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ABSTRACT 
Effective deployment of machine-learning (ML) models 

could drive a high level of efficiency in aircraft engine 

conceptual design. Aero-Engines AI is a user-friendly app that 

has been created to deploy trained machine-learning (ML) 

models to assess aircraft engine concepts. It was created using 

tkinter, a GUI (graphical user interface) module that is built into 

the standard Python library. Employing tkinter greatly 

facilitates the sharing of ML application as an executable file 

which can be run on Windows machines (without the need to 

have Python or any library installed). The app gets user input 

for a turbofan design, preprocesses the input data, and deploys 

trained ML models to predict turbofan thrust specific fuel 

consumption (TSFC), engine weight, core size, and 

turbomachinery stage-counts. The ML predictive models were 

built by employing supervised deep-learning and K-nearest 

neighbor regression algorithms to study patterns in an existing 

open-source database of production and research turbofan 

engines. They were trained, cross-validated, and tested in 

Keras, an open-source neural networks API (application 

programming interface) written in Python, with TensorFlow 

(Google open-source artificial intelligence library) serving as 

the backend engine. The smooth deployment of these ML 

models using the app shows that Aero-Engines AI is an easy-to-

use and a time-saving tool for aircraft engine design-space 

exploration during the conceptual design stage. Current version 

of the app focuses on the performance prediction of 

conventional turbofans. However, the scope of the app can 

easily be expanded to include other engine types (such as 

turboshaft and hybrid-electric systems) after their ML models 

are developed. Overall, the use of a machine-learning app for 

aircraft engine concept assessment represents a promising area 

of development in aircraft engine conceptual design. 
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INTRODUCTION 
More and more organizations are adopting a data-driven 

approach to decision-making. With the vast amounts of data 

collected and tracked in recent times, machine-learning (ML) 

applications are gaining popularity across multiple industries. 

The aircraft engine industry has amassed and stored significant 

quantities of data over the years. These big data sets, sourced 

from multiple origins such as the database of currently 

manufactured engines, ongoing development projects, 

previously completed development projects, and 

unmanufactured designs, hold tremendous potential as a 

knowledge asset for future engine projects. 

 

  Designing an aircraft engine is a complex, 

interdisciplinary process that requires significant time and 

effort. Engine designers encounter a formidable challenge 

during the conceptual design phase - how to rapidly evaluate 

the performance of a specific engine design given the aircraft's 

mission requirements and various design parameters. The 

number of potential engine configurations could be vast, 

requiring designers to rely on system analysis and simulation to 

estimate performance. Consequently, designers must conduct a 

comprehensive propulsion system study for each possible 

configuration, which can be time-consuming, particularly when 

dealing with a large design space. 

 

 By leveraging the power of machine learning (ML) 

algorithms to learn from the existing engine data sets, it is 

possible to develop ML models that can quickly and accurately 

assess new aircraft engine concepts, providing valuable insights 

and reducing the time and resources required for the engine 

concept assessment process. A ML model can identify patterns 

and trends that may not be immediately apparent to human 

analysts, leading to more informed decision-making and 

ultimately resulting in the development of better aircraft engine 

concepts. The ability to assess new engine concepts quickly and 

accurately can be a competitive advantage in aircraft engine 

development. 

 

  Previously, the author focused on training/developing the 

ML models that allow for quick estimation of engine TSFC, 

system weight, and core size during the conceptual design 



 

This material is declared a work of the U.S. Government and is not subject to copyright protection in the United States. Approved for 

public release; distribution is unlimited. 

2 

phase. The development process and methodology for these 

models are described in [1, 2, 3].  Additional ML models were 

developed for the turbomachinery stage count prediction since 

then, using the same methodology. This paper zeros in on the 

deployment of these trained ML models to assess aircraft 

engine concepts, via an app. The development process of the 

app, Aero-Engines AI, is described in this paper. 

 

 While the development of ML models is essential for their 

applications, the models would only be of value if they are 

actively deployed in a production environment where they can 

be used to solve practical problems. Thus, effective ML model 

deployment is just as important as ML model development. ML 

model deployment involves integrating trained ML models, 

developed in a R&D environment, into a production 

environment. It is a critical step that must be done so an 

organization can use the models to solve problems. Seamless 

deployment of trained ML models into production is essential 

for putting the models to practical use.  

