role in slowing down reconnection in
3D (with a = 0 and Bgz = 0). Here is what we believe may be happening in that case.
When reconnection starts, the initial current sheet plasma is not trapped and swept away
from reconnecting X-points, which ultimately control the reconnection rate (Uzdensky
et al. 2010), but rather is dispersed widely in the vicinity of the layer. Some of that
hot, dense plasma recirculates into X-point inflows, where its high inertia—50 times
higher than the background plasma’s inertia—significantly lowers the Alfvén velocity
and slows reconnection. Either an initial perturbation, or a weak guide field, or 2D-ness
will facilitate the trapping of the initial current sheet plasma in plasmoids, sweeping
it away from X-points and preventing this scenario. Specifically, the 2D/3D difference
disappeared either with a perturbation of a = 2.7 or with a guide field of Bgz ⩾ B0/4—
where, importantly, Bgz = B0/4 was strong enough to suppress 2D/3D differences but
weak enough that it did not substantially affect reconnection rates or NTPA in either
2D or in 3D.
We now review the evidence that the 3D simulation with Bgz = 0 and a = 0 was an

outlier with slow reconnection and limited NTPA. When we compare the transverse mag-
netic energy versus time, UBt(t), for eight configurations with σh = 25—all combinations
of (1) dimensionality: 2D and 3D (Lz = Lx), (2) guide field: Bgz = 0 and Bgz = B0/4,
(3) perturbation: a = 2.7 and a = 0—we see three rough groups of similar UBt(t)
(Fig. 39, left). First, there is a group of all four simulations with Bgz = B0/4, which have
similar UBt(t), regardless of dimensionality or perturbation. Second, there is a group of
all simulations with Bgz = 0—except for the outlier (i.e., 3D, a = 0). Comparing these
two groups, we see, as expected, that the small guide field slows/suppresses reconnection
by a modest amount. Within each group, we see that the 3D simulations can ultimately
convert a bit more magnetic energy to plasma energy than the 2D simulations (cf. §5.5),
but this effect is not very significant, at least in the first 5Lx/c. The third group contains
just the single outlier—3D, Bgz = 0, a = 0—with much slower plasma energization.
Interestingly, this grouping falls apart when we look at UBy(t), the energy in magnetic

field components By (Fig. 39, right). Here, UBy is a proxy for the magnetic energy
UBt,layer in the layer, and we have seen (for σh = 1, e.g., §5.5) that 2D reconnection
stores magnetic energy in plasmoids, whereas plasmoids tend to decay in 3D. Here, there
is a distinct difference between 2D and 3D, although the 3D case with Bgz = 0 and a = 0
is still an outlier with the lowest overall UBy. Both guide field and initial perturbation
make 3D simulations behave more—but not entirely—like 2D simulations, something that
we have seen for σh = 1 (cf. §5.3, §5.6). This suggests, even for σh = 25, 3D simulations
may be more different from 2D simulations than previously suspected. However, it is
important to remember that 2D and 3D simulations with σh = 25 have rather similar
total magnetic energy evolution (unlike with σh = 1), apart from the one outlier case.
Looking at NTPA for these same simulations, we again see that the 3D case with Bgz =

0, a = 0 is a clear outlier. Particle energy spectra are shown in Fig. 40—at times when
15 per cent of the initial magnetic energy has been depleted, i.e., UBt(t) = 0.85UB0 (left),
and also at t ≈ 4Lx/c (right). All the simulations, except the outlier, have similar energy
spectra, especially for UBt(t) = 0.85UB0. (When compared at the same, t = 4Lx/c, one
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sees that, since even a weak guide field slows reconnection a little, NTPA for Bgz = B0/4
has not quite caught up to NTPA for Bgz = 0.)
We further observe that that this outlier—in reconnection rate and NTPA, as shown

above—is also an outlier in the behaviour of the initially-drifting plasma (i.e., the
initial current sheet plasma). In all simulations but the outlier—e.g., 2D or Bgz > 0
or a > 0—the initially-drifting particles are rapidly swept away from X-points and
trapped within plasmoids (see our discussion of plasmoid formation with and without
perturbation in §4.2, and also Ball et al. 2018). This can be clearly seen in Fig. 41,
which shows nde(x, yc, z), the density of initially-drifting electrons, as well as the density
nbe(x, yc, z) of background electrons, in the original midplane, y = yc. With a = 2.7
(s = 1.8δ, top row) or with Bgz = B0/4 (middle row), it takes only a short time to
evacuate most of the initially-drifting plasma from large areas (e.g., large areas with
nde < 0.2nbe0 are outlined—0.2nbe0 is a very small density compared with the initial
peak density nde = 5nbe0). However, with no perturbation and no guide field (bottom
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row), the initially-drifting particles remain scattered roughly uniformly about the layer,
while spreading in y, including in the vicinity of X-points. With 50 times the enthalpy
density of the background plasma, the initially-drifting plasma can thus significantly load
the inflows upstream of X-points, in this case lowering the effective σh and hence Alfvén
velocity, and thereby slowing reconnection.

Let us quickly review. In (σh = 25) simulations that have Bgz > 0 or have a > 0 or
are 2D,

• the initial current sheet plasma is quickly swept away from the vicinity of X-points,
• so that the plasma near X-points flows in from the upstream plasma with σh ≫ 1,
• and fast reconnection and NTPA ensue as in 2D simulations.

In the (outlier) 3D simulation with Bgz = 0 and a = 0,

• the initial current sheet plasma is dispersed about the layer and can flow back into
X-points,

• reducing the σh,X of the plasma immediately upstream of X-points (since, for large σh,
the initial current sheet plasma has much higher enthalpy and inertia than the upstream
plasma),

• and reconnection is slow and NTPA is substantially diminished.

When the initial current sheet plasma can flow back into X-points, we estimate the
hot magnetization σh,X , which controls reconnection rate and NTPA, as follows. From
pressure balance, the pressure of the initial current sheet plasma is pd ≡ nd0θdmec

2/γd =
B2

0/8π; since the enthalpy density is h ∼ 4pd, σh,d ≡ B2
0/(4πh) ∼ O(1). Even if the

upstream has σh ≫ 1, σh,X ∼ [σ−1
h + σ−1

h,d]
−1 may be O(1), roughly independent of the

upstream σh.

Lowering σh is known both to slow reconnection and to suppress NTPA (Sironi &
Spitkovsky 2014; Guo et al. 2015; Werner et al. 2016; Werner & Uzdensky 2017; Werner
et al. 2018; Guo et al. 2020). In contrast, our 3D simulations with (asymptotic upstream)
σh = 1, in which the initial current sheet plasma had only twice the enthalpy density of
the background plasma, showed slow reconnection but no reduction in NTPA (compared
with 2D; cf. §5.5). This suggests that the suppression of reconnection (and NTPA) in the
outlier σh = 25 simulation may not be caused directly by 3D effects (as manifested
for σh = 1), but rather may be a consequence of the initial current sheet plasma
behaviour, enabled indirectly by 3D effects (as long as Bgz = 0 and a = 0).

This raises the important question: in a much larger simulation, or in a simulation
with open outflow boundary conditions, would the initial current sheet plasma continue
to load the upstream plasma at X-points for arbitrarily long times? I.e., is this an artificial
effect of the initial and boundary conditions of an idealized simulation that might not
be important in realistic astrophysical systems, or is it an inevitable consequence of 3D
reconnection in some regimes? In a much larger simulation, or if particles could escape
the simulation, the loading of the upstream plasma (by hot, dense plasma from the
initial current sheet) might conceivably be a brief, transient phenomenon. Eventually, the
initially-drifting particles might escape or be trapped or become so diluted by background
plasma that they cannot effectively continue to increase the plasma inertia at X-points.
Indeed, it was this reasoning that led us to present only results from simulations with
a > 0 in Werner & Uzdensky (2017); the perturbation appeared to minimize the influence
of the initial current sheet, allowing us to access the large-system regime, Lx ≫ δ,
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with computationally-feasible simulations.† On the other hand, the upstream plasma is
heated and compressed as it flows through a reconnecting X-point, and—if that plasma
can recirculate back into the X-point inflows—that could provide long-term suppression
or self-regulation of reconnection. Unfortunately we cannot conclusively answer this
question with our previously-run σh = 25 simulations and must leave it to future research.

