National Aeronautics and Space Administration

An Overview of NASA Lidar Technologies for Precision Safe Landing on Planetary Bodies

Farzin Amzajerdian NASA Langley Research Center

2023 MSS Active EO Systems Conference

Approved for public release; distribution is unlimited

Landing missions are progressively more ambitious

- Past landing missions generally selected benign terrains
- Objectives of future landing missions:
 - Sustainable human presence at the Moon and continued human exploration on towards Mars
 - Exploration of Jupiter and Saturn Moons (e.g., Titan, Europa), and Asteroids

Apollo 15 Landing Site

Artemis Landing Site

Lidar Plays an Important Role in Future Landing Missions

- Future missions require precise navigation and landing at challenging locations near escarpments and craters
 - For example south pole of the Moon where water ice may be present
- > Lidar technology can enable precisely land payloads and avoid landing hazards
 - Provide relative position knowledge (Altimetry and Terrain Relative Navigation)
 - Provide precision velocity vector
 - Detect terrain hazards and identify safe landing locations

Landing Lidar Sensors Under Development at NASA

Lidar Sensor	Туре	POC	Functions	
Ocellus	Scanning	Nathaniel Gill/GSFC	Hazard Detection and	
SPLICE HDL	Scanning	J. Bryan Blair/GSFC	Altimetry	
ELSA MIT-LL Lidar	Hybrid Scanning/Flash	Anup Katake/JPL	Hazard Detection,	
ELSA Sigma Lidar	Hybrid Scanning/Flash	Anup Katake/JPL	Altimetry and Terrain Relative Navigation	
HAPN Lidar	Flash	Farzin Amzajerdian/LaRC	(TRN)	
Navigation Doppler Lidar	FMCW	Farzin Amzajerdian/LaRC	Velocity and Altimetry	

Ocellus Lidar for Landing on Titan

PI: Nathaniel Gill, NASA-GSFC, nathaniel.a.gill@nasa.gov

<u>Overview</u>

- Hazard avoidance sensor and altimeter for Dragonfly Lander
- Used in altimeter mode at higher altitude to provide range to the ground, 200m-2km
- Used in imaging mode 20-200m altitude for hazard detection, terrain slope measurement, and safe landing zone assessment

Approach

- Leveraging OSAM-1 Kodiak design
- Ocellus is being developed simultaneously with SQRLi lidar on common platform
- Key Specs:
 - 15° Field of view, 200Hz horizontal scan
 - 2cm accuracy 3D point cloud output
 - 0.21° pointing knowledge in jitter environment
 - 120kHz imaging mode
 - 1064nm wavelength

Key Milestones

- PDR September 2022
- ETU1 Delivery Fall 2023 for helicopter testing
- ETU2 with AIBeMet MEB
 - Delivery Summer 2024 for Qual Testing
- CDR Early 2024
- Flight Unit Delivery Early 2025

NASA/GSFC: Hazard Detection Lidar

Principal Investigator: J. Bryan Blair, NASA/GSFC. James.B.Blair@nasa.gov

Hazard Detection Lidar Overview

- HDL is a hybrid, scanning-imaging lidar consisting of an optical head (with focal plane imaging and a Risley-prism scanner mechanism) fiber coupled to an electronics box (laser, detectors, and signal processing electronics)
- ETU version in subsystem build now. Integration and Assembly planned for June 2023

Rapid 3-D landing site imaging with real-time Digital Elevation Map (DEM) generation

- Surface Imaging and DEM production all in 1-2 seconds. 8 Million range measurements per second.
- 5 cm spatial resolution and 1 centimeter range precision from nominal operational altitude of 500 m.
- Analog detection. Wide dynamic range. 1 cm single shot precision.
- High-speed spinning optical wedges sweep across large angular field-of-view quickly and accurately
- Spiral sampling pattern is robust to motion and rotation during imaging
- Motion and rotation are corrected in real-time to produce DEM
- From 500-m above the surface, HDL produces a DEM covering a 100m diameter area with 5-cm spatial
 resolution and 4X oversampling. DEM is collected and processed all within 2 seconds.
- Meets range precision requirements without averaging oversampling is for robustness to motion & rotation
- Long-range altimeter. Single beam capable of ranging >20 km with < 10 cm range precision. Supports Active-TRN (Terrain Relative Navigation). Longer ranges possible.

