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 Past landing missions generally selected benign terrains  

 Objectives of future landing missions:
 Sustainable human presence at the Moon and continued human exploration 

on towards Mars
 Exploration of Jupiter and Saturn Moons (e.g., Titan, Europa), and Asteroids

Landing missions are progressively more ambitious 

X

Apollo 15 Landing Site Artemis Landing Site
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 Future missions require precise navigation and landing at challenging locations 
near escarpments and craters
 For example south pole of the Moon where water ice may be present

 Lidar technology can enable precisely land payloads and avoid landing hazards
 Provide relative position knowledge (Altimetry and Terrain Relative Navigation)
 Provide precision velocity vector
 Detect terrain hazards and identify safe landing locations

Lidar Plays an Important Role in Future Landing Missions
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Landing Lidar Sensors Under Development at NASA

Lidar Sensor Type POC Functions

Ocellus Scanning Nathaniel Gill/GSFC Hazard Detection and 
Altimetry SPLICE HDL Scanning J. Bryan Blair/GSFC

ELSA MIT-LL Lidar Hybrid Scanning/Flash Anup Katake/JPL Hazard Detection, 
Altimetry and Terrain 
Relative Navigation 

(TRN)

ELSA Sigma Lidar Hybrid Scanning/Flash Anup Katake/JPL

HAPN Lidar Flash Farzin Amzajerdian/LaRC

Navigation Doppler Lidar FMCW Farzin Amzajerdian/LaRC Velocity and 
Altimetry 
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Ocellus Lidar for Landing on Titan
PI: Nathaniel Gill, NASA-GSFC, nathaniel.a.gill@nasa.gov

Overview
• Hazard avoidance sensor and altimeter for 

Dragonfly Lander

• Used in altimeter mode at higher altitude to 
provide range to the ground, 200m-2km

• Used in imaging mode 20-200m altitude for 
hazard detection, terrain slope measurement, 
and safe landing zone assessment

Approach
• Leveraging OSAM-1 Kodiak design 
• Ocellus is being developed simultaneously 

with SQRLi lidar on common platform
• Key Specs:

• 15° Field of view, 200Hz horizontal scan
• 2cm accuracy 3D point cloud output
• 0.21° pointing knowledge in jitter environment 
• 120kHz imaging mode
• 1064nm wavelength

Key Milestones

• PDR September 2022
• ETU1 Delivery Fall 2023 for helicopter testing
• ETU2 with AlBeMet MEB 

• Delivery Summer 2024 for Qual Testing
• CDR Early 2024
• Flight Unit Delivery Early 2025

Kodiak MEB Ocellus MEB

Kodiak MEB: 31.75 x 26.42 x 12.95 cm
8.3kg Ocellus MEB: 24.19 x 18.54 x 

12.04 cm 3.145kg CBE* 

Kodiak FEB Ocellus FEB

Kodiak FEB: 34.12 x 33.66 x 
16.95 cm 8.56kg 

Ocellus FEB: 23.4 x 23.2 x 
12.7 cm  3.017kg CBE*



7 of 18



8 of 18



9 of 18

Europa Lidar Sensor Assembly (ELSA)

 Hazard detection from ~ 500 m altitude and altimetry from ~ 10 km

 ELSA must survive extreme radiation environments of Europa

 2 lidar sensor systems being developed:

 MIT/LL - Gieger mode hybrid scanning/flash 

 Sigma Space – Linear mode hybrid scanning/flash 

POC: Anup Katake, NASA-JPL, anup.b.katake@jpl.nasa.gov

Copyright 2021 California Institute of Technology. U.S. Government sponsorship acknowledged
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ELSA Lidars under Development

Sigma Space MIT Lincoln Labs
Modality Photon counting, linear Geiger
Lidar Type Hybrid scanning/flash Hybrid scanning/flash
Detector Photo-multiplier-tube Silicon
Detector Size 16 x16 pixels 2048 x 32 pixels
Pixel IFOV 100µrad 100µrad
Detector Readout Rad-hard custom application specific 

integrated circuit (ASIC)
Rad-hard custom readout integrated circuit 

(ROIC)