  

  Aero-Engines AI, a Windows app, has been created to 

deploy the trained ML models for aircraft engine concepts 

assessment. It was created using tkinter, a GUI module that is 

built into the standard Python library. Employing tkinter greatly 

facilitates the sharing of ML application as an executable file 

which can be run on Windows machines (without the need to 

have Python or any library installed). MS Windows platform 

was chosen for the deployment to reduce complexity and for 

ease of access. The structure of the app is shown in Figure 1. 

 

 The app is user-friendly. It is simple to learn, easy to 

navigate, and its use is intuitive enough that it does not require 

an instruction manual. The development process of Aero-

Engines AI consists of five steps: 

 

• Engine data collection, augmentation, and 

preparation 

• ML models training 

• ML models testing and evaluation 

• App design for ML models deployment 

• Monitoring and updating 

 

ENGINE DATA COLLECTION, AUGMENTATION, AND 
PREPARATION 

• Engine data collection 

Current version of the app has only turbofan assessment 

capability (will be expanded to include other engine types such 

as turboshaft, hybrid-turbofan, etc., in the future versions). The 

basic engine architecture is an axial-compressor turbofan. The 

engine database consists of 145 manufactured (commercial) 

engines [4 to 10] and 39 engines that were studied previously 

in various NASA aeronautics projects. These commercial 

engines capture over half-a-century of engine technology 

improvements and lessons-learned, which would minimize the 

prediction uncertainties of the ML models. The NASA engine 

data were the system-study results for various NASA 

aeronautics projects [11–16]. The engine database is shown in 

Appendix A. 

 

 
 

Figure 1 – Structure of Aero-Engines AI app 

 

• Data augmentation 

Data augmentation is an important technique that is 

commonly used in ML to improve the performance and 

generalizability of a training model. The process entails 

creating additional data points from the existing training data 

by applying various transformations and modifications to the 

data. Data augmentation increases the diversity and quantity of 

training data, improving the model's performance for its task, 

and making it more adaptable to changes in the data. For this 

study, the data augmentation was performed by scaling up the 

current engines by 10%. For example, the sea-level static (SLS) 

engine thrust and weight were increased by 10%, while keeping 

the other operating parameters such as bypass ratio (BPR), 

overall pressure ratio (OPR), Mach No., altitude, and TSFC 

unchanged, as shown below: 
 

 
 

With the data augmentation, the size of the database becomes: 

 

Turbofan type    No. of engines 

2-spool direct-drive     273 

2-spool geared        89 

3-spool direct-drive       50 

 

• Dataset preparation 

 The next step was to prepare the data that would be used 

to train the ML models. It involved cleaning and 

preprocessing the data to remove errors or inconsistencies and 

organizing the data into a format that could be used for the 

training. The engine dataset was normalized and shuffled 

randomly (using pseudo-random number generator) and 

divided into two datasets: the training set and the testing set. 

The training set was used to train, cross-validate, and build 

predictive models. The testing set consisted of the remaining 

engines that were unseen by the training models and was 
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retained for the final evaluation of the predictive analytics. 

The dataset preparation is described in detail in [1, 2, and 3]. 

 

ML MODELS TRAINING 
Once the data was ready, the next step was to select the 

appropriate algorithms that would be used to train the ML 

models. This can involve choosing from a variety of machine 

learning algorithms and tuning the parameters and 

hyperparameters of the models to optimize their performance 

on the specific problem or task. 

 

As reported in [1, 2, 3], the ML models for TSFC, engine 

weight, and core size predictions were constructed using 

supervised deep-learning and K-nearest neighbor algorithms 

[17], which analyzed patterns in an open-source database of 

research and production turbofan engines. Additional ML 

models were developed since then for the turbomachinery stage 

count prediction, using K-nearest neighbor regression 

algorithm. These models were trained, cross-validated, and 

tested using Keras, an open-source neural networks API written 

in Python, with TensorFlow as the backend engine. These 

models were trained and deployed in Keras [18], an open-

source neural networks API written in Python, with TensorFlow 

[19] serving as the backend engine. Keras provided the building 

blocks for developing the deep-learning models, and 

TensorFlow handled the tensor computations and 

manipulations. 

 

Depending on the ML model, either L2 or Dropout 

regularization technique (where neuron outputs are dropped out 

randomly) [20 and 21] was applied to prevent the DNN from 

overfitting the training data. A grid-search routine was used to 

determine the regularization parameter, dropout rate, number of 

epochs, batch size, and the number of ‘neurons’ in the hidden 

layers that give the lowest training error. The Adam 

optimization algorithm [22] was used to update the network 

weights during each epoch.  