Even if upstream loading by the initial current sheet plasma explains the suppressed
reconnection and NTPA in 3D, and even if this effect vanishes for larger systems, this
second look at σh = 25 simulations suggests that we may still need to investigate whether
and how 3D reconnection differs from 2D reconnection for much larger systems with σh ≫
1. Figure 39 shows that, despite similar UBt(t) and NTPA in 2D and 3D (for Lx =
80σρ0), 3D reconnection with σh = 25 nevertheless exhibits one very clear signature of
fundamentally 3D effects—namely that magnetic energy stored in plasmoids (flux ropes)
decays in 3D, but not in 2D. This could significantly affect the long-term evolution of a
reconnection current sheet; for example, if plasmoids disintegrate in 3D (even for σh ≫ 1),
that might potentially kill the acceleration mechanism (due to conservation of magnetic
moment in a compressing plasmoid) for particles trapped in plasmoids (Petropoulou &
Sironi 2018; Hakobyan et al. 2021).

In summary, a definitive answer to the question of whether 3D reconnection with
σh ≫ 1 and weak or zero guide field can be slow compared with 2D reconnection (as
is the case for reconnection with σh = 1) will require more investigation. We can at
least say that σh ≫ 1 reconnection shows some distinctive 3D effects, most notably the
decay of flux-rope structures, resulting in more magnetic energy release in 3D than in 2D.
However, in some regimes with σh ≫ 1, simulations have nevertheless shown substantial
similarities between 2D and 3D reconnection in terms of magnetic energy evolution and
NTPA. It is possible that, in sufficiently large systems (larger than has been explored
to date), σh ≫ 1 reconnection is inevitably slow in 3D (compared with 2D), just as for
σh = 1. Alternatively, it is possible that the slowing of reconnection and the less efficient
NTPA for σh = 25 (with zero guide field and no perturbation) is the result of a transient
influence of the initial current sheet and that in more realistic astrophysical systems (at
long times after transients effects have died away) 3D reconnection would eventually and
inevitably resemble 2D reconnection.

7. Summary

Before a final discussion of the significance and some impacts of this study, we
briefly summarize the most important results for magnetic reconnection in 2D and 3D
ultrarelativistically-hot collisionless pair plasma with σh = 1 (i.e., βplasma = 1/2). We
remind the reader that we define σh ≡ B2

0/(16πnbθbmec
2) with respect to the upstream

(ambient) plasma, excluding any guide magnetic field (here, θbmec
2 is the temperature,

and θb ≫ 1). Thus the magnetic energy and thermal energy are comparable, and
both greatly exceed the plasma rest-mass energy. The results are organized in three
subsections: (7.1) major qualitative differences between 2D and 3D, (7.2) 2D-specific
results, and (7.3) 3D-specific results.

† Usually we refer to the large-system regime with respect to NTPA, with Lx ≫ 40σρ0
(Werner et al. 2016), but here we use the term in a different sense, with “large” implying
Lx ≫ δ, to reduce the influence of the initial current sheet. A typical astrophysical system
would almost certainly be very large in both senses.
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7.1. Qualitative similarities and differences in 2D and 3D

Our observations of general, qualitative aspects of current sheet evolution for (up-
stream) σh = 1 are summarized below, emphasizing similarities and differences in 2D
and 3D. (We describe 2D behaviour here primarily to facilitate comparison with 3D;
the qualitative 2D behaviour is familiar from previous works studying this and σh ≫ 1
regimes.)

• In 2D and 3D, the initial current sheet breaks up into smaller current sheets because
of the tearing instability and starts reconnecting. Small plasmoids—structures of
higher plasma density contained by magnetic field (possibly magnetic islands or flux
ropes)—grow, fed by reconnection outflows from elementary reconnecting current
sheets. (§4.1, 5.1)

• In 3D, the current sheet ripples due to RDKI—but this can be suppressed by guide
magnetic field. (§5.1, 5.6)

• In 2D and 3D, reconnection pumps plasma and magnetic energy from the upstream
region through X-points (or X-lines) into plasmoids; in the process, some upstream
magnetic energy is converted to plasma energy and some remains in magnetic form in
plasmoids. (§4.1, 5.1)

• In 2D, plasmoids (magnetic islands) are distinct structural units; they have closed
(eventually circular), reconnected magnetic field lines that permanently trap plasma
and magnetic energy from reconnection outflows. They are essentially stable in 2D
and can move about along the layer. Two colliding plasmoids will merge into one
(while mostly conserving the trapped flux and energy). As reconnection continues (in
a closed system), a single large plasmoid eventually engulfs (i.e., merges with) all other
plasmoids, growing (and never shrinking) as long as reconnection continues. (§4.1, 5.1)

• In 3D, plasmoids (flux ropes) can decay, not only losing their individual integrity
but also converting their magnetic energy to plasma energy. Importantly, this means
that upstream magnetic energy is more completely converted to plasma energy in 3D
(because 2D reconnection hoards some magnetic energy in plasmoids). Strong guide
field inhibits flux rope disintegration. (§5.1, 5.5)

• An indication of plasmoid decay—and the clearest signature of novel 3D behaviour that
we have observed—is the magnetic energy UBt,layer in the plasmoid-containing current
layer (defined in §3.1). In 2D, UBt,layer rises until reconnection ceases; in 3D, it rises at
the onset of reconnection, but then declines as plasmoids decay faster than reconnection
can inflate them. UBt,layer is more sensitive to 3D effects than other measures, and it
also exhibits less stochastic variation from simulation to simulation and more closely
correlates with Lz/Lx (Fig. 31). As a rough indicator of 3D effects, the (much easier to
calculate) magnetic energy in By components can be substituted for UBt,layer. (§5.1, 5.5)

• In 2D reconnection, flux is conserved in a precise sense: the total upstream flux plus the
flux around the largest plasmoid is almost constant, equal to the initial upstream flux.
In 3D reconnection, flux may be outright annihilated. The small amount of magnetic
energy UBt,layer left in the layer in 3D shows that upstream flux is eventually, if not
directly, annihilated. It is unclear how much upstream flux is annihilated directly with-
out undergoing any sort of reconnection, and how much first undergoes reconnection to
be annihilated later as plasmoids decay. The resemblance between 3D simulations and
2D simulations in both the x-z and y-z planes suggests that both these processes occur
in 3D, but the precise extents cannot be estimated without additional diagnostics.
(§3.3, 5.1, 5.4, 5.5)

• We speculate that, in 3D, for weak guide field, small plasmoids may decay faster than
large, long plasmoids, and that the decay of plasmoids may disrupt reconnection in
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nearby X-lines in thin current sheets. Thus, if something (such as guide magnetic field)
can cause reconnection to build up plasmoids faster than they decay, that may prevent
interference with X-points, maintaining reconnection in a more 2D-like fashion.