Scan Mechanism, Pattern 2-axis Fast steering mirror, spiral scan 2-axis fast steering mirror, single axis scan

Laser Pulse Energy & PRF 100µJ @ 14kHz – 18kHz Dual 25µJ @ 10kHz
Operating Wavelength 532nm 532nm
Range Accuracy < 5cm < 5cm
Scan & DEM Acquisition Times 1.8s for Fine DEM 

(2000 x 2000 pixel)
0.8s for Fine DEM

4s for Coarse DEM
(500 x 500 pixel)

8s for Coarse DEM

Altimetry >10km @ 10Hz >10km @ 10Hz
Radiation Tolerance >300krad >300krad
BBU Delivery March-2023 Aug-2023

Sigma Spiral Scan

Copyright 2021 California Institute of Technology. U.S. Government sponsorship acknowledged
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ELSA Breadboard Units

Parameter BBU
Size 430 x 259 x 181 mm3

Volume 21049  cm3

Mass 12.9 kg
Flight: ~9kg CBE

Power: 

Altimetry 76 W

Imaging 300W x 1.8 s

Parameter BBU
Size 580 x ? x ? mm3

Volume 15625  cm3

Mass 14.5 kg

Power 100 W

Sigma SpaceMIT/Lincoln Labs

Copyright 2021 California Institute of Technology. U.S. Government sponsorship acknowledged
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Multi-Functional Flash Lidar Sensor

Performs 4 critical landing functions: 
 Altimetry
 Terrain Relative Navigation (TRN)
 Hazard Detection and Avoidance (HDA)
 Hazard Relative Navigation (HRN)

Doppler Lidar Velocity and Altitude

HRN

Farzin Amzajerdian, NASA-LaRC, f.amzajerdian@nasa.gov



13 of 18

 Commercial linear-mode flash lidar camera has 128 x 128 = 16.4k pixels

 Mapping 70 m x 70 m area with 10 cm Ground Sample Distance (GSD) requires 
0.5 M pixels

 10 cm GSD is required to detect 30 cm diameter hazards

 Developed a Super-Resolution algorithm to meet HDA requirements without a 
need for a mechanical gimbal

Flash Lidar as a Landing Sensor
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 Super-Resolution (SR) 
technique uses a set of 
consecutive frames, from 
slightly different positions 
and angles (resulting from 
platform motion), to generate 
a high-resolution DEM

 Generates high-res DEMs at 1 
Hz rate using 20 frames

Flash Lidar Super-Resolution Algorithm
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LaRC Breadboard 
Flash Lidar

Development and Testing of Flash Lidar with Real-
Time SR Algorithm at NASA LaRC

Gantry Test Drone Test

Flash Lidar

 Next generation breadboard 2023
 Aircraft flight tests 2023
 ETU for a lunar mission 2024
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Navigation Doppler Lidar (NDL)

 NDL provides vehicle precision vector velocity and altitude data
 Viable replacement for radars with an order of magnitude higher precision and much 

better data quality
 Enables “precision navigation” to the designated landing location
 Enables “well-controlled” descent, landing, and ascent maneuvers to within a few cm/sec

Farzin Amzajerdian, NASA-LaRC, f.amzajerdian@nasa.gov
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4 ETUs have been built
# 1 – Aircraft flight tests (2021 - )

# 2 – Suborbital flight test on Blue Origin 
New Shepard vehicle (2020,2021)

# 3 – Lunar Landing Mission onboard 
Intuitive Machines lander (6/2023)

# 4 – Lunar Landing Mission onboard 
Astrobotic lander (5/2023)

Intuitive Machines
Nova-C Vehicle

NDL

Astrobotic
Peregrine Vehicle

Spaceflight Engineering Test Units (ETUs) 