 

 Totally, nine ML models were trained for engine TSFC, 

weight, core size (last stage HPC blade height), fan diameter, 

and turbomachinery stage count predictions, respectively. The 

training and cross validation of these ML models are described 

in detail in [1, 2, and 3]. 

 

ML MODELS TESTING 
 After the ML models were trained, the next step was to test 

and evaluate their performances. The trained ML models were 

evaluated using a separate set of data, the testing dataset (that 

was unseen by the training models). The testing procedures of 

these ML models are described in detail in [1, 2, 3]. The results 

showed that these ML models are an effective tool for 

predicting engine TSFC, engine weight, core size, and 

turbomachinery stage counts. Their performances were 

determined, in terms of the means and standard deviations: 

 

 

ML model 

Mean 

accuracy 

Uncertainty 

95% confidence interval 

(2 standard deviations) 

TSFC 98% 4% 

Weight 95% 5% 

Core size 98% 4% 

Fan diameter 98% 5% 

LPC stage count 98% 14% (or 1 stage
*
) 

HPC stage count 98% 8% (or 1 stage
*
) 

HPT stage count 96% 39% (or 1 stage
*
) 

LPT stage count 98% 18% (or 1 stage
*
) 

IPT stage count 90% 44% (or 1 stage
*
) 

Notes: *based on the current database 

   1-stage fan is assumed for all the engines 

 
APP DESIGN for ML MODELS DEPLOYMENT 

After the ML models were developed, trained, and 

tested, they were integrated into the user-friendly app, Aero-

Engines AI, that allows for the easy and intuitive assessment 

of engine concepts. Aero-Engines AI is a Windows app that 

deploys trained ML models to assess aircraft engine concepts. 

The app was created using tkinter [23], a GUI (graphical user 

interface) module that is built into the standard Python library. 

And pyinstaller [24], a Python package, was used to convert 

the python scripts into an executable file that can be run on 

Windows machines. The conversion greatly facilitates the 

sharing of ML applications with other Windows users (who do 

not need to have Python, or any library installed in their 

computers). 

 

The app design aimed to provide a user-friendly 

experience with a simple point-and-click feature. The input 

page consists of three elements:  

• a drop-down menu to select options  

• data entry fields 

• a ‘PREDICT’ button to run the app 

 

These three elements are shown in Figure 2. 

 

The drop-down menu allows users to select different 

options for engine architectures, configurations, and 

timeframe. When a user selects a tab, the drop-down menu 

will display the options that are associated with that tab. Based 

on the user's selection, the app would use the trained ML 

models to analyze relevant data and make predictions on 

engine performance, in terms of engine TSFC, weight, core 

size, and turbomachinery stage counts. 

The drop-down menu consists of the following tabs: 

 

Engine type – current version of the app only has the 

conventional turbofans option. Turboshaft and hybrid-electric 
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turbofan are being considered for the future app versions. The 

engine-type tab is shown in Figure 3. 

 

Drive system – offers two options: direct-drive or geared. This 

tab is shown in Figure 4. 

 

Engine configuration – offers two options: 2-spool or 3-spool 

design. This tab is shown in Figure 5. 

 

Engine timeframe – engine certified year. Users can pick a 

calendar year or NASA timeframe (N+1, N+2, etc.). This tab 

is shown in Figure 6. 

 

Single engine or Multiple engine designs – offers two options: 

single engine design or multiple-engine designs analyses. This 

tab is shown in Figure 7. If “multiple engine designs” is 

selected, the user inputs for bypass ratio, overall pressure 

ratio, and engine thrust would be in ranges, as shown in Figure 

8.  

 The data entry fields are provided for the users to input 

the engine design parameters. The default entries for the Mach 

number and cruise altitude are provided (0.8 and 35000 feet, 

respectively), as shown in Figure 2. The users can override 

these numbers. 

 

App Execution - to run the app, one simply clicks the 

‘PREDICT’ button.  

 

Input Changes – users can return to the input page and modify 

the inputs by clicking the ‘BACK’ button on the output page. 

This button is shown in Figure 9. 

 

Example Problems - 
 

• Single engine design: - 

   input parameters are shown in Figure 7, 

   outputs are shown in Figure 9. 

 

• Multiple engine designs: - 

   input parameters are shown in Figure 8, 

   output spreadsheet is shown in Figure 10 

 

 

 

 
 

Figure 2 – User input page for single-engine design 
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Figure 3 – Engine type option 

 

 

 
Figure 4 – Direct-drive or geared turbofan option 

 

 

 
Figure 5 – Engine configuration options 
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Figure 6 – Engine timeframe option 

 

 
Figure 7 – Single-engine or multiple-engine design option 

 

 
Figure 8 – Input page for multiple-engine designs 



 

This material is declared a work of the U.S. Government and is not subject to copyright protection in the United States. Approved for 

public release; distribution is unlimited. 

