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ABSTRACT

Effective deployment of machine-learning (ML) models
could drive a high level of efficiency in aircraft engine
conceptual design. Aero-Engines Al is a user-friendly app that
has been created to deploy trained machine-learning (ML)
models to assess aircraft engine concepts. It was created using
tkinter, a GUI (graphical user interface) module that is built into
the standard Python library. Employing tkinter greatly
facilitates the sharing of ML application as an executable file
which can be run on Windows machines (without the need to
have Python or any library installed). The app gets user input
for a turbofan design, preprocesses the input data, and deploys
trained ML models to predict turbofan thrust specific fuel
consumption (TSFC), engine weight, core size, and
turbomachinery stage-counts. The ML predictive models were
built by employing supervised deep-learning and K-nearest
neighbor regression algorithms to study patterns in an existing
open-source database of production and research turbofan
engines. They were trained, cross-validated, and tested in
Keras, an open-source neural networks APl (application
programming interface) written in Python, with TensorFlow
(Google open-source artificial intelligence library) serving as
the backend engine. The smooth deployment of these ML
models using the app shows that Aero-Engines Al is an easy-to-
use and a time-saving tool for aircraft engine design-space
exploration during the conceptual design stage. Current version
of the app focuses on the performance prediction of
conventional turbofans. However, the scope of the app can
easily be expanded to include other engine types (such as
turboshaft and hybrid-electric systems) after their ML models
are developed. Overall, the use of a machine-learning app for
aircraft engine concept assessment represents a promising area
of development in aircraft engine conceptual design.

Keywords: aircraft engine, machine learning, tkinter, Python,
TensorFlow

INTRODUCTION
More and more organizations are adopting a data-driven
approach to decision-making. With the vast amounts of data
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collected and tracked in recent times, machine-learning (ML)
applications are gaining popularity across multiple industries.
The aircraft engine industry has amassed and stored significant
quantities of data over the years. These big data sets, sourced
from multiple origins such as the database of currently
manufactured engines, ongoing development projects,
previously ~ completed  development  projects, and
unmanufactured designs, hold tremendous potential as a
knowledge asset for future engine projects.

Designing an aircraft engine is a complex,
interdisciplinary process that requires significant time and
effort. Engine designers encounter a formidable challenge
during the conceptual design phase - how to rapidly evaluate
the performance of a specific engine design given the aircraft's
mission requirements and various design parameters. The
number of potential engine configurations could be vast,
requiring designers to rely on system analysis and simulation to
estimate performance. Consequently, designers must conduct a
comprehensive propulsion system study for each possible
configuration, which can be time-consuming, particularly when
dealing with a large design space.

By leveraging the power of machine learning (ML)
algorithms to learn from the existing engine data sets, it is
possible to develop ML models that can quickly and accurately
assess new aircraft engine concepts, providing valuable insights
and reducing the time and resources required for the engine
concept assessment process. A ML model can identify patterns
and trends that may not be immediately apparent to human
analysts, leading to more informed decision-making and
ultimately resulting in the development of better aircraft engine
concepts. The ability to assess new engine concepts quickly and
accurately can be a competitive advantage in aircraft engine
development.

Previously, the author focused on training/developing the
ML models that allow for quick estimation of engine TSFC,
system weight, and core size during the conceptual design
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phase. The development process and methodology for these
models are described in [1, 2, 3]. Additional ML models were
developed for the turbomachinery stage count prediction since
then, using the same methodology. This paper zeros in on the
deployment of these trained ML models to assess aircraft
engine concepts, via an app. The development process of the
app, Aero-Engines Al, is described in this paper.

While the development of ML models is essential for their
applications, the models would only be of value if they are
actively deployed in a production environment where they can
be used to solve practical problems. Thus, effective ML model
deployment is just as important as ML model development. ML
model deployment involves integrating trained ML models,
developed in a R&D environment, into a production
environment. It is a critical step that must be done so an
organization can use the models to solve problems. Seamless
deployment of trained ML models into production is essential
for putting the models to practical use.

Aero-Engines AI, a Windows app, has been created to
deploy the trained ML models for aircraft engine concepts
assessment. It was created using tkinter, a GUI module that is
built into the standard Python library. Employing tkinter greatly
facilitates the sharing of ML application as an executable file
which can be run on Windows machines (without the need to
have Python or any library installed). MS Windows platform
was chosen for the deployment to reduce complexity and for
ease of access. The structure of the app is shown in Figure 1.

The app is user-friendly. It is simple to learn, easy to
navigate, and its use is intuitive enough that it does not require
an instruction manual. The development process of Aero-
Engines Al consists of five steps:

e Engine data collection, augmentation, and
preparation

e ML models training

e ML models testing and evaluation

e  App design for ML models deployment

e  Monitoring and updating

ENGINE DATA COLLECTION, AUGMENTATION, AND
PREPARATION
e Engine data collection

Current version of the app has only turbofan assessment
capability (will be expanded to include other engine types such
as turboshaft, hybrid-turbofan, etc., in the future versions). The
basic engine architecture is an axial-compressor turbofan. The
engine database consists of 145 manufactured (commercial)
engines [4 to 10] and 39 engines that were studied previously
in various NASA aeronautics projects. These commercial
engines capture over half-a-century of engine technology
improvements and lessons-learned, which would minimize the
prediction uncertainties of the ML models. The NASA engine
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data were the system-study results for various NASA
aeronautics projects [11-16]. The engine database is shown in
Appendix A.