Optical Head Chassis
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Parameter Static Platform Landing Vehicle

Maximum LOS Range ~ 14 km 7.0 km

Maximum LOS Velocity +/- 218 m/sec +/- 218 m/sec

LOS Velocity Noise @ 3000 m 0.09 cm/sec 8.3 cm/sec 

LOS Range Noise @ 3000 m 0.10 m 8.2 m

Data Rate 20 Hz

Chassis

Optical Head

NDL ETU Specifications

 NDL ETU Performance is dominated by the vehicle vibration

 NDL ETU meets/exceeds landing requirements and outperforms 
radar sensors by about an order of magnitude in precision

 Next NDL build will extend operational range to 10 km and 
improve velocity and range precision to 2 cm/sec and 2 m 
regardless of host vehicle dynamics

15.7 cm

42.7 cm
28.9 cm

12.4 cm

28.7 cm

21.6 cm

13 kg

2 kg
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Closing Remarks

 Lidar sensors being developed to perform:
 Hazard detection and avoidance
 Terrain Relative Navigation
 Vector velocity and altitude

 Lidar sensor being development or demonstrated:
 Ocellus: Short range 3-D lidar, launch to Titan in 2027
 SPLICE HDL: Medium range 3-D lidar, helicopter flight test in 2023
 ELSA: Medium range 3-D lidar,  breadboards in 2023
 Multi-Functional Flash Lidar: Long range 3-D lidar, helicopter, fixed-wind, and drone 

flight tests in 2023
 NDL: Velocity and altitude lidar, Lunar missions in 2023

 These lidars with some modifications can be used for RPOD and Rovers
 NASA landing lidar sensor efforts may benefit terrestrial applications including 

autonomous vehicles and GPS-deprived navigation
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Backup
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Multi-Functional 3-D Flash Lidar Sensor

 Flash lidar presents several advantages over scanning lidars for hazard detection 
and safe landing on planetary bodies 
 Does not require vehicle motion correction
 Able to perform other functions critical for precision navigation 
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~ 70 m x 300 m high-resolution DEM for hazard detection and safe landing location selection

Flash Lidar Generates Multiple High-Resolution DEMs  



24 of 18

Resolution Enhancement by SR Algorithm

 Resolved 3 cm gap with 12 cm GSD

 > 4X linear magnification (16X resolution enhancement)

water
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 Generated DEMs at 1 Hz rate
 Resolution enhancement by > 16X (> 0.26M pixels) 
 Range resolution enhancement by 2X (4 cm) 
 Range noise reduction by > 2X (3 cm)
 Effectively recovered dark pixels

Performance of Real-Time Super-Resolution Algorithm

Range (m)
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 Leverages lessons learned from build and test of ETUs
 Minimize effects of vehicle vibration
 Utilizes advanced photonic technologies

Next Generation NDL

 Reduce size by 9X and mass by 3X
 Expand operational capabilities:

 Extend operational range to > 10 km on the 
Moon and Mars

 Incorporate air data (air speed and angles 
of attack and sideslip) measurement for 
atmospheric landing
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 Upcoming lunar missions will pave the path for future missions

 Commercialization is well underway by licensee (Psionic) for both space and 
non-space markets:

NDL: On Path for Widespread Use

Spaceflight units 
for landing and 

Rendezvous 
Proximity 

Operations and 
Docking (RPOD)

Aircraft 
navigation in 
GPS-deprived 
environment

Autonomous 
ground and air 

vehicles

Autonomou
s Rovers

Space 
Domain 

Awareness

https://www.google.com/url?sa=i&url=https://www.sciencephoto.com/media/863977/view/crew-exploration-vehicle-docking-with-iss-illustration&psig=AOvVaw1j8Wp5FFog6vula-8L3KAg&ust=1591718705572000&source=images&cd=vfe&ved=0CAIQjRxqFwoTCNiUk7TM8ukCFQAAAAAdAAAAABAD
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