• Whereas 2D reconnection yields a highly-structured plasmoid hierarchy, in which large
(system-size-scale), highly-magnetized plasmoids do not obliterate nearby thin (kinetic-
scale) elementary current sheets, 3D reconnection tends to develop a thick, turbulent
layer, throughout which the magnetic field is greatly diminished. (§4.1, 5.1)

• In 3D, with weak guide field, the depletion of upstream magnetic energy and flux may
start rapidly (as in 2D, or perhaps a little more slowly), but then continue at an order-
of-magnitude slower rate for an order-of-magnitude longer time than in 2D. This may
be due to the thickened layer, and/or to reconnection occurring only in sparse, small
areas of the layer. Alternatively, true reconnection may operate to a lesser extent in
3D, with other, slower mechanisms (perhaps turbulent diffusion) depleting magnetic
field. (§5.3, 5.5)

• In 2D, the current sheet evolution from initial to final state (in a closed system) is
in a broad sense inevitable, despite stochastic plasmoid behaviour. In 3D, however,
stochastic variability in the early current sheet evolution can lead to substantially
different states at much later times (e.g., different layer thicknesses with different
amounts of magnetic energy converted to plasma energy and different continuing rates
of energy conversion). (§5.2, 5.4)

• 2D reconnection (in a closed system) ceases when the major plasmoid become large (of
order of the system size) and a stable magnetic configuration is realized. In 3D, we have
not observed the cessation of magnetic energy depletion, even after 30–50 light-crossing
times; the final 3D state may depend strongly on the early evolution. (§4.1, 4.3, 5.5)

• In 3D, increasing the initial guide magnetic field suppresses 3D effects, and 3D recon-
nection becomes increasingly similar to 2D reconnection. (§5.6)

• In 2D, guide magnetic field suppresses both reconnection and NTPA. This is also
true in 3D; however, because guide field also suppresses 3D effects (which suppress
reconnection), increasing the guide field enhances reconnection up to a point where 3D
effects are effectively suppressed; beyond that point, stronger guide field has the same
suppression effect as in 2D. (§4.4, 5.6)

• Despite differences in 2D and 3D current sheet evolution, NTPA is robust and
remarkably similar in 2D and 3D as well as in initially-similar 3D simulations with
manifestly different current sheet evolution. This is the case regardless of guide field.
(§5.5, 5.6)

• Moreover, NTPA is robust in a way that depends on the upstream σh = 1 and
Bgz/B0; particle energy spectra are steeper than those in simulations with larger σh,
and stronger guide field results in steeper power-law particle spectra. (§6)

7.2. Current sheet evolution in 2D

Besides providing a baseline against which to compare the 3D simulations, our 2D
simulations constitute the first systematic study across a broad swath of the multidimen-
sional parameter space describing 2D, σh = 1 (ultrarelativistic pair-plasma) reconnection,
which is of interest in its own right. Here we summarize the most important 2D results.

• Current sheet evolution depends significantly on the ambient σh and guide field
strength Bgz/B0. (§4.4, 6)

• The evolution of magnetic and plasma energy, and resulting NTPA, is relatively (but
not completely) insensitive to the initial current sheet configuration, including the
initial magnetic field perturbation, the density, temperature, and thickness of the initial
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current sheet, and the drift speed of the current sheet plasma. Thus reconnection is
governed mostly by the ambient background plasma as described below. (§4.2)

• For zero guide field (and, importantly, σh = 1), reconnection rates (normalized to B0c)
are typically around βrec ≈ 0.02–0.03, or (normalized to B0vA), (c/vA)βrec ≈ 0.03–
0.04, the same order of magnitude but still significantly less than the often-assumed
value of 0.1 (Cassak et al. 2017). [Values of (c/vA)βrec ≈ 0.1 are actually realized in 2D
reconnection in relativistic pair plasma with σh ≫ 1 (e.g., Sironi & Spitkovsky 2014;
Guo et al. 2015; Werner et al. 2018; Sironi & Beloborodov 2020).] (§4.3)

• The magnetic energy evolution in systems with Lx ≳ 160σρ0 already appears to
depend only very weakly on system size Lx (for Bgz = 0, up to Lx = 2560σρ0),
although larger simulations experience slightly slower reconnection rates than smaller
simulations. (§4.3)

• For Bgz = 0 (and, importantly, σh = 1), we observe NTPA (for σh = 1) with a steep
power-law slope of roughly f(γ) ∼ γ−4. (§4.3)

• NTPA also has a fairly weak dependence on Lx for Lx ≳ 160σρ0; although precise
measurement of steep power laws is difficult, our results (for Bgz = 0) suggest that the
power-law index varies within only about 10 per cent for 80 ≲ Lx/σρ0 ≲ 2560. The
maximum particle energy (or the high-energy cutoff of the particle power-law energy
spectrum) clearly increases sublinearly with Lx, from around 7σ for Lx = 80σρ0 to
perhaps 33σ for Lx = 2560σρ0. I.e., for a 32X increase in system size, the particle
cutoff energy increases by ∼5X, consistent with a ∼

√
Lx scaling (cf. Petropoulou &

Sironi 2018; Hakobyan et al. 2021). (§4.3)
• Guide magnetic field slows reconnection. Increasing the guide field from zero to Bgz =
4B0 reduces the reconnection rate (normalized to B0c; cf. §3.3) from βrec ≈ 0.03
to 0.007. This is roughly (within 30 per cent) consistent with βrec ≈ 0.04vA,x/c where
v2A,x/c

2 = σh,eff/(1 + σh,eff) and σh,eff ≡ (1/σh +B2
gz/B

2
0)

−1. (§4.4)
• Guide magnetic field inhibits NTPA, yielding steeper power-law spectra. The power-
law index steepens from ∼ γ−4 at Bgz = 0 to ∼ γ−6 at Bgz = B0, and it continues to
be steeper for higher Bgz. Keeping in mind the difficulty of measuring steep power laws,
we find that the power-law index is roughly p ≈ 4.4+2Bgz/B0; this should be taken as
a rough guide and not confirmation of a linear dependence on Bgz. For Bgz/B0 ≳ 1.5,
we measure p ≳ 8 and it is debatable whether the spectra are significantly nonthermal.
(§4.4)

7.3. Current sheet evolution in 3D

Our most important results for 3D simulations with σh = 1 (with system sizes in the
range 256 ⩽ Lx/σρ0 ⩽ 512):
• 3D effects can be introduced gradually by increasing the length Lz of the system in the
third dimension. We find that, for Bgz = 0 and the range of system sizes considered,
simulations with Lz ≳ Lx/8 can exhibit fairly obvious departures from 2D reconnection,
while those with Lz ≲ Lx/16 almost always closely resemble 2D. (§5.1, 5.5)

• As Lz/Lx is increased, 3D effects first appear in the time evolution of the magnetic
energy in the layer, UBt,layer(t). (The rest of this point applies to Bgz = 0 and a = 0.)
In 2D or very small Lz/Lx ≪ 1/32, UBt,layer(t) increases as long as reconnection
continues (up to around 25 per cent of UB0), and does not decrease. In 3D, UBt,layer(t)
increases at very early times, but then starts to decrease because plasmoids can
disintegrate in 3D. Even when Lz/Lx is small enough to avoid other departures from
2D reconnection, UBt,layer may be significantly less than in 2D. The larger Lz/Lx is, the
smaller UBt,layer(t) is (at any given t), up to around Lz/Lx ≲ 1. For Lz/Lx ≳ 1, UBt,layer

may rise to just a couple per cent of UB0 before falling to lower values. (§5.1, 5.5)
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• Random variability is substantially greater in 3D than in 2D; identical simulations,
aside from different random particle initialization, can yield very different behaviour
(e.g., in terms of magnetic energy versus time) and very different states even after
long times. This contrasts strongly with the variability in 2D, where similarly identical
simulations will still yield the same magnetic energy release versus time (when measured
over long timescales) and end up in nearly the same final state after the same amount
of time. Although more familiar, it is the 2D case that is more remarkable here—the
stable plasmoids trap energetic plasma from reconnection outflows and prevent it from
interfering with regions upstream of thin elementary current sheets even though the
plasmoids are orders of magnitude larger. (§5.2)

• 3D effects increase the sensitivity to the details of the initial current sheet configuration.
(§5.3)

• An initial magnetic field perturbation, uniform in z, can suppress 3D effects on
reconnection (at least for Bgz = 0), especially at earlier times. For this reason, our 3D
simulations were initialized with no perturbation (i.e., a = 0) except when specifically
studying the effect of a. (§5.3)

• For Bgz = 0, increasing the initial current sheet overdensity η (while maintaining
pressure balance) might weakly increase the early-time reconnection rate and make
reconnection more 2D-like, but a larger ensemble of simulations will be needed to
measure this effect beyond stochastic variation. (§5.3)

• For weak guide field, RDKI modes cause the current sheet to ripple. In the linear
phase of the instability, a mode grows to a rippling amplitude comparable to its
wavelength, without releasing much magnetic energy. The mode may subsequently
enter the nonlinear phase of the instability, during which the current sheet becomes
highly distorted, folding over on itself and rapidly releasing magnetic energy within
the rippling amplitude. This can occur even in a 2D y-z-plane simulation (but not in
the 2D x-y geometry used to study reconnection), and the magnetic energy depletion
can occur as fast as in 2D reconnection, even though driven by a manifestly different
large-scale mechanism. (§5.4, especially Fig. 28)