Trained machine-learning models
Engine TSFC
Engine weight
Engine core size
Engine fan diameter
Turbomachinery stage counts

1

Aero-Engines Al

Figure 1 — Structure of Aero-Engines Al app

Output
Engine TSFC
- Engine weight
Engine core size
Engine fan diameter
Turbomachinery stage counts

User input

Engine design P

parameters

e Data augmentation

Data augmentation is an important technique that is
commonly used in ML to improve the performance and
generalizability of a training model. The process entails
creating additional data points from the existing training data
by applying various transformations and modifications to the
data. Data augmentation increases the diversity and quantity of
training data, improving the model's performance for its task,
and making it more adaptable to changes in the data. For this
study, the data augmentation was performed by scaling up the
current engines by 10%. For example, the sea-level static (SLS)
engine thrust and weight were increased by 10%, while keeping
the other operating parameters such as bypass ratio (BPR),
overall pressure ratio (OPR), Mach No., altitude, and TSFC
unchanged, as shown below:

SLS Thrust Alt. TSFC Weight
BPR OFR (Ibs) Mach )  (Ib/hrflb)  (lbs)
8.44 38.37 79377 0.85 35000 .5526 18949
8.44 3837 87315 0.85 35000 5526 20844

With the data augmentation, the size of the database becomes:

Turbofan type No. of engines

2-spool direct-drive 273
2-spool geared 89
3-spool direct-drive 50

e Dataset preparation

The next step was to prepare the data that would be used
to train the ML models. It involved cleaning and
preprocessing the data to remove errors or inconsistencies and
organizing the data into a format that could be used for the
training. The engine dataset was normalized and shuffled
randomly (using pseudo-random number generator) and
divided into two datasets: the training set and the testing set.
The training set was used to train, cross-validate, and build
predictive models. The testing set consisted of the remaining
engines that were unseen by the training models and was
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retained for the final evaluation of the predictive analytics.
The dataset preparation is described in detail in [1, 2, and 3].

ML MODELS TRAINING

Once the data was ready, the next step was to select the
appropriate algorithms that would be used to train the ML
models. This can involve choosing from a variety of machine
learning algorithms and tuning the parameters and
hyperparameters of the models to optimize their performance
on the specific problem or task.

As reported in [1, 2, 3], the ML models for TSFC, engine
weight, and core size predictions were constructed using
supervised deep-learning and K-nearest neighbor algorithms
[17], which analyzed patterns in an open-source database of
research and production turbofan engines. Additional ML
models were developed since then for the turbomachinery stage
count prediction, using K-nearest neighbor regression
algorithm. These models were trained, cross-validated, and
tested using Keras, an open-source neural networks API written
in Python, with TensorFlow as the backend engine. These
models were trained and deployed in Keras [18], an open-
source neural networks API written in Python, with TensorFlow
[19] serving as the backend engine. Keras provided the building
blocks for developing the deep-learning models, and
TensorFlow handled the tensor computations and
manipulations.

Depending on the ML model, either L2 or Dropout
regularization technique (where neuron outputs are dropped out
randomly) [20 and 21] was applied to prevent the DNN from
overfitting the training data. A grid-search routine was used to
determine the regularization parameter, dropout rate, number of
epochs, batch size, and the number of ‘neurons’ in the hidden
layers that give the lowest training error. The Adam
optimization algorithm [22] was used to update the network
weights during each epoch.

Totally, nine ML models were trained for engine TSFC,
weight, core size (last stage HPC blade height), fan diameter,
and turbomachinery stage count predictions, respectively. The
training and cross validation of these ML models are described
in detail in [1, 2, and 3].

ML MODELS TESTING

After the ML models were trained, the next step was to test
and evaluate their performances. The trained ML models were
evaluated using a separate set of data, the testing dataset (that
was unseen by the training models). The testing procedures of
these ML models are described in detail in [1, 2, 3]. The results
showed that these ML models are an effective tool for
predicting engine TSFC, engine weight, core size, and
turbomachinery stage counts. Their performances were
determined, in terms of the means and standard deviations:

Uncertainty
Mean 95% confidence interval

ML model accuracy (2 standard deviations)
TSFC 98% 4%
Weight 95% 5%
Core size 98% 4%
Fan diameter 98% 5%
LPC stage count 98% 14% (or 1 stage”)
HPC stage count 98% 8% (or 1 stage”)
HPT stage count 96% 39% (or 1 stage’)
LPT stage count 98% 18% (or 1 stage’)
IPT stage count 90% 44% (or 1 stage’)

Notes: *based on the current database
1-stage fan is assumed for all the engines

APP DESIGN for ML MODELS DEPLOYMENT

After the ML models were developed, trained, and
tested, they were integrated into the user-friendly app, Aero-
Engines Al, that allows for the easy and intuitive assessment
of engine concepts. Aero-Engines Al is a Windows app that
deploys trained ML models to assess aircraft engine concepts.
The app was created using tkinter [23], a GUI (graphical user
interface) module that is built into the standard Python library.
And pyinstaller [24], a Python package, was used to convert
the python scripts into an executable file that can be run on
Windows machines. The conversion greatly facilitates the
sharing of ML applications with other Windows users (who do
not need to have Python, or any library installed in their
computers).

The app design aimed to provide a user-friendly
experience with a simple point-and-click feature. The input
page consists of three elements:

e adrop-down menu to select options

e dataentry fields

e a ‘PREDICT"’ button to run the app

These three elements are shown in Figure 2.

The drop-down menu allows users to select different
options for engine architectures, configurations, and
timeframe. When a user selects a tab, the drop-down menu
will display the options that are associated with that tab. Based
on the user's selection, the app would use the trained ML
models to analyze relevant data and make predictions on
engine performance, in terms of engine TSFC, weight, core
size, and turbomachinery stage counts.