7 

 
Figure 9 – Example output of a single-engine design 

 

 

 

MONITORING AND UPDATING 
Monitoring and updates are important aspects of ML app 

development, as they help ensure that the app continues to 

perform well and provide accurate predictions or 

recommendations over time. To ensure optimal performance of 

the current ML models, it's crucial to keep track of the changing 

engine data and its effect on their overall functionality. While 

the commercial engine data in the current database remain 

static, the NASA engine data are obtained through research on 

aeronautics studies for three generations of aircraft - near, mid, 

and far term. Each generation has associated goals for 

reductions in noise, emissions, fuel burn, and field length 

relative to present-day aircrafts. These aircraft generations are 

labeled as 'N+1', 'N+2', and 'N+3', respectively. The research 

for 'N+2' and 'N+3' is aimed at enabling new vehicle 

configurations that meet NASA's ambitious technology 

objectives. As the NASA engine data could be revised over 

time, the ML models must be updated periodically to consider 

the impact of such updates. 

 

SUMMARY 
Aero-Engines AI, a user-friendly Windows app, has been 

created using tkinter, a GUI module that is built into the 

standard Python library. This app is designed to deploy trained 

ML models to assess various aircraft engine concepts. These 

ML models were trained, cross-validated, and tested in Keras, 

an open-source neural networks API written in Python, with 

TensorFlow serving as the backend engine. The assessment 

results are presented in terms of engine TSFC, weight, core size, 

and turbomachinery stage counts. The seamless deployment of 

these ML models through the app demonstrates that Aero-

Engines AI is an efficient and easy-to-use tool for exploring the 

design space of aircraft engines during the conceptual design 

stage. The current version of the app focuses on predicting the 

performance of conventional turbofans. However, after the 

development of their ML models, the app's scope can be easily 

expanded to include other engine types, such as turboshaft and 

hybrid-electric systems. 

 

The success of the ML application will depend on the 

quality and quantity of data available for training, as well as the 

deployment of the ML model itself. Careful consideration of 

these factors is crucial to ensure the optimal performance of the 

ML system. Overall, the use of a machine-learning app for 

aircraft engine concept assessment represents a promising area 

of development in aircraft engine conceptual design. 
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Figure 10 - Example spreadsheet output of  multiple-engine designs



 

This material is declared a work of the U.S. Government and is not subject to copyright protection in the United States. Approved for 

public release; distribution is unlimited. 

9 

REFERENCES 
[1] Tong, M. T., “Using Machine Learning to Predict Core 

Sizes of High-Efficiency Turbofan Engines,” GTP-19-1338, 

ASME Journal of Engineering for Gas Turbines and Power, 

Volume 141, Issue 11, November 2019. 

 

[2] Tong, M. T., “Machine Learning-Based Predictive 

Analytics for Aircraft Engine Conceptual Design,” NASA 

TM-20205007448, October 2020. 

 

[3] Tong, M. T., “A Machine-Learning Approach to Assess 

Aircraft Engine System Performance,” GT–2020–14661, 

Proceedings of ASME Turbo Expo 2020, September 21–25, 

2020 (virtual conference). 

 

[4] Daly, M., 2018, “Jane’s Aero-Engine,” IHS, London, UK. 

 

[5] Meier, N., 2018, “Civil Turbojet/Turbofan Specifications,” 

accessed Aug. 8, 2018,  

http://www.jet-engine.net/civtfspec.html 

 

[6] GE Aviation, 2018, “GE Aviation,” GE Aviation, 

Evendale, OH, accessed Aug. 8, 2018, 

https://www.geaviation.com/commercial 

 

[7] Pratt and Whitney, 2018, “Commercial-Engines,” Pratt and 

Whitney, East Hartford, CT, accessed Aug. 8, 2018, 

https://www.pw.utc.com/products-and-

services/products/commercial-engines 

 

[8] Rolls Royce, 2018, “Rolls Royce,” Rolls Royce, Derby, 

UK, accessed Aug. 8, 2018, https://www.rolls-

royce.com/products-and-services/civil-aerospace 

 

[9] CFM International, 2018, “CFM International,” CFM 

International, Cincinnati, OH, accessed Aug. 8, 2018, 

https://www.cfmaeroengines.com/ 

 

[10] International Civil Aviation Organization, 2018, “ICAO 

Aircraft Emissions Databank,” International Civil Aviation 

Organization, Montreal, Canada. 