• For Bgz = 0, varying the initial current sheet drift speed, βdc (while keeping ηβd
hence δ/σρ0 fixed), has a dramatic effect on current sheet evolution due to its influence
on the RDKI. Increasing βd increases the growth rate of longer-wavelength RDKI
modes, which can release more magnetic energy (than shorter-wavelength modes) if
they grow fast enough to enter the nonlinear stage—simply because they can grow to
larger amplitude. (§5.3, 5.4)

• The influence of βd is only partly explained by its effect on the linear-phase growth
rate. A slower-growing, longer-wavelength mode may overtake a faster-growing, shorter-
wavelength mode because the latter saturates nonlinearly at smaller amplitude. The
most influential mode may have much longer wavelength than the (linearly) most
unstable RDKI mode. (§5.4, 5.5)

• The nonlinear development of RDKI may play a key role in the stochastic variability
of 3D current sheet evolution (for weak guide field). Although in some cases an RDKI
mode with long wavelength λz,RDKI ≫ δ will grow to a large amplitude and enter
nonlinear development, rapidly and dramatically changing the layer structure while
converting magnetic energy to plasma energy, growth to the nonlinear stage is not
inevitable. Nonlinear RDKI development may be triggered, e.g., in only a fraction of
an ensemble of identically-initialized simulations (up to random particle initialization),
thus putting them on very different evolutionary tracks. (§5.4, 5.5, Fig. 35)

• For Bgz = 0, the reconnection rate (normalized to B0vA; cf. §3.3) in the early stage of
3D development (typically ≲ 10Lx/c) varies from at most (c/vA)βrec ∼ 0.05 (at small
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Lz/Lx, the same as 2D) to as little as (c/vA)βrec ∼ 0.005 for large Lz/Lx; however,
stochastic evolution results in large variability, and even for large Lz/Lx, higher rates
may sometimes be observed. (§5.5)

• (For Bgz = 0) For Lz/Lx ≳ 1/8, most simulations exhibit an early stage of fast
magnetic energy release (but nonetheless slower than in 2D) lasting tens of Lx/c,
followed by a slower stage with reconnection rates (or more precisely, upstream flux
depletion rates) an order of magnitude lower, i.e., (c/vA)βrec ∼ 0.0005. The slower
stage can last at least up to 50Lx/c, and perhaps much longer. (§5.5)

• Our results are consistent with the suggestion of Yin et al. (2008) that local recon-
nection rates are as high as in 2D, but in 3D only a relatively small area of the layer
undergoes active reconnection, resulting in a low global reconnection rate. (However,
we did not measure local reconnection rates.) (§5.1)

• NTPA is nearly the same in 3D as in 2D, if compared at times when the same amount
of magnetic energy has been converted to plasma energy. It is equally remarkable that
NTPA is nearly the same in different 3D simulations that, despite being macroscop-
ically identical at t = 0, undergo very different current sheet evolution (and 2D y-z
simulations that suffer large-wavelength nonlinear RDKI also yield similar NTPA).
(§5.4, 5.5, 5.6)

• For Bgz = 0 (and, importantly, σh = 1), particle energy spectra show power laws
f(γ) ∼ γ−p with p ∈ [3.4, 4.6]. NTPA actually appears to be slightly more efficient in
3D than in 2D, sometimes yielding slightly harder power laws (e.g., γ−3.4), and with
the fraction of particles attaining γ > 10σ increasing by almost an order of magnitude
from 2D (or Lz/Lx ≪ 1/8) to 3D (Lz/Lx ≳ 1/8). Enhanced NTPA in 3D has been
previously supposed to result from the weaker trapping of particles in plasmoids which,
in 2D, ends particle acceleration (Dahlin et al. 2015; Dahlin et al. 2017; Li et al.
2019; Zhang et al. 2021). However, because of the steep power law, these differences
in NTPA between 2D and 3D may be ultimately unimportant relative to other effects
and uncertainties. (§5.5)

• Weak guide field can enhance 3D reconnection because it suppresses 3D effects (that
slow reconnection); this is noticeable in reconnection rates and the evolution of mag-
netic energy even for weak guide field, Bgz/B0 ≳ 0.1. However, as the guide field
becomes strong enough to suppress 3D effects substantially, reconnection behaves as in
2D, where increasing the guide field slows reconnection and inhibits NTPA. We believe
that, for σh = 1, guide field causes 3D reconnection to resemble 2D reconnection
strongly around Bgz/B0 ≳ 1 (but see the parenthetical caveat in the next bullet).
(§5.6)

• Stronger guide field therefore raises the reconnection rate as long as 3D effects are
more suppressive than guide field effects. The reconnection rate rises from βrec ≈
0.002 at Bgz = 0 to a maximum around βrec ≈ 0.02 for 0.25 ≲ Bgz/B0 ≲ 0.75. For
even stronger guide field the reconnection rate falls (however, because of system-size
limitations, we explored only up to Bgz/B0 = 1 in 3D, with just a single simulation for
each value of Bgz/B0, and so this conclusion needs to be confirmed by future studies
with better statistics and higher Bgz). (§5.6)

• For each value of Bgz/B0 investigated (0 ⩽ Bgz/B0 ⩽ 1), NTPA is practically the
same in 3D as in 2D. (§5.6)
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8. Discussion

8.1. Differences between 2D and 3D: comparison with previous works

Perhaps the most important general observation of this work is that, in the σh = 1
regime, thin current sheets can evolve very differently in 2D and in 3D. However, they do
not always evolve differently. In particular, a guide field—possibly even Bgz/B0 ≳ 0.25—
can suppress 3D effects, and so can a small initial perturbation that is uniform in the
third dimension.

Especially in cases with very weak guide field, 3D systems might not be well-modelled
by 2D simulations. Important consequences or signatures of 3D effects include slower
rates of magnetic-to-plasma energy conversion and disintegration of plasmoid or flux
rope structures (which releases additional magnetic energy). Moreover, magnetic energy
can be converted to plasma energy via a completely different mechanism—the nonlinear
development of the RDKI (see §8.2). Nevertheless, despite these 3D effects, NTPA
remains essentially the same in 3D as in 2D.

As pointed out in §6, the dramatic differences in 3D might be a bit of a surprise because
they were much less evident in reconnection in the σh ≫ 1 regime, despite clear presence
of RDKI. However, some of these effects have been previously observed in σh ∼ 1 pair-
plasma PIC simulations. Of particular interest for their close relevance and identification
of similar 3D effects, are: Yin et al. (2008)—hereafter, Yin08; Liu et al. (2011)—Liu11;
and Kagan et al. (2013)—K13.

Yin08, Liu11, and K13 all used PIC simulation to study 3D reconnection in pair
plasma with σh ∼ 1; simulation parameters are compared in table 4. Yin08 initialized
subrelativistic plasma with θb = 0.016 and σh ≈ 0.2 in simulations of size Lx = 240σρ0
and Lz ⩽ Lx, while Liu11 and K13 both used transrelativistic plasma with θb = 1 and
σh ∈ [0.5, 1.5]; Liu11 had Lx = 60σρ0 and Lz ⩽ Lx, and K13 studied two configurations,
one with Lx = 52σρ0 and Lz = 1.6Lx and another with Lx = 110σρ0 and Lz = 1.1Lx.
None of these simulations used any initial perturbation. K13 was the only one that did
not use a standard Harris-sheet set-up; it was also the only one to study the effect of
guide field.

All these previous σh ∼ 1 studies observed tearing and reconnection as well as an initial
linear growth and later nonlinear growth of RDKI modes. Yin08 and Liu11 report similar
reconnection rates with no clear/significant difference between 2D and 3D, measuring
(c/vA)βrec ≈ 0.06–0.08 (with respect to the magnetic field B averaged over the “inflow
surface” rather than the asymptotic upstream B0); K13 reports 3D rates of (c/vA)βrec ≈
0.05–0.08. These reconnection rates for σh ∼ 1 are all roughly half of (c/vA)βrec measured
for σh ≫ 1, and they are consistent with our results for Lz ≪ Lx. However, for Lz ∼ Lx

we measured significantly lower values with (c/vA)βrec ≲ 0.02 (see Fig. 32). This may
be because the previous works measured the rates in smaller systems at earlier times, or
because (for Yin08 and Liu11) they normalize to a local magnetic field smaller than B0.
In addition to calculating similar reconnection rates in 2D and 3D, Yin08 shows very
similar magnetic energy evolution in 2D and 3D while hinting that the energy depletion
appeared to be “somewhat slower” in the simulation with largest Lz because of the
limited size of the reconnecting patch.