The drop-down menu consists of the following tabs:

Engine type — current version of the app only has the
conventional turbofans option. Turboshaft and hybrid-electric
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turbofan are being considered for the future app versions. The
engine-type tab is shown in Figure 3.

Drive system — offers two options: direct-drive or geared. This
tab is shown in Figure 4.

Engine configuration — offers two options: 2-spool or 3-spool
design. This tab is shown in Figure 5.

Engine timeframe — engine certified year. Users can pick a
calendar year or NASA timeframe (N+1, N+2, etc.). This tab
is shown in Figure 6.

Single engine or Multiple engine designs — offers two options:
single engine design or multiple-engine designs analyses. This
tab is shown in Figure 7. If “multiple engine designs” is
selected, the user inputs for bypass ratio, overall pressure
ratio, and engine thrust would be in ranges, as shown in Figure
8.

The data entry fields are provided for the users to input
the engine design parameters. The default entries for the Mach

number and cruise altitude are provided (0.8 and 35000 feet,
respectively), as shown in Figure 2. The users can override
these numbers.

App Execution - to run the app, one simply clicks the
‘PREDICT’ button.

Input Changes — users can return to the input page and modify
the inputs by clicking the ‘BACK” button on the output page.
This button is shown in Figure 9.

Example Problems -

e Single engine design: -
input parameters are shown in Figure 7,
outputs are shown in Figure 9.

e  Multiple engine designs: -
input parameters are shown in Figure 8,
output spreadsheet is shown in Figure 10

Turbofan — Direct-Drive — 2-Spool — Engine Timeframe — | Single Engine Design —'I

PREDICT

Figure 2 — User input page for single-engine design
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Direct-Drive — 2-Spool — Engine Timeframe — | Single Engine Design —

Figure 3 — Engine type option

2-Spool — Engine Timeframe —| Single Engine Design —
Direct-Drive
Geared

Figure 4 — Direct-drive or geared turbofan option

Turbofan — Direct-Drive -| 2-Spool — [Engine Timeframe —| Single Engine Design —
2-Speol
3-pool

35000

Figure 5 — Engine configuration options
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Turbofan — Direct-Drive — 2-Spool | Engine Timeframe —| Single Engine Design —

Engine Timeframe

Year 2020
Year 2025
Year 2030
Year 2035
Year 2040
Year 2045
Year 2050
NASA N+1
NASA N+2
NASA N+3
NASA N+4

Figure 6 — Engine timeframe option

Turbofan — Direct-Drive — 2-Spool — Year 2020 —| Single Engine Design —

Single Engine Design
Muitiple Engine Designs

PREDICT

Figure 7 — Single-engine or multiple-engine design option

Turbofan — Geared — 2-Spool — Year 2035 — Multiple Engine Designs -

Figure 8 — Input page for multiple-engine designs
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Figure 9 — Example output of a single-engine design

MONITORING AND UPDATING

Monitoring and updates are important aspects of ML app
development, as they help ensure that the app continues to
perform well and provide accurate predictions or
recommendations over time. To ensure optimal performance of
the current ML models, it's crucial to keep track of the changing
engine data and its effect on their overall functionality. While
the commercial engine data in the current database remain
static, the NASA engine data are obtained through research on
aeronautics studies for three generations of aircraft - near, mid,
and far term. Each generation has associated goals for
reductions in noise, emissions, fuel burn, and field length
relative to present-day aircrafts. These aircraft generations are
labeled as 'N+1', 'N+2', and 'N+3', respectively. The research
for 'N+2' and 'N+3' is aimed at enabling new vehicle
configurations that meet NASA's ambitious technology
objectives. As the NASA engine data could be revised over
time, the ML models must be updated periodically to consider
the impact of such updates.

SUMMARY

Aero-Engines Al, a user-friendly Windows app, has been
created using tkinter, a GUI module that is built into the
standard Python library. This app is designed to deploy trained
ML models to assess various aircraft engine concepts. These
ML models were trained, cross-validated, and tested in Keras,

an open-source neural networks API written in Python, with
TensorFlow serving as the backend engine. The assessment
results are presented in terms of engine TSFC, weight, core size,
and turbomachinery stage counts. The seamless deployment of
these ML models through the app demonstrates that Aero-
Engines Al is an efficient and easy-to-use tool for exploring the
design space of aircraft engines during the conceptual design
stage. The current version of the app focuses on predicting the
performance of conventional turbofans. However, after the
development of their ML models, the app's scope can be easily
expanded to include other engine types, such as turboshaft and
hybrid-electric systems.