HDL EDU Static Demonstration Data

- HDL Test DEM (Digital Elevation Model) generated from data set consisting of <u>16 Million ranges</u> <u>collected in 2 seconds</u> with scanner operating at full speed (6,000 rpm).
- <u>1 cm range precision</u> demonstrated at equivalent return signal strength for 500 m distance and 17% surface reflectance.

(Images shaded by calibrated return signal strength)

Europa Lidar Sensor Assembly (ELSA)

POC: Anup Katake, NASA-JPL, anup.b.katake@jpl.nasa.gov

- Hazard detection from ~ 500 m altitude and altimetry from ~ 10 km
- ELSA must survive extreme radiation environments of Europa
- > 2 lidar sensor systems being developed:
 - MIT/LL Gieger mode hybrid scanning/flash
 - Sigma Space Linear mode hybrid scanning/flash

ELSA Lidars under Development

Ciam	a Chira	1 Can
	a suira	i stati
0		

	Sigma Space	MIT Lincoln Labs
Modality	Photon counting, linear	Geiger
Lidar Type	Hybrid scanning/flash	Hybrid scanning/flash
Detector	Photo-multiplier-tube	Silicon
Detector Size	16 x16 pixels	2048 x 32 pixels
Pixel IFOV	100µrad	100µrad
Detector Readout	Rad-hard custom application specific	Rad-hard custom readout integrated circui
	integrated circuit (ASIC)	(ROIC)
Scan Mechanism, Pattern	2-axis Fast steering mirror, spiral scan	2-axis fast steering mirror, single axis scan
Laser Pulse Energy & PRF	100µJ @ 14kHz – 18kHz	Dual 25µJ @ 10kHz
Operating Wavelength	532nm	532nm
Range Accuracy	< 5cm	< 5cm
Scan & DEM Acquisition Times	1.8s for Fine DEM	0.8s for Fine DEM
	(2000 x 2000 pixel)	
	4s for Coarse DEM	8s for Coarse DEM
	(500 x 500 pixel)	
Altimetry	>10km @ 10Hz	>10km @ 10Hz
Radiation Tolerance	>300krad	>300krad
BBU Delivery	March-2023	Aug-2023

Copyright 2021 California Institute of Technology. U.S. Government sponsorship acknowledged

ELSA Breadboard Units

MIT/Lincoln Labs

Parameter	BBU
Size	580 x ? x ? mm³
Volume	15625 cm ³
Mass	14.5 kg
Power	100 W

Sigma Space

Parameter	BBU	
Size	430 x 259 x 181 mm ³	
Volume	21049 cm ³	
Mass	12.9 kg Flight: ~9kg CBE	
Power:		
Altimetry	76 W	
Imaging	300W x 1.8 s	

Multi-Functional Flash Lidar Sensor

Farzin Amzajerdian, NASA-LaRC, f.amzajerdian@nasa.gov

- Commercial linear-mode flash lidar camera has 128 x 128 = 16.4k pixels
- Mapping 70 m x 70 m area with 10 cm Ground Sample Distance (GSD) requires 0.5 M pixels
 - 10 cm GSD is required to detect 30 cm diameter hazards
- Developed a Super-Resolution algorithm to meet HDA requirements without a need for a mechanical gimbal

Flash Lidar Super-Resolution Algorithm

- Super-Resolution (SR) technique uses a set of consecutive frames, from slightly different positions and angles (resulting from platform motion), to generate a high-resolution DEM
- Generates high-res DEMs at 1
 Hz rate using 20 frames

Development and Testing of Flash Lidar with Real-Time SR Algorithm at NASA LaRC

NASA

Gantry Test

Next generation breadboard	2023
Aircraft flight tests	2023
ETU for a lunar mission	2024