Of these three, Liu11 is the only one that (like us) specifically reports an early stage
of faster magnetic energy depletion (attributed to tearing/reconnection) followed by a
stage of slower depletion (attributed to nonlinear RDKI development). In Liu11, the
slower stage results in significantly more release of magnetic energy in 3D than in 2D—a
signature of flux rope disintegration (in contrast, Yin08 sees similar magnetic depletion
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Table 4. Approximate (ranges of) parameters for the largest 3D simulations of Yin08, Liu11,
and K13 (with two series of simulations, S1 and S2), translated to the terminology of this paper;
values for 3D simulations of this paper are also shown. Parameters not defined in §2 or table 1
are as follows: vA is the upstream Alfvén velocity; βplasma ≡ 8πnbθbmec

2/B2
0 is the upstream

plasma beta; dNR
e ≡ (mec

2/4πnbe
2)1/2 and dNR

e,d ≡ (mec
2/4πnde

2)1/2 are the nonrelativistic
collisionless background and drifting plasma skin depths (these nonrelativistic scales are not
applicable to this paper); ℓy is Ly divided by the number of layers simulated; trun is the final
simulation time.

Yin08 Liu11 K13(S1) K13(S2) this work

σ 0.21 6.7 2 4 104

θb 0.016 1 1 1 2.5× 103

σh 0.20 1.5 0.46 0.92 1.0
vA/c 0.41 0.78 0.56 0.69 0.71
βplasma 0.15 0.30 1 0.5 0.5
Bgz/B0 0 0 0–1 0–1 0–1

η = nd/nb 3.3 3.3 ∗1.5 ∗2.3 0.5–5
θd/θb 1 1 ∗ ? ∗ ? 0.4–5
βd 0.36 0.82 ∗≲ 0.36 ∗≲ 0.36 0.075–0.6

δ/σρ0 0.18 0.21 3.7 3.9 0.67–3.3
ρb/σρ0 0.96 0.48 1.6 0.79 0.75
de/σρ0

† 2.2 0.72 1.3 0.92 0.87
dNR
e /σρ0 2.2 0.39 0.71 0.50 N/A
dNR
e,d /σρ0

‡ 1.2 0.21 ∗0.58 ∗0.33 N/A

Lx/σρ0 240 60 52 110 256–512
ℓy/Lx 1 1 0.5 0.5 1
Lz/Lx 0–1 0–1 1.6 1.1 0–1.5
trunvA/Lx 4.1 5.0 > 4.2 2.6 7–35

∗K13 used a uniform density nb with varying βd = βd(y) to satisfy Ampere’s law (without
a separate drifting component), but pressure balance was not initially satisfied, resulting in
an immediate compression of the current sheet by a factor ≃ η (and unknown temperature
increase).
†K13 referenced lengths to λp ≡ de.
‡Yin08 referenced lengths to di ≡ dNR

e,d .
‡Liu11 referenced lengths to di ≡

√
2dNR
e,d .

in 2D and 3D; K13 shows UB(t) only for Bgz = B0/4, and not for a very long time, but
if anything, the rate of magnetic depletion speeds up at later times).
Both Yin08 and Liu11 (and possibly K13) appear to observe more growth and merging

of flux ropes in 3D than we do; however, Liu11 and K13 run long enough to see the end
of the “period” of flux rope merging, leaving a much less structured, more turbulent
layer (which we have also observed). Apparent qualitative differences among the various
simulations may have more to do with simulation size than any fundamental difference;
in fact, K13 reports (for Bgz = B0/4) that in a smaller simulation flux ropes merge into
a final, single flux rope (as in 2D), while in a larger simulation this merging is disrupted
before reaching a single, large flux rope. Although these simulations all ran in somewhat
different regimes with different initial current sheet configurations (which, we have shown,
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can make a difference—see §5.3–5.4), the combined results appear consistent with the
notion that as systems become increasingly larger, the stage of 2D-like reconnection
becomes increasingly transient. This may suggest that the later, slower stage—with
significant 3D effects—is more relevant for astrophysically-large systems.
All these papers also observe nonlinear RDKI in some form, but always following a

stage of tearing and reconnection (whereas we have shown that for some initial current
sheet configurations, RDKI may drive the earliest stage of rapid magnetic energy release;
see §5.4). Interestingly, in Yin08, a long (in z) current sheet forms between growing
flux ropes, undergoes extreme distortion and folding via nonlinear RDKI (which Yin08
calls “secondary” kinking), and subsequently reforms as a thin, reconnecting current
sheet, suggesting such behaviour may be cyclic. Liu11 also observes “self-organization”
of initially-patchy reconnecting regions into a “highly-elongated” current sheet between
growing flux ropes, although this sheet appears to be permanently disrupted by nonlinear
RDKI (i.e., it does not reform as in Yin08).
Both Liu11 and K13 investigated particle acceleration and report nonthermal particle

energy spectra. The spectra are consistent with power laws γ−p with (very roughly), for
Liu11, p ≈ 2.5 up to a cutoff γc ∼ 4σ, and for K13, p ≈ 3.5 up to γc ∼ 7σ (for the
largest simulation, labelled S2K025L, with σ = 4, Bgz/B0 = 0.25, and Lx = 110σρ0;
for a smaller simulation, Lx = 55σρ0, the spectra were nearly identical for Bgz/B0 = 0
and 0.25). Because the cutoffs of power laws can be misleading to compare for different
power-law slopes, we also note a more straightforward measure of the (high) energy at
which f(γ) becomes small, namely the value γ−4 for which f(γ−4) ≡ 10−4maxγf(γ); for
Liu11, γ−4 = 7.1σ and for K13 (S2K025L), γ−4 = 7.8σ; for our 3D simulations with
Lx = 512σρ0, γ−4 = 10σ.
Considering the somewhat different parameters, including system size and run time,

these results seem reasonably consistent. Liu11 and (to a lesser extent) K13 might
measure less steep spectra than we do, but the cause of this could easily be the larger σh
in Liu11 and/or the sub- or trans-relativistic upstream plasma, and/or the smaller system
sizes and different initial current sheet configurations. K13 investigated the effect of guide
field, running simulations with Bgz/B0 = 0, 0.25, and 1. Although K13 does not report on
relative reconnection or magnetic energy depletion rates, there is a suppression of NTPA
for Bgz/B0 = 1 relative to the weaker guide fields, also consistent with our results.
Thus it appears that the most important 3D effects that we have observed in an

evolving current sheet are consistent with previous observations in similar parameter
regimes, although the 3D effects have generally become clearer with our larger system size
and scan over a broader range of simulation parameters. Importantly, we have studied 3D
effects with respect to different current sheet configurations, which can dramatically alter
the strength of these effects, especially at early times. In particular, we have highlighted
the importance of (sufficiently fast-growing) long-wavelength RDKI modes—namely that
they can grow to large amplitudes before entering the nonlinear stage in which the current
layer can be dramatically transformed while rapidly releasing magnetic energy (see §5.4
and §8.2). In addition, we have shown that NTPA can be driven by 2D-like reconnection,
or the slower stage of reconnection (and possibly RDKI), or by rapid nonlinear RDKI,
yielding very similar particle energy spectra in all cases.
Having discussed the σh ∼ 1 regime, we briefly comment on differences between

3D reconnection in the σh = 1 regime compared with the σh ≫ 1 regime, where 3D
reconnection has been observed to be quite similar to 2D reconnection (e.g., Sironi &
Spitkovsky 2014; Guo et al. 2014, 2015; Werner & Uzdensky 2017; Guo et al. 2020)—more
details were given in §6. Based on these σh ≫ 1 studies, it is likely that large σh tends
to enhance reconnection and/or suppress 3D reconnection-disrupting effects. However,
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most of the large-σh studies have used an initial perturbation of some kind, which we
have shown can suppress 3D effects, especially at early times. The extent of the role of
the initial perturbation requires further study; regardless of the results, however, what is
really needed is a better understanding of system-size dependence in 3D. In the σh ∼ 1
regime, a 2D-like reconnection stage may be very transient in larger simulations; and
due to resolution requirements, feasible simulations with σh ∼ 1 can be relatively larger
than those with σh ≫ 1. It may be, therefore, that larger 3D simulations with σh ≫ 1
begin to show distinctly 3D effects—such as the slowing of reconnection and disruption
by RDKI, as well as the possibility of magnetic energy release through RDKI—at much
larger sizes than anyone has yet simulated.