The success of the ML application will depend on the
quality and quantity of data available for training, as well as the
deployment of the ML model itself. Careful consideration of
these factors is crucial to ensure the optimal performance of the
ML system. Overall, the use of a machine-learning app for
aircraft engine concept assessment represents a promising area
of development in aircraft engine conceptual design.
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1 | sLsOPR .| SLS BPR SLS Thrust, k-Ibfs  Cruise Mach Cruise Alt, k-ft = Drive Type No. Spool Engine Timeframe Fan dia, inch Max. nacelle dia, inch Cruise TSFC, Ib/hr/lb Pod Weight, Ibs HPC last-stg blade-ht, inch # fan stage # LPC stage # HPC stage # HPT stage #IPT stage #LPT stage
2 36 1 26 08 43 geared 2-spool 2035 71.36 87.48 0.5374 6631 20.43 inch 1 3 a9 2 3
3 36 1 7 08 43 geared 2-spool 2035 72.74 89.17 0.5418 6859 20.43 inch 1 3 El 2 3
4 36 1 28 0.8 43 geared 2-spool 2035 74.29 91.08 0.5442 7118 20.43 inch 1 3 2 2 3
5 36 12 26 08 43 geared 2-spool 2035 73.05 89.56 0.5320 6760 20.43 inch 1 3 9 2 3
6 36 12 27 0.8 43 geared 2-spool 2035 74.58 91.43 0.5364 7020 20.43 inch 1 3 2 2 3
7 36 12 28 08 43 geared 2-spool 2035 76.19 93.41 0.5400 7309 20.43 inch 1 3 9 2 3
8 36 13 26 0.8 43 geared 2-spool 2035 74.79 91.70 0.5272 6907 20.43 inch 1 3 9 2 3
9 36 13 27 08 43 geared 2-spool 2035 76.53 93.82 0.5317 7202 20.43 inch 1 3 ] 2 3
10 36 13 28 0.8 43 geared 2-spool 2035 78.37 96.08 0.5356 7500 20.43 inch 1 3 9 2 3
1 36 14 26 08 43 geared 2-spool 2035 75.29 92.31 0.5231 6874 20.43 inch 1 3 El 2 3
12 36 14 7 08 43 geared 2-spool 2035 76.92 94.30 0.5273 7160 20.43 inch 1 3 el 2 3
13 36 14 28 08 43 geared 2-spool 2035 78.64 96.42 0.5313 7451 20.43 inch 1 3 El 2 3
14 36 15 26 08 43 geared 2-spool 2035 76.60 93.91 0.5195 6947 20.43 inch 1 a el 2 3
15 36 15 27 08 43 geared 2-spool 2035 78.26 95.85 0.5235 7234 20.43 inch 1 a a9 2 3
16 36 15 28 08 43 geared 2-spool 2035 80.02 98.11 0.5275 7529 20.43 inch 1 a El 2 3
17 37 1 26 08 43 geared 2-spool 2035 71.40 87.53 0.5375 6640 20.43 inch 1 3 a9 2 3
18 37 1 7 08 43 geared 2-spool 2035 72.79 89.24 0.5417 6863 20.43 inch 1 3 El 2 3
19 37 1 28 0.8 43 geared 2-spool 2035 74.24 91.02 0.5424 7102 20.43 inch 1 3 2 2 3
20 37 12 26 08 43 geared 2-spool 2035 73.34 89.92 0.5322 6795 20.43 inch 1 3 9 2 3
21 37 12 27 0.8 43 geared 2-spool 2035 74.87 921.79 0.5363 7051 20.43 inch 1 3 2 2 3
22 37 12 28 08 43 geared 2-spool 2035 76.48 93.76 0.5384 7337 20.43 inch 1 3 9 2 3
23 37 13 26 0.8 43 geared 2-spool 2035 75.89 93.04 0.5275 7035 20.43 inch 1 3 9 2 3
24 37 13 27 08 43 geared 2-spool 2035 77.62 95.16 0.5317 7327 20.43 inch 1 3 ] 2 3
25 37 13 28 0.8 43 geared 2-spool 2035 79.21 97.11 0.5346 7588 20.43 inch 1 3 9 2 3
26 37 14 26 08 43 geared 2-spool 2035 76.00 93.18 0.5233 6950 20.43 inch 1 a El 2 3
27 37 14 7 08 43 geared 2-spool 2035 77.65 95.20 0.5275 7238 20.43 inch 1 a el 2 3
28 37 14 28 08 43 geared 2-spool 2035 79.39 97.33 0.5311 7525 20.43 inch 1 a El 2 3
29 37 15 26 08 43 geared 2-spool 2035 76.86 94.23 0.5197 6962 20.43 inch 1 a el 2 3
30 37 15 27 08 43 geared 2-spool 2035 78.47 96.20 0.5236 7246 20.43 inch 1 a a9 2 3
E3| 37 15 28 08 43 geared 2-spool 2035 80.17 98.29 0.5274 7530 20.43 inch 1 a El 2 3
32 38 1 26 08 43 geared 2-spool 2035 71.46 87.61 0.5372 6658 20.43 inch 1 3 a9 2 3
33 38 1 7 08 43 geared 2-spool 2035 72.88 89.35 0.5398 6874 20.43 inch 1 3 El 2 3
34 38 1 28 0.8 43 geared 2-spool 2035 74.36 91.17 0.5403 7112 20.43 inch 1 3 2 2 3
35 38 12 26 08 43 geared 2-spool 2035 73.67 90.32 0.5324 6828 20.43 inch 1 3 9 2 3
36 38 12 27 0.8 43 geared 2-spool 2035 75.20 92.19 0.5358 7079 20.43 inch 1 3 2 2 3
37 38 12 28 08 43 geared 2-spool 2035 76.80 94.16 0.5363 7358 20.43 inch 1 3 9 2 3
38 38 13 26 0.8 43 geared 2-spool 2035 76.45 93.72 0.5278 7088 20.43 inch 1 a 9 2 3
39 38 13 27 08 43 geared 2-spool 2035 77.98 95.61 0.5317 7358 20.43 inch 1 a ] 2 3
40 38 13 28 0.8 43 geared 2-spool 2035 79.46 97.41 0.5325 7601 20.43 inch 1 a 9 2 3
4 38 14 26 08 43 geared 2-spool 2035 77.00 94.41 0.5236 7063 20.43 inch 1 a El 2 3
42 38 14 7 08 43 geared 2-spool 2035 78.72 96.52 0.5275 7359 20.43 inch 1 a el 2 3
43 38 14 28 08 43 geared 2-spool 2035 80.40 98.58 0.5289 7629 20.43 inch 1 a El 2 3
44 38 15 26 08 43 geared 2-spool 2035 77.64 95.19 0.5198 7043 20.43 inch 1 a el 2 3
45 38 15 27 08 43 geared 2-spool 2035 79.27 97.18 0.5237 7332 20.43 inch 1 a a9 2 3
46 38 15 28 08 43 geared 2-spool 2035 80.88 99.16 0.5256 7598 20.43 inch 1 a El 2 3
47
45

