
Cameron J. Bodenschatz
Glenn Research Center, Cleveland, Ohio

An Ensemble Neural Network Model for Predicting
Rare-Earth Oxide and Silicate Heat Capacities at       
High Temperature

NASA/TM-20230004256

June 2023



NASA STI Program . . . in Profi le

Since its founding, NASA has been dedicated 
to the advancement of aeronautics and space science. 
The NASA Scientifi c and Technical Information (STI) 
Program plays a key part in helping NASA maintain 
this important role.

The NASA STI Program operates under the auspices 
of the Agency Chief Information Offi  cer. It collects, 
organizes, provides for archiving, and disseminates 
NASA’s STI. The NASA STI Program provides access 
to the NASA Technical Report Server—Registered 
(NTRS Reg) and NASA Technical Report Server—
Public (NTRS)  thus providing one of the largest 
collections of aeronautical and space science STI in 
the world. Results are published in both non-NASA 
channels and by NASA in the NASA STI Report 
Series, which includes the following report types:
 
• TECHNICAL PUBLICATION. Reports of 

completed research or a major signifi cant phase 
of research that present the results of NASA 
programs and include extensive data or theoretical 
analysis. Includes compilations of signifi cant 
scientifi c and technical data and information 
deemed to be of continuing reference value. 
NASA counter-part of peer-reviewed formal 
professional papers, but has less stringent 
limitations on manuscript length and extent of 
graphic presentations.

 
• TECHNICAL MEMORANDUM. Scientifi c 

and technical fi ndings that are preliminary or of 
specialized interest, e.g., “quick-release” reports, 
working papers, and bibliographies that contain 
minimal annotation. Does not contain extensive 
analysis.

 

• CONTRACTOR REPORT. Scientifi c and 
technical fi ndings by NASA-sponsored 
contractors and grantees.

• CONFERENCE PUBLICATION. Collected 
papers from scientifi c and technical 
conferences, symposia, seminars, or other 
meetings sponsored or co-sponsored by NASA.

 
• SPECIAL PUBLICATION. Scientifi c, 

technical, or historical information from 
NASA programs, projects, and missions, often 
concerned with subjects having substantial 
public interest.

 
• TECHNICAL TRANSLATION. English-

language translations of foreign scientifi c and 
technical material pertinent to NASA’s mission.

For more information about the NASA STI 
program, see the following:

• Access the NASA STI program home page at 
http://www.sti.nasa.gov

 
• E-mail your question to help@sti.nasa.gov
 
• Fax your question to the NASA STI 

Information Desk at 757-864-6500

• Telephone the NASA STI Information Desk at
 757-864-9658
 
• Write to:

NASA STI Program
 Mail Stop 148
 NASA Langley Research Center
 Hampton, VA 23681-2199

 



Cameron J. Bodenschatz
Glenn Research Center, Cleveland, Ohio

An Ensemble Neural Network Model for Predicting
Rare-Earth Oxide and Silicate Heat Capacities at       
High Temperature

NASA/TM-20230004256

June 2023

National Aeronautics and
Space Administration

Glenn Research Center
Cleveland, Ohio 44135



Acknowledgments

This work was supported by the Transformational Tools and Technologies (TTT) Project under the NASA Transformative 
Aeronautics Concepts Program. The author is grateful to the LM Machine Learning Working Group at NASA Glenn Research 
Center for helpful discussions.

Trade names and trademarks are used in this report for identifi cation 
only. Their usage does not constitute an offi  cial endorsement, 
either expressed or implied, by the National Aeronautics and 

Space Administration.

Level of Review: This material has been technically reviewed by technical management. 

This report is a formal draft or working 
paper, intended to solicit comments and 

ideas from a technical peer group.

This report contains preliminary fi ndings, 
subject to revision as analysis proceeds.

This work was sponsored by the 
Transformative Aeronautics Concepts Program.

This report is available in electronic form at https://www.sti.nasa.gov/ and https://ntrs.nasa.gov/



NASA/TM-20230004256 1 

An Ensemble Neural Network Model for Predicting Rare-Earth 
Oxide and Silicate Heat Capacities at High Temperature 

Cameron J. Bodenschatz 
National Aeronautics and Space Administration 

Glenn Research Center 
Cleveland, Ohio 44135 

Summary 
In this work, a neural network model was developed to predict the constant-pressure heat capacity Cp 

for materials in the RE2O3-SiO2 material space (RE is a rare-earth metal). Several model architectures 
were trained and tested on Cp data generated from first-principles density functional theory (DFT) 
calculations. Hyperparameter optimization was performed, and the optimal model was selected for 
Cp predictions. The optimal model architecture was found to have a root-mean-squared error of  
5.12±3.37 J/mol-K. The optimal model architecture was then used in a bagging ensemble model that was 
trained using the leave-one-group-out method to provide error estimates for model predictions. The out-
of-bag score for the ensemble model was 0.997. The predicted Cp values agree well with the DFT and 
experimental results and were computed orders of magnitude faster than DFT simulations. Machine 
learning shows the potential to provide a suitable surrogate model for thermochemical property 
predictions for candidate environmental barrier coating materials, but refining input material features and 
model architectures could further improve accuracy for these models. 

1.0 Introduction 
High-temperature stability of ceramic coatings, specifically rare-earth silicates, is an important design 

criterion for gas turbine aeroengines. Aeroengines are a challenging use case because of the extremely 
high temperatures inside the combustion chamber, especially as the aerospace industry pushes to increase 
combustion temperatures to improve fuel efficiency. As part of the push to increase efficiency, original 
equipment manufacturers (OEMs) have begun to replace traditional superalloy components with Si-based 
ceramic-matrix-composites (CMCs) of higher temperature capability and lower density (Refs. 1 and 2). 
However, CMCs are prone to degradation at high temperatures in environments containing water vapor or 
other oxidizing species (Refs. 3 and 4). Therefore, much research effort has gone into development of 
environmental barrier coatings (EBCs) to prevent CMC recession in jet engine environments. However, 
EBCs are prone to failure via a variety of mechanisms including oxidation, recession, spallation, and 
foreign object damage. Volumetric contraction or expansion due to phase transitions in engine operating 
conditions can also lead to mechanical failure of EBCs (Ref. 5). Rare-earth disilicates (RE2Si2O7) have 
been a primary focus for EBC research because of their favorable coefficient of thermal expansion (CTE) 
match with the underlying Si-based CMC component substrate and their chemical stability in high-
temperature water-vapor environments. 

Coating design is challenging because of the large chemical space of candidate materials and the 
dearth of available properties for design calculations. Also, rare-earth silicates can form a variety of 
crystal structures, each of which has unique phase stability under various operating conditions. This 
challenge is compounded as research into more exotic materials such as solid-solution and so-called high-
entropy ceramics has recently increased. As such, the use of chemical thermodynamics via methods such 
as the calculation of phase diagrams (CALPHAD) enables the exploration of the chemical space for rare-
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earth-silicate EBC candidate materials. However, phase diagram calculations using the CALPHAD 
method require thermodynamic values of the materials of interest as inputs. Some of these values are 
available experimentally or in the literature, but others are not. Some quantities, such as entropies, are 
difficult to determine experimentally and must be calculated using computational methods. Current 
thermochemical properties calculations for candidate materials are primarily limited to density functional 
theory (DFT) calculations (Refs. 6 to 11). While DFT has proven highly capable, these calculations 
require substantial computational resources. As such, researchers are limited in the types of properties 
they can calculate. This report focuses on constant-pressure