8.2. Another magnetic energy release mechanism: nonlinear RDKI

We have found that, in at least some cases, a thin 3D current sheet can release magnetic
energy by a mechanism that may have nothing to do with magnetic reconnection—
namely the nonlinear RDKI, which causes a highly-kinked (or rippled) current sheet
to fold over on itself (see §5.4; Zenitani & Hoshino 2007). This mechanism can operate
in 2D y-z geometry (perpendicular to the magnetic field), where large-scale magnetic
reconnection is impossible and upstream flux is directly annihilated, and it can release
magnetic energy as fast as 2D reconnection while generating similar NTPA. Importantly,
the earlier linear development of RDKI releases little magnetic energy and does not
yield significant NTPA (and it might not even interfere with reconnection). Because
the nonlinear RDKI causes the rippling to saturate at an amplitude of the order of the
instability wavelength, longer-wavelength RDKI modes can reach larger amplitudes and
thus have greater impact, even if they grow more slowly; but of course they still have to
grow enough to reach the nonlinear stage to trigger rapid magnetic energy release. While
it is possible that, in the nonlinear RDKI development, small-scale reconnection (or,
alternatively, turbulence-enhanced magnetic diffusion) plays a role in releasing magnetic
energy, it is clearly RDKI at large scales that drives the process of energy conversion.

As an alternate channel for releasing magnetic energy, RDKI may offer a neat solution
to the “triggering” or “onset” problem faced by reconnection (e.g., Ji et al. 2019). This
is the problem of reconciling the slow timescale of current sheet formation and magnetic
energy build-up with the fast timescale of magnetic energy release; the current sheet
must be relatively stable as it slowly forms, until at some point it suddenly becomes
unstable—e.g., reconnection is triggered and releases energy rapidly (e.g., Pucci & Velli
2014; Tenerani et al. 2016; Uzdensky & Loureiro 2016; Comisso et al. 2017; Huang et al.
2017, 2019). With reconnection, solving this problem likely requires understanding the
mechanism behind current sheet formation. With RDKI, there is a simpler explanation:
the current sheet may form and RDKI (at sufficiently long wavelength) may grow slowly,
because the linear stage of RDKI does not release much magnetic energy. The trigger
occurs when the RDKI amplitude becomes comparable to its wavelength, and nonlinear
development begins.

However, to understand its potential astrophysical importance, it will be critical
to determine the dependence of the nonlinear RDKI on system size. For any given
wavelength, the nonlinear RDKI cannot continue forever; it dissipates magnetic energy
within a layer of thickness (at most) comparable to the wavelength. It might not continue
to release upstream magnetic energy in the way that 2D reconnection does (as discussed
in §5.4, one might suppose 2D reconnection would saturate after plasmoids grow to the
size of the elementary current sheet; however, simulations show that plasmoids detach
and move away without disrupting the elementary current sheets, so that reconnection
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does not saturate until plasmoids grow to the system-size scale). However, RDKI could
potentially continue to develop at different, longer wavelengths.
For instance, an RDKI mode with wavelength λz,RDKI may grow in a current sheet

of thickness ∼ δ; if λz,RDKI ≫ δ and the mode reaches an amplitude of order λz,RDKI,
nonlinear development may release the magnetic energy within a layer of thickness δ′ ∼
λz,RDKI, resulting in a new current sheet of greater thickness, δ′ ≫ δ. Because shorter-
wavelength modes are limited to smaller amplitudes, longer-wavelength modes tend
to be more influential. Indeed, in some of our simulations, current sheet evolution
was eventually dominated by the RDKI mode with the longest-possible wavelength,
λz,RDKI ∼ Lz; if this behaviour continues up to systems of arbitrary size, nonlinear RDKI
could potentially release astrophysically-large amounts of energy. This could occur in one
fell swoop, or in a series of stages (bursts) cascading up to the system size: the thickened
layer with δ′ might subsequently be destabilized by a new mode with λ′z,RDKI ≫ δ′,
which might grow enough to enter the nonlinear phase, suddenly releasing energy in a
layer of thickness δ′′ ∼ λ′z,RDKI, etc., until the entire system is substantially depleted of
magnetic energy. Alternatively, this process could slow to an effective halt well before
reaching the system size, with further energy release requiring other processes to thin
out the layer (e.g., the processes responsible for the current sheet formation in the first
place). Whether and how fast nonlinear RDKI, operating in sufficiently large systems,
can release astrophysically-large amounts of energy, are important questions that we leave
to future research.

8.3. Observable astrophysical consequences

In this paper we have investigated the plasma dynamics of current sheet evolution as
well as resulting NTPA, which are unlikely to be directly observable in any astrophysical
source; however, synchrotron and inverse Compton emission from high-energy particles
may be observable. Although we must leave a detailed study of radiation to future work,
we can infer some observable consequences under simplifying assumptions. Synchrotron
and inverse Compton emission from high-energy electrons and positrons will depend on
the shape and normalization of the distribution of accelerated particles. Importantly,
we have shown that the magnetization σh and guide field strength Bgz/B0 strongly
affect both energy conversion rates and the NTPA spectrum; on the other hand, the
dimensionality (2D vs. 3D) and initial current sheet configuration can affect energy
conversion rates but, at most, weakly affect the NTPA spectrum. This is a double-
edged sword. On one hand, we may be able to infer σh and Bgz/B0 from observations
conveniently without knowing other details. On the other hand, we may not be able to
determine less influential details of the current sheet or even the effective dimensionality
of astrophysical current sheets from observations. Here we say “effective dimensionality”
because we have seen that, under some circumstances—e.g., strong guide field, small
Lz/Lx, or perhaps some sort of perturbation that encourages uniformity in z—a 3D
current sheet can evolve as if it were in 2D.
The most basic observable signatures are simply the radiation intensity and (for a

flaring event) duration. For this reason the study of astrophysical reconnection has been
justifiably obsessed with measuring and understanding the reconnection rate to determine
whether reconnection can explain rapid magnetic energy releases. We have observed that
the reconnection rate in 2D simulations is about what would be expected for “fast”
reconnection, i.e., (c/vA)βrec ∼ 0.1. If more precision is desired, we have shown that the
actual value is somewhat less than 0.1 for σh = 1 and Bgz = 0, and guide field can slow
the rate even more, up to about a factor of 3 for strong guide field. The reconnection rate
in 3D can be substantially lower, leading to lower radiated power and longer duration
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(for a given source size); depending on precisely how 3D reconnection is triggered, it may
yield two stages (as in our simulations), an initial flare somewhat less bright than one
would expect from 2D simulations, following by a much longer, much dimmer afterglow.
Observed intensity could thus be an important diagnostic of effective dimensionality.
Unfortunately, it is complicated by the sensitivity to initial current sheet configurations,
and also the difficulty of relating the total radiated power to the observed intensity at a
particular viewing angle (discussed below).
The next most basic signature is probably the spectral energy distribution of observable

radiation. The photon spectra are a consequence of the particle spectra and should
therefore depend on σh and Bgz/B0, but may be fairly insensitive to dimensionality
and initial current sheet details. For instance, for σh = 1 and Bgz/B0 = 0, we have seen
that the particle energy power-law index is around p ≈ 4, and we can infer (assuming a
steady-state, uniform, isotropic, weakly-radiative system) that the emitted photon energy
power-law index would be around α = (p − 1)/2 ≈ 1.5. For stronger Bgz, the photon
spectrum would steepen accordingly.
However, more detailed computation of emitted radiation from self-consistent PIC

simulations is needed to determine whether these conclusions are valid outside of
a much-simplified radiation emission model. In particular, we need to consider the
spatial- and angular-dependence of accelerated particles. In addition, if radiation is
very strong/efficient, the radiation reaction force will alter the high-energy particle
distributions and possibly even the current sheet evolution.