Sheetl [«

Ready EE

Figure 10 - Example spreadsheet output of multiple-engine designs
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Appendix A
Engine database

Thrust, Cruise Cruise Year System  No.of CruiseTSFC PropulsionSystem

Org. Engine Model BPR (SLS) OPR(SLS]) lbs (SLS] Mach Alt. kft. certified Type Spools Ib/Ibf.hr Weight, Ibs
CFM Int'l CFMSE-2C1 6.0 23.50 22000 0.80 35 1979 [8]8] 2 0.651 7199
CFM Int'l CFM56-3B1 51 22.40 20000 0.80 35 1934 oo 2 0.655 5389
CFM Int'l CFM56-3B2 51 2430 22000 0.80 35 1534 [5]8] 2 0.655 6E07
CFM Int'l CFMSE-3C1 5.1 25.50 23500 0.80 35 1986 [8]8] 2 0.667 6766
CFM Int'l CFMSE-541 6.0 26.60 25000 0.80 35 1987 oo 2 0.556 770
CFM Int'l CFM56-5A3 6.0 27.90 26500 0.80 35 1990 [5]8] 2 0.556 7850
CFM Int'l CFMSE-5A4 6.0 23.80 22000 0.80 35 1996 [8]8] 2 0.596 7375
CFM Int'l CFMSB-5A5 6.0 25.10 23500 0.80 35 1996 [8]8] 2 0.596 7534
CFM Int'l CFM56-5B1 57 30.20 30000 0.80 35 15994 [5]8] 2 0.600 8366
CFM Int'l CFMSE-5B2 5.6 31.30 31000 0.80 35 1993 [8]8] 2 0.600 8479
CFM Int'l CFMSE-5B3 5.4 32.60 33300 0.80 35 1997 [8]8] 2 0.600 8734
CFM Int'l CFM56-5B4 59 27.10 27000 0.80 35 15994 [5]8] 2 0.600 8036
CFM Int'l CFMS6-5B5/P 5.9 23.33 22000 0.80 35 1996 [8]8] 2 0.600 7509
CFM Int'l CFMS6-5B6/P 6.0 2464 23500 0.80 35 1995 [8]8] 2 0.600 7659
CFM Int'l CFM56-5C2 6.8 28.80 31200 0.80 35 1991 [5]8] 2 0.545 8796
CFM Int'l CFMSB-5C3 6.7 29.90 32500 0.80 35 1994 [8]8] 2 0.567 9122
CFM Int'l CFMSB-5C4 6.6 31.15 34000 0.80 35 1994 [8]8] 2 0.567 9285
CFM Int'l CFMS56-7B20 5.4 2261 20600 0.80 35 1996 [»]n] 2 0.603 6963
CFM Int'l CFM56-7B22 5.3 24.41 22700 0.80 35 1996 [8]8] 2 0.603 7194
CFM Int'l CFM56-7B24 5.2 25.78 24200 0.80 35 1996 [8]8] 2 0.603 7360
CFM Int'l CFM56-7B26 5.1 27.61 26300 0.80 35 1996 [»]n] 2 0.603 7602
CFM Int'l CFM56-7B27 5.0 28.63 27300 0.80 35 1996 [8]8] 2 0.603 7872
CFM Int'l LEAP-1A26 111 33.40 27112 0.78 35 2015 [8]8] 2 0.536 8840
CFM Int'l LEAP-1A35 10.7 38.50 32170 0.78 35 2015 [»]n] 2 0.536 9401
CFM Int'l LEAP-1B25 B34 38.40 26797 0.79 35 2016 DD 2 0.536 7778
CFM Int'l LEAP-1B27 8.5 39.90 28034 0.79 35 2016 [8]8] 2 0.536 7898
CFM Int'l LEAP-1B28 8.6 41.50 29315 0.79 35 2016 [»]n] 2 0.536 8024