Flash Lidar

Drone Test

Navigation Doppler Lidar (NDL)

Farzin Amzajerdian, NASA-LaRC, f.amzajerdian@nasa.gov

- > NDL provides vehicle precision vector velocity and altitude data
- Viable replacement for radars with an order of magnitude higher precision and much better data quality
 - Enables "precision navigation" to the designated landing location
 - Enables "well-controlled" descent, landing, and ascent maneuvers to within a few cm/sec

Spaceflight Engineering Test Units (ETUs)

4 ETUs have been built

1 – Aircraft flight tests (2021 -)

2 – Suborbital flight test on Blue Origin New Shepard vehicle (2020,2021)

3 – Lunar Landing Mission onboard Intuitive Machines lander (6/2023)

4 – Lunar Landing Mission onboard Astrobotic lander (5/2023)

Intuitive Machines Nova-C Vehicle

Parameter	Static Platform	Landing Vehicle
Maximum LOS Range	~ 14 km	7.0 km
Maximum LOS Velocity	+/- 218 m/sec	+/- 218 m/sec
LOS Velocity Noise @ 3000 m	0.09 cm/sec	8.3 cm/sec
LOS Range Noise @ 3000 m	0.10 m	8.2 m
Data Rate	20	Hz

- NDL ETU Performance is dominated by the vehicle vibration
- NDL ETU meets/exceeds landing requirements and outperforms radar sensors by about an order of magnitude in precision
- Next NDL build will extend operational range to 10 km and improve velocity and range precision to 2 cm/sec and 2 m regardless of host vehicle dynamics

Closing Remarks

- Lidar sensors being developed to perform:
 - Hazard detection and avoidance
 - Terrain Relative Navigation
 - Vector velocity and altitude
- Lidar sensor being development or demonstrated:
 - Ocellus: Short range 3-D lidar, launch to Titan in 2027
 - SPLICE HDL: Medium range 3-D lidar, helicopter flight test in 2023
 - ELSA: Medium range 3-D lidar, breadboards in 2023
 - Multi-Functional Flash Lidar: Long range 3-D lidar, helicopter, fixed-wind, and drone flight tests in 2023
 - NDL: Velocity and altitude lidar, Lunar missions in 2023
- These lidars with some modifications can be used for RPOD and Rovers
- NASA landing lidar sensor efforts may benefit terrestrial applications including autonomous vehicles and GPS-deprived navigation

Backup

HDL EDU Dynamic Demonstration Data

Motion and Rotation Correction

Uncorrected: Data collected from moving and rotating vehicle

Sensor head and support equipment

3-D DEM: Corrected for motion and rotation

- Does not require vehicle motion correction
- Able to perform other functions critical for precision navigation

Flash Lidar Generates Multiple High-Resolution DEMs

~ 70 m x 300 m high-resolution DEM for hazard detection and safe landing location selection

Resolution Enhancement by SR Algorithm

- Resolved 3 cm gap with 12 cm GSD
- > 4X linear magnification (16X resolution enhancement)

Performance of Real-Time Super-Resolution Algorithm

- Generated DEMs at 1 Hz rate
- Resolution enhancement by > 16X (> 0.26M pixels)
- Range resolution enhancement by 2X (4 cm)
- Range noise reduction by > 2X (3 cm)
- Effectively recovered dark pixels

Next Generation NDL

- Leverages lessons learned from build and test of ETUs
- Minimize effects of vehicle vibration
- Utilizes advanced photonic technologies
- Reduce size by 9X and mass by 3X
- Expand operational capabilities:
 - Extend operational range to > 10 km on the Moon and Mars
 - Incorporate air data (air speed and angles of attack and sideslip) measurement for atmospheric landing

- Upcoming lunar missions will pave the path for future missions
- Commercialization is well underway by licensee (Psionic) for both space and non-space markets:

Autonomous ground and air vehicles

Spaceflight units for landing and Rendezvous Proximity Operations and Docking (RPOD) Autonomou s Rovers

Space Domain ² Awareness Aircraft navigation in GPS-deprived environment