Because ultrarelativistic particles emit synchrotron and inverse Compton emission
narrowly beamed around their directions of motion, the angular dependence of particle
spectra may have important consequences for observation of radiation along a particular
line of sight (see, e.g., Jaroschek & Hoshino 2009; Cerutti et al. 2012a,b, 2013, 2014a,b;
Kagan et al. 2013; Christie et al. 2018; Werner et al. 2019; Mehlhaff et al. 2020; Sironi
& Beloborodov 2020). For example, kinetic beaming—i.e., a strong energy-dependent
anisotropy of particle spectra and hence radiation—observed in high-σh, 2D reconnection
(Cerutti et al. 2012b; Mehlhaff et al. 2020) may be sensitive to 3D effects and/or the
current sheet configuration, even if the isotropically-averaged spectra are not. Indeed,
kinetic beaming has previously been observed to be present but weaker in 3D (Kagan
et al. 2013; Cerutti et al. 2014b); however, this issue needs systematic study over a range
of σh, current sheet configurations, guide fields, and radiation strengths.

Since we have seen that the spatial distribution of magnetic field can be quite different
in 2D and 3D (cf. Fig. 18), the spatial dependence of particle distributions may also
be important in determining synchrotron emission. For example, in 3D the nonlinear
RDKI can result in a thickened current layer—a relatively large volume with greatly-
diminished magnetic field. As a result, particles accelerated by the nonlinear RDKI may
radiate very little within the layer, emitting and cooling only as they exit the layer,
when they suddenly experience nearly the full ambient magnetic field. This could affect
both the average radiated power (because radiation is suppressed in the layer) and the
spectrum (because the magnetic field is mostly either full strength or low strength). In
contrast, there is less reason to believe that overall inverse Compton radiation would be
different in 2D and 3D, unless the spectrum of soft photons (to be upscattered by high-
energy electrons and positrons) is different—e.g., for synchrotron self-Compton, where
the “soft” photons may be a result of synchrotron radiation.

If radiative cooling of particles is strong (compared with accelerating forces), the
radiation reaction force can alter the spectra of accelerated particles. This is especially
interesting in the case of synchrotron radiation, because particles accelerated by 2D
reconnection may experience significant acceleration in regions of low magnetic field,
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allowing them to exceed the synchrotron burnoff limit (i.e., to exceed the energy at which
the radiation reaction force in the ambient/upstream magnetic field would cancel electric-
field acceleration, Uzdensky et al. 2011; Cerutti et al. 2012a,b). The different geometry
of 3D current sheet evolution, not to mention different large-scale driving mechanisms
(e.g., nonlinear RDKI vs. 2D reconnection), might affect whether and how particles can
exceed the burnoff limit. In Cerutti et al. (2014b), particles accelerated by RDKI in 2Dyz
geometry did not exceed the burnoff limit, although particles accelerated by a 3D evolving
current sheet did (although not nearly as much as in 2Dxy reconnection); however, that
was for one particular current sheet configuration and σh (though multiple guide field
strengths were investigated). It is possible that this conclusion would change for other
systems, especially considering that we have shown that nonlinear RDKI is dramatically
affected by the initial current sheet configuration (see §5.3, 5.4).

By showing that 3D effects as well as the initial configuration can substantially affect
current sheet evolution, we have demonstrated the need to simulate radiation from these
systems to determine observable signatures. Although the insensitivity of NTPA spectra
to these details may result in photon spectra that depend primarily on σh and Bgz/B0,
this cannot be determined until we also understand the spatial and angular dependence
of NTPA spectra and the emitted photon spectra.

9. Conclusion

Magnetic reconnection is a plasma process that is important in large part because
it converts magnetic energy to plasma (particle) energy. It may play a key role in
relativistically-hot plasmas (including electron-positron pair plasmas) in a variety of
astrophysical sources, accelerating particles to very high energies where they can emit
observable radiation. In general, but especially for astrophysical applications, we seek to
understand the rate and amount of magnetic energy conversion as well as the development
of nonthermal particle energy distributions that can be correlated with emitted radiation.
The primary way in which we can infer the role of reconnection in astrophysical sources,
which cannot be directly probed, is to connect observable consequences of reconnection
(i.e., radiation) with the source plasma conditions (such as magnetic field and plasma
density), which can be inferred therefrom. Most of the systematic studies of the effects
of varying reconnection parameters in astrophysically-relevant relativistically-hot plasma
have focused on highly-magnetized regimes. We add to the literature this study focusing
on the moderately-magnetized regime, σh = 1, in which the ambient magnetic energy is
roughly in equipartition with the ambient plasma energy. It is especially important to
understand the effect of different values of the “hot” magnetization σh because it exerts
a substantial influence on reconnection: not only does it place an upper bound on the
relative energy gain of particles, but it also determines the Alfvén velocity, which controls
the rate of reconnection.
This paper presents the first study that systemically investigates energy conversion and

NTPA in reconnection across a wide variety of parameters in the ultrarelativistic σh = 1
pair plasma regime. Specifically, we explore the effects of different initial current sheet
configurations, system-sizes (in 2D), guide magnetic fields, and (in 3D) aspect ratios
Lz/Lx. To compare simulations we look particularly at the rates at which magnetic
energy is converted to plasma energy, as well as the resulting NTPA. An extensive
summary of briefly-stated important results can be found in §7.

Our 2D simulations show that reconnection with σh = 1 qualitatively resembles
relativistic reconnection in the σh ≫ 1 regime; however, they also measure significant
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quantitative differences—differences that could ultimately allow one to constrain σh in
an astrophysical source based on observed radiation.
In contrast, our 3D simulations reveal substantially different qualitative behaviours, as

well as (in many cases) significantly slower conversion of magnetic to plasma energy. We
find that in 3D there are are other mechanisms besides large-scale (2D-like) reconnection
that can drive current sheet evolution and plasma energization. It would therefore be
more precise to say that we are studying the evolution of a thin current sheet in 3D
rather than 3D reconnection. Fascinatingly, regardless of the large-scale driver, NTPA
remains robust, very similar in 2D and 3D—when compared at equivalent fractions of
converted magnetic energy.
Results characterizing reconnection and energy conversion rates and NTPA in 2D for

σh = 1 are described in §4 and compared with the σh ≫ 1 regime in §6. By comparing
to other works studying σh ≫ 1, we see that σh strongly influences these key outcomes.
In 2D, for σh = 1 and zero guide field, we find that the dimensionless reconnection rate
(i.e., normalized to B0vA) is around 0.03, which is somewhat less than the ∼ 0.1 observed
for σh ≫ 1. Reconnection with σh = 1 clearly yields NTPA, but generates a high-
energy power-law energy spectrum f(γ) ∼ γ−4, significantly steeper than for σh ≫ 1.
Increasing the guide field Bgz slows reconnection and suppresses NTPA, yielding still
steeper power-law spectra. We believe the guide field slows down reconnection by reducing
the effective Alfvén speed in the outflow direction, while the reduced compressibility of
the guide-field-threaded plasma causes reconnection to end with more unreconnected flux
remaining (in a closed system). We expect these guide field effects to become significant
for Bgz/B0 ≳ 1/σh (thus they should become evident only for much stronger guide field
in nonrelativistic reconnection, where σh ≪ 1 because σh includes rest-mass enthalpy).
Moreover, we find that these outcomes in 2D are relatively insensitive to the details of
the initial current sheet, indicating that the primary results of 2D reconnection (energy
conversion and NTPA) may be robust functions of the ambient plasma, as hoped (to
connect observations with astrophysical source conditions).
In 3D, the story is much different. Unlike relativistic reconnection with σh ≫ 1, 3D