GE CFB-6D 59 2470 40000 0.85 35 1970 DD 2 0.646 11749
GE CFe-6D1 5.9 24.70 41500 0.85 35 1971 [8]8] 2 0.646 11895
GE CFe-6D1A 5.9 25.40 41500 0.85 35 1971 [»]n] 2 0.646 11895
GE CFE-45A2 43 25.90 46500 0.85 35 1373 DD 2 0.630 12927
GE CFE-50C 43 28.80 51000 0.85 35 1375 DD 2 0.657 13323
GE CFE-50C1 43 29.80 52500 0.85 35 1975 [»]n] 2 0.657 13467
GE CFB-50C2 43 28.44 52500 0.85 35 1978 DD 2 0.630 13467
GE CFB-50C28 43 29.06 54000 0.85 35 1379 DD 2 0.630 13611
GE CFB-50E 43 28.44 52500 0.85 35 1973 [»]n] 2 0.657 13505
GE CF6-50E2 43 29.80 52500 0.85 35 1373 DD 2 0.630 13505
GE CFE-80A 5.0 29.00 48000 0.20 35 1981 DD 2 0.623 12883
GE CFE-80A2 5.0 30.10 50000 0.80 35 1981 [»]n] 2 0.623 13076
GE CFB-B0A3 5.0 30.10 50000 0.20 35 1981 DD 2 0.623 13069
GE CFB-80C2A1 51 30.96 59000 0.20 35 1985 DD 2 0.576 14782
GE CFE-80C2A2 51 28.00 52460 0.80 35 1986 oo 2 0578 14034
GE CFB-80C2A3 51 3164 58950 0.20 35 1988 DD 2 0.576 14776
GE CFB-80C2A5 51 3158 60100 0.20 35 1988 DD 2 0.578 14907
GE CFE-B0C2A8 51 31.00 59000 0.80 35 1996 oo 2 0.602 14782
GE CF5-80C2B1 51 30.08 56700 0.20 35 1987 DD 2 0.576 14529
GE CFB5-80C2B1F 51 30.13 57160 0.20 35 1989 DD 2 0.564 14628
GE CFE6-80C2B2 51 2774 51590 0.80 35 1987 oo 2 0576 14039
GE CFE6-80C2B4 51 30.36 57180 0.80 35 1987 oo 2 0.590 14575
GE CF5-80C2B6 51 3156 60070 0.20 35 1987 DD 2 0.602 14851
GE CFE-B0E1AL 51 32.46 67500 0.80 35 1993 oo 2 0.562 14344
GE CFE-BOE1AZ 51 33.10 68240 0.80 35 1993 oo 2 0.562 14344
GE CF5-80E1A3 51 35.70 68520 0.20 35 2001 DD 2 0.562 14344
GE CFE-80E1A4 51 34.50 66B70 0.80 35 1997 oo 2 0.562 14344
GE CF34-104 5.4 26.50 18290 074 37 2010 oo 2 0.650 5453
GE CF34-10€ 51 27.30 18820 074 37 2002 DD 2 0.665 5598
GE CF34-3A 6.3 1970 9220 074 a7 1986 oo 2 0704 2849
GE CF34-8C1 51 23.03 12670 074 37 19499 oo 2 0.664 3988
GE CF34-8C5 51 23.09 13358 074 37 2002 oo 2 0.680 3935
GE CF34-8E5A2 51 24.82 14500 074 a7 2002 oo 2 0.680 4129
GE GESO-76B 8.6 3545 79654 0.80 35 19495 oo 2 0.545 20530

System type: DD = direct-drive system
G = geared system
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Appendix A (cont’d)