 

[11] Guynn, M.D., Berton, J.J., Fisher, K.L., Haller, W.J., 

Tong, M., Thurman, D.R., “Engine Conceptual Study for an 

Advanced Single-Aisle Transport,” NASA TM-2009-215784, 

August 2009. 

 

[12] Guynn, M.D., Berton, J.J., Fisher, K.L., Haller, W.J., 

Tong, M., Thurman, D.R., “Analysis of Turbofan Design 

Options for an Advanced Single-Aisle Transport Aircraft,” 

AIAA 2009-6942, September 2009. 

 

[13] Guynn, M. D., Berton, J.J., Fisher, K.L., Haller, W.J., 

Tong, M., Thurman, D.R, “Refined Exploration of Turbofan 

Design Options for an Advanced Single-Aisle Transport,” 

NASA TM-2011-216883, January 2011. 

 

[14] Guynn, M.D., Berton, J.J., Tong, M.T., Haller, W.J., 

“Advanced Single-Aisle Transport Propulsion Design Options  

Revisited,” AIAA 2013-4330, August 2013. 

 

[15] Nickol, C.L. and Haller W.J., “Assessment of the 

Performance Potential of Advanced Subsonic Transport 

Concepts for NASA’s Environmentally Responsible Aviation 

Project,” AIAA 2016-1030, January 2016. 

 

[16] Collier, F., Thomas, R., Burley, C., Nickol, C., Lee, 

C.M., Tong, M., “Environmentally Responsible Aviation – 

Real Solutions for Environmental Challenges Facing 

Aviation,” 27th International Congress of the Aeronautical 

Sciences, September, 2010. 

 

[17] Geron, A., “Hands-On Machine Learning with Scikit-

Learn and TensorFlow,” first edition, March 2017. Published 

by O’Reilly Media, Inc. 

 

[18] Chollet, François and others, “Keras.” accessed February 

22, 2019, https://keras.io/ 

 

[19] Google, “TensorFlow: Large-Scale Machine Learning on 

Heterogeneous Distributed Systems.” accessed February 20, 

2019, https://www.tensorflow.org/ 

 

[20] Ng, A., 2004 “Feature selection, L1 vs. L2 regularization, 

and rotational invariance,” Proceedings of the twenty-first 

international conference on Machine learning, July 4, 2004 

 
[21] Hinton, G.E., Krizhevsky, A., Srivastava, N., Sutskever, I., & 

Salakhutdinov, R., “Dropout: A simple Way to Prevent Neural 

Networks from Overfitting.” Journal of Machine Learning Research, 

15, 1929-1958. June, 2014. 

 

[22] Kingma, D. P. and Ba, J., “Adam: A Method for 

Stochastic Optimization,” International Conference on 

Learning Representations, May 2015. 

 

[23] Van Rossum, G., et al., “The Python Library Reference, 

release 3.8.2,” Python Software Foundation, 2020. 

 

[24] Cortesi, D., “PyInstaller 5.7.0,” released on December 4, 

2022, accessed December 19, 2022. 

https://pypi.org/project/pyinstaller/ 

 

 

 

 

 

 

 

 

http://www.jet-engine.net/civtfspec.html
https://www.geaviation.com/commercial
https://www.pw.utc.com/products-and-services/products/commercial-engines
https://www.pw.utc.com/products-and-services/products/commercial-engines
https://www.rolls-royce.com/products-and-services/civil-aerospace
https://www.rolls-royce.com/products-and-services/civil-aerospace
https://www.cfmaeroengines.com/
https://keras.io/
https://www.tensorflow.org/
https://pypi.org/project/pyinstaller/


 

This material is declared a work of the U.S. Government and is not subject to copyright protection in the United States. 

Approved for public release; distribution is unlimited. 

10 

Appendix A 

 

Engine database 

 
 

System type: DD = direct-drive system 

        G = geared system 
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 Appendix A (cont’d) 

 

Engine database 

 

 
 

System type: DD = direct-drive system 

        G = geared system 

 

       

  



 

This material is declared a work of the U.S. Government and is not subject to copyright protection in the United States. 

Approved for public release; distribution is unlimited. 

12 

Appendix  A (cont’d) 

 

Engine database 

 

 
 

 

System type: DD = direct-drive system      SFW – Subsonic Fixed Wing project 

        G = geared system       ERA – Environmentally Responsible Aviation project

           AATT – Advanced Air Transport Technology project 