effects substantially alter reconnection with σh = 1. In fact, true reconnection may have
a much diminished role in the 3D evolution of thin current sheets, with other processes
(likely driven by the RDKI) competing to convert magnetic energy to plasma energy. As
a result, the morphology of the current sheet does not feature the intricately hierarchical
plasmoid structure familiar from 2D reconnection simulations. In 3D, plasmoids can
decay, and instead of storing magnetic energy as in 2D, they release their magnetic energy
to the plasma. Thus 3D “reconnection” can convert upstream magnetic energy more
completely to plasma energy. However, the rate of energy conversion may be significantly
(an order of magnitude) slower in 3D, even at early stages, and still slower at later stages.
Reconnection simulations in both 2D and 3D evolve stochastically or chaotically,

following different paths from the initially random particle distributions. However, the
competition among different magnetic-energy-releasing mechanisms leads to a variety
of long-term behaviours in 3D, in contrast to the relative inevitability with which 2D
reconnection evolves to a common final state (despite unpredictable chaotic plasmoid
behaviour along the way). In 3D, current sheet evolution is significantly more sensitive
to the initial current sheet configuration than in 2D. For example, an initial magnetic field
perturbation (relatively inconsequential in 2D simulations) tends to force 3D evolution
to resemble 2D-like reconnection. The main competition to reconnection appears to come
from the RDKI; importantly, we find that it might not be the fastest-growing RDKI mode
that presents the stiffest competition, but rather the longest-wavelength, “sufficiently
fast-growing” mode. While the linear stage of the RDKI does not deplete much magnetic
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energy, its nonlinear development—especially in large-amplitude modes—competes with
reconnection to convert significant amounts of magnetic energy to plasma energy. In
particular, we have observed the RDKI-induced rippling of the current sheet grow to an
amplitude comparable to its wavelength (without depleting much magnetic energy) and
subsequently fold over on itself, rapidly converting most of the magnetic energy within
the rippling amplitude to plasma energy. Because longer-wavelength modes reach larger
amplitudes, they can have a larger impact; whereas short-wavelength modes, though they
may grow faster, saturate at small amplitudes without obstructing reconnection. We find
that a completely different mechanism can thus deplete magnetic energy as fast as recon-
nection. However, whereas reconnection results in a highly-structured chain of plasmoids
that—despite monstrously large plasmoids—preserves thin (kinetic-scale) inter-plasmoid
current sheets, this RDKI-triggered process results in a turbulent, generally-thickened
current layer, which seems to disrupt reconnection.
Despite sometimes very large differences between 2D and 3D current sheet evolution—

and even between different 3D evolutions—the resulting NTPA is remarkably similar in
all cases (with the same guide magnetic field).
The presence of a guide magnetic field tends to suppress 3D effects, causing current

sheet evolution to behave more like 2D reconnection. This leads to an interesting non-
monotonic trend in 3D with increasing guide field, since both 3D effects and guide field
suppress reconnection. A weak guide field tends to enhance the 3D reconnection rate by
diminishing 3D effects; but once the guide field is strong enough to suppress 3D effects
nearly completely, further increase suppresses reconnection in 3D as in 2D. Again, even
with guide field, NTPA is very similar in 2D and 3D. Increased guide field (unlike 3D
effects) suppresses NTPA, leading to steeper power-law energy distributions.
This investigation shows that 3D current sheet evolution is not necessarily a pertur-

bation or modification of 2D reconnection, but rather involves a complicated interaction
of linear and nonlinear stages of multiple instabilities. This leads to a range of possible
behaviours and an accompanying sensitivity to initial conditions that motivates further
exploration of initial configurations and construction of parameter-space phase diagrams;
these possibilities and sensitivities must then be considered in astrophysical modelling. It
also increases the urgency of understanding the current sheet formation process in the first
place. On the other hand, the diversity of behaviour highlights universalities in magnetic
energy dissipation and resulting NTPA that could find important use in astrophysical
models. While the rate of magnetic energy dissipation can vary significantly depending on
the details of the current sheet, all configurations yield, though by different means, “fast”
magnetic energy release in the sense that it is tremendously faster than naive magnetic
diffusion; and the nonthermal particle spectra are even more universal, determined
primarily by the ambient σh and Bgz/B0. These universalities will be invaluable for
astrophysical modelling and may be important clues to a deeper understanding of
magnetic energy dissipation and particle acceleration in plasmas.
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Figure 42. (Left) Transverse magnetic energy versus time, and (right) particle energy spectra
f(γ), compensated by γ4, at t = 4.5Lx/c (with the initial spectra at t = 0 shown for comparison
in dashed grey), for the same 2D simulation with resolutions from ∆x = σρ0/2 to ∆x = σρ0/24.
These simulations have Lx = 320σρ0, Bgz = 0, η = 5 (δ/σρ0 = 2/3), and an initial perturbation
a = 11 (s/δ = 5.4), with 40 background particles per cell and 40 initially-drifting particles per
cell.

Foundation grant number ACI-1548562 (Towns et al. 2014); in particular, the large
2D simulations were run at the Texas Advanced Computing Center (TACC) at The
University of Texas at Austin.

Appendix A. Grid resolution

Throughout this paper, we use a grid resolution of ∆x = σρ0/3. For σh = 1, this ∆x
resolves the fundamental plasma scales: the (upstream) Debye length λD = (1/2)σ−1

h σρ0
is marginally resolved, while the (upstream) collisionless skin depth de =

√
3λD and the

Larmor radii of typical upstream particles, ρb ≈ 3θbρ0 = (3/4)σ−1
h σρ0, are slightly better

resolved. Although we explore different values of the initial current sheet half-thickness
δ, most simulations presented here use δ = (2/3)σρ0 (corresponding to η = 5), giving 4
cells over the initial current sheet thickness 2δ.
The main motivation to study the σh ∼ 1 pair plasma regime is its astrophysical

application; however, it is also of interest because the small scales (λD, de, ρb) are nearly
the same, allowing maximum dynamic range (between the kinetic scales and system size)
with minimum computation.
We naturally want to use the coarsest resolution possible that captures the desired

plasma physics and yields stable simulation, so that we can reach the largest possible
system sizes with the least computation. Figure 42 demonstrates the effect of changing
resolution for 2D simulations of size Lx = 320σρ0, showing that the two most telling
diagnostics, magnetic energy evolution and NTPA spectra, are the same (up to inherent
stochasticity) for resolutions ranging from ∆x = σρ0/2 to ∆x = σρ0/24; simulations
were only run for 4.5Lx/c to save computation time. For the rest of the paper, we use
∆x = σρ0/3. This resolution becomes insufficient for very large systems (Lx ≳ 2560σρ0),
which begin to exhibit poor energy conservation, where the total simulation energy, which
should be conserved, increases by more than a fraction of a per cent. However, we can
show that even when the total energy grows by O(1 per cent), it does not significantly
affect the results, aside from a small amount of extra heating (cf. Fig. 10, right, where
we compare ∆x = σρ0/3 and ∆x = σρ0/4 for a very large simulation).

We note that another relevant length scale is the most unstable wavelength of the RDKI
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(in the absence of guide magnetic field), λRDKI = 2π/kz,RDKI ≃ 2π(8γdβ
2
d)δ (Zenitani

& Hoshino 2007). For βd = 0.3, λRDKI ≃ 5δ; thus this most unstable mode is resolved
somewhat better than the initial current sheet (of half-thickness δ)—which is marginally
resolved for ∆x = σρ0/3.

In (2D) y-z simulations, we do see that, when the initial current sheet is marginally
resolved, as for δ/σρ0 = 2/3 (η = 5) and ∆x = σρ0/3, that RDKI is suppressed
and, e.g., greater instability and magnetic depletion occurs for higher resolution, e.g.,
∆x = σρ0/6. However, such a thin initial current sheet requires initially-drifting particles
with a temperature below that of background particles (θd/θb = 2γd/η ≈ 0.4). In a 3D
simulation, tearing and reconnection rapidly moves (hotter) background particles into
the current sheet, thickening it. Moreover, in §5.3, where we specifically study the initial
current sheet evolution in 3D, we include cases where the current sheet and linear RDKI
modes are much better resolved.
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