Engine database

Thrust, Ilbs Cruise Cruise Ak. Year System No.of Cruise TSFC Propulsion System

Org. Engine Model BPR (SL5) OPR(SLS) (SLS) Mach k ft. certified Type Spools Ib/1bf.hr Weight, Ibs
GE GES0-85B 8.4 38.37 87315 0.80 35 18585 oo 2 0.553 21656
GE GESC-50B 34 3870 94000 0.80 35 1997 oo 2 0.545 22280
GE GES0-94B 8.3 40.53 97300 0.80 35 2000 oo 2 0.545 22592
GE GES0-1158 7.1 4224 115529 0.80 35 2003 oD 2 0.550 25876
GE GEnx-1B54 9.4 35.20 573594 0.85 40 2008 oo 2 0.514 165594
GE GEnx-1B58 9.2 37.20 60991 0.85 40 2008 oo 2 0514 16952
GE GEnx-1B64 9.0 4060 66993 0.85 40 2008 oo 2 0.514 17537
GE GEnx-1B70 3.8 4350 72299 0.85 40 2008 oo 2 0.514 18054
PEW IT8D-7 11 15.82 14000 0.80 35 1966 oo 2 0.796 4508
PEW IT8D-9 10 15338 14500 0.80 35 1967 oo 2 0.807 4645
PEW ITBD-17AR 10 17.28 16400 0.80 35 1982 oo 2 0.825 4910
PEW JT8D-17R 10 18.24 17400 0.80 35 1876 oo 2 0.825 5009
PEW ITBD-209 18 18.30 18500 0.80 35 1579 oo 2 0724 5805
PEW ITaD-219 1.7 2027 21000 0.80 35 1985 oo 2 0.737 6266
PEW ITSD-3A 5.2 2150 44300 0.85 35 1969 oD 2 0.624 13794
PEW ITso-7 5.2 2220 46300 0.85 35 1571 oo 2 0.620 13102
PEW ITSD-7A 51 2030 46950 0.85 35 1972 oo 2 0.625 13169
PEW ITap-7F 51 22380 45000 0.85 35 1574 oo 2 0.631 13270
PEW Tap-71 51 2350 50000 0.85 35 15876 oo 2 0.631 13468
PEW ITSD-70 49 2450 53000 0.85 35 1978 oo 2 0.631 14055
PEW ITSD-7R4D 5.0 2340 45000 0.85 35 1578 oo 2 0.615 13553
PEW ITSD-7R4E 5.0 2420 50000 0.85 35 1982 oo 2 0.620 13565
PEW ITSD-7R4G2 4.8 26.30 54750 0.85 35 1982 oo 2 0.639 14220
PEW ITSD-7R4H1 43 2670 56000 0.85 35 1582 oo 2 0.628 14340
PEW ITep-z0 5.2 2030 46300 0.85 35 1972 oo 2 0.624 13087
PEW ITSD-70A 49 2450 53000 0.85 35 1974 oo 2 0.631 13990
PEW 1127G 12.3 3170 27000 0.78 35 2014 G 2 0.530 6300
PEW 1519G 116 32.30 19000 0.78 35 2013 G 2 0.544 4800
PEW 2037 6.0 2680 37600 0.80 35 15983 oo 2 0.563 10607
PEW 2040 55 2940 40900 0.80 35 1987 oo 2 0.563 10972
PEW 2043 5.3 31.90 42500 0.80 35 1995 oo 2 0.563 11159
PEW 4052 5.0 26.32 52200 0.85 35 1987 oo 2 0.560 14027
PEW 4056 47 2930 56750 0.85 35 1986 oo 2 0.560 14490
PEW 4060 45 32.40 60000 0.85 35 1988 oo 2 0.560 14819
PEW 4074 6.8 32.20 74500 0.85 35 1594 oo 2 0.560 15457
PEW 4077 6.7 33.20 77000 0.85 35 1994 oo 2 0.560 19950
PEW 4084 6.4 36.20 84000 0.85 35 1994 oo 2 0.560 20549
PEW 4090 6.1 358.16 90200 0.85 35 1996 oo 2 0.560 21522
PEW 4008 5.8 41.37 95340 0.85 35 1998 oo 2 0.560 22025
PEW 4152 4.9 26.90 52200 0.85 35 1986 oo 2 0.560 14036
PEW 4156 47 2930 56750 0.85 35 1986 oo 2 0.560 14490
PEW 4164 5.2 31.24 54000 0.85 35 1993 oo 2 0.560 16886
PEW 4168-1D 49 33.10 68600 0.85 35 2008 oD 2 0.560 17345
PEW 4460 47 3068 60000 0.85 35 1988 oo 2 0.560 14802
PEW 4462 4.6 3191 63300 0.85 35 1992 oo 2 0.560 15126
PEW 61224 48 2570 22100 0.80 35 2004 oD 2 0.540 6311
Rolls-Raoyce RB211-228 47 25.00 41000 0.85 35 1973 oo 3 0.655 12008
Rolls-Royce RB211-5248 4.5 28.40 49100 0.85 35 1873 oo 3 0.633 13270
Rolls-Royce RB211-52484-02 44 2900 50000 0.85 35 1581 oo 3 0.603 13309
Rolls-Royce RB211-524C2 45 2910 51500 0.85 35 1979 oo 3 0.656 13370
Rolls-Royce RB211-524D04 4.3 2870 53000 0.85 35 1983 oo 3 0.631 13606
Rolls-Royce RB211-524G 43 3210 58000 0.85 35 159859 oo 3 0.582 14040
Rolls-Royce RB211-524H 4.2 34.00 60600 0.85 35 1989 oo 3 0.572 14186
Rolls-Royce RB211-535C 45 2150 37400 0.80 35 1981 oD 3 0.646 10338
Rolls-Royce RB211-535E4 41 2540 40100 0.80 35 15983 oo 3 0.558 10648
Rolls-Royce AE3007A 5.2 18.08 7580 0.78 32 1997 oo 2 0.625 2332
Rolls-Royce BR710-A1-10 42 2423 14750 0.80 35 1956 oo 2 0.630 4640
Rolls-Royce BR715-A1-30 47 2858 18920 0.76 35 1998 oo 2 0.620 6155
Rolls-Royce BR715-C1-30 4.6 32.15 21430 0.76 35 1998 oo 2 0.620 6155
Rolls-Royce Trent 1000-A 9.5 41.00 70000 0.85 35 2007 oo 3 0.506 18056
Rolls-Royee Trent553-61 7.5 35.19 56620 0.82 35 2000 oo 3 0.539 14843

System type: DD = direct-drive system
G = geared system
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Appendix A (cont’d)

Engine database

Thrust,lbs Cruise Cruise Alt. Year System No. of Cruise TSFC  Propulsion System

Org. Engine Model BPR (5L5) OPR(5LS] SLS; Mach kft. certified Type Spools Ibflbf.hr Weight, lbs
Rolls-Royce Trent556-61 75 36.70 56620 0.82 35 2000 oo 3 0.539 14843
Rolls-Royce Trent 7000-72 9.0 45.40 73700 0.85 35 2018 oo 3 0.506 18864
Rolls-Royce Trent 768 5.2 34.00 68400 082 35 1554 oo 3 0.565 16839
Rolls-Royce Trent 772 5.0 35.80 71100 0.82 35 15954 oD 3 0.565 17105
Rolls-Royce Trent 772B-60 49 36.80 72000 0.82 35 1998 oo 3 0.565 17215
Rolls-Royce Trent 875 6.1 35.42 79100 0.83 35 1885 oo 3 0.560 19430
Rolls-Royce Trent 877 6.0 36.30 81300 0.83 35 1555 oD 3 0.560 15650
Rolls-Royce Trent384 59 38.96 87700 0.83 35 1995 oo 3 0.560 20284
Rolls-Royce Trent830-17 6.2 40.70 91300 0.83 35 1995 oo 3 0.560 20602
Rolls-Royce Trent 892 5.7 41.58 52500 0.83 35 1557 oD 3 0.560 20762
Rolls-Royce Trent 885 5.7 4152 935900 0.83 35 1999 oo 3 0.560 20801
Rolls-Royce Trent970-84 85 38.00 76100 0.85 35 2006 oo 3 0.518 19379
Rolls-Royce TrentXWB-84 3.0 41.10 85200 0.85 35 2013 oo 3 0.488 21163
RollsRoyce Trent XWB-87 8.0 48.60 58200 0.85 35 2017 oD 3 0.488 22771

IAE VZS00-A1 5.3 29.80 25000 0.80 35 1988 oo 2 0.580 7300
IAE W2522-A5 45 25.70 23043 0.80 35 18865 oo 2 0.575 7500
IAE VZ524-A5 4.8 26.90 24518 0.80 35 1556 oD 2 0.575 7597
IAE W2525-D5 4.8 27.20 25000 0.80 35 1992 oo 2 0.575 7900
IAE W2527-A5 43 27.20 25000 0.80 35 1992 oo 2 0.575 7651
IAE V2528-D5 4.7 30.00 28000 0.80 35 1552 oo 2 0.575 8140
IAE VZ530-A5 4.6 32.00 29500 0.80 35 1992 oD 2 0.575 8219
IAE W2533-A5 45 33.44 31600 0.80 35 1996 oo 2 0.575 2420
MASA SFW UHB 18.8 44.7 368833 0.80 35 2015 G 2 0.477 9300
MNASA AATT N3CC-2016 17.6 316 18830 0.70 35 2040 G 2 0.461 5343
MASA AATT N3CC-2017 17.3 36.9 21515 0.78 35 2040 G 2 0.485 5012
MASA AATT N+3 275 36.6 28620 0.80 35 2040 G 2 0.454 9354
MNASA AATT SmallCore geared 255 38.8 376859 0.80 35 2040 G 2 0.450 12152
MASA AATT N3CC-2018 216 36.7 21862 0.79 37.7 2040 G 2 0.479 5007
MNASA ERA Large-DD-2015 16.6 437 71792 0.80 35 2030 oo 2 0.430 21399
MASA ERA Large-DD-2015-HWB-V1 144 439 67133 0.80 35 2030 oo 2 0.435 13768
MNASA ERA Large-DO-2015-HWB-V2Z 137 458 B7233 0.80 35 2030 oD 2 0.487 18832
MNASA ERA Large-Geared-2015-HWB-V3 200 47.2 56172 0.80 35 2030 G 2 0.465 15591
MNASA ERA Large-Geared-2015-HWB-V2 200 471 67423 0.80 35 2030 G 2 0.464 18823
NASA ERA Large-Geared-2015-HWB 193 47.2 67386 0.80 35 2030 G 2 0.466 18823
MNASA ERA Large-Geared-2015 247 399 74149 0.80 35 2030 G 2 0.458 23023
MNASA ERA Medium-Geared-2015 239 384 45829 0.80 35 2030 G 2 0.466 13631
MNASA ERA Medium-Geared-2015-V2 24.8 38.5 45795 0.80 35 2030 G 2 0.465 13668
MNASA ERA Small-DD-2015 5.9 8.7 14647 0.80 35 2030 oD 2 0.526 3815
MNASA ERA Small-DD-2015-V2 100 287 14686 0.80 35 2030 oo 2 0.525 3812
MASA ERA Small-Geared-2015 270 245 21525 0.80 35 2030 G 2 0.435 5203
NASA ERA Small-Geared-2015-V2 27.4 248 21553 0.80 35 2030 G 2 0.483 6232
MNASA ERA Large-DO-2014 16.2 47.4 80071 0.80 35 2030 oD 2 0.469 22534
MNASA ERA Large-Geared-2014 224 47.2 87486 0.80 35 2030 G 2 0.458 23248
MASA ERA Medium-Geared-2014 22.4 447 51285 0.80 35 2030 G 2 0.467 12645
MNASA ERA Small-DD-2014 9.8 297 15566 0.80 35 2030 oD 2 0.519 3833
MNASA ERA Small-Geared-2014 247 292 24887 0.80 35 2030 G 2 0.486 5913
MASA SFW SA-FPR1.4-DD-2D 184 331 23813 0.80 35 2025 oo 2 0.479 10563
MASA SFW SA-FPR1.5-DD-200 150 33.8 23370 0.80 35 2025 oD 2 0.436 7965
MASA SFW SA-FPR1.6-DD-2D 127 344 230485 0.80 35 2025 oo 2 0.510 6592
MASA SFW SA-FPR1.7-DD-2D 109 35 23734 0.80 35 2025 oo 2 0.525 6099
MASA SFW S5A-FPR1.3-GR-HW-2D 241 326 268343 0.80 35 2025 G 2 0.470 8736
MASA SFW S5A-FPR1.4-GR-HW-2D 17.5 338 24917 0.80 35 2025 G 2 0.486 7401
MASA SFW SA-FPR1.5-GR-HW-2D 146 335 23369 0.80 35 2025 G 2 0.502 6626
MASA SFW SA-FPR1.G-GR-HW-2D 12.4 34 22924 0.80 35 2025 G 2 0.517 5252
MASA SFW 5A-FPR1.3-GR-HW-2ZE 26.0 32.3 28358 0.80 35 2025 G 2 0.473 8550
MASA SFW SA-FPR1.4-GR-HW-2E 18.0 338 28575 0.80 35 2025 G 2 0.495 7123
MASA SFW SA-FPR1.5-GR-HW-2E 121 354 24686 0.80 35 2025 G 2 0.515 6305
MASA SFW 5A-FPR1.6-GR-HW-2ZE 3.9 36.3 24262 0.80 35 2025 G 2 0.554 5896
MASA SFW SA-FPR1.7-DD-LW-2E 85 376 23889 0.80 35 2025 oD 2 0.547 5561
MASA SFW Simulated Genx 9.2 414 63800 0.85 35 2008 oo 2 0.523 17198
MASA SFW Simulated GE9O-110B 7.2 42 110000 0.85 35 2003 oo 2 0.549 23728
System type: DD = direct-drive system SFW — Subsonic Fixed Wing project
G = geared system ERA — Environmentally Responsible Aviation project

AATT — Advanced Air Transport Technology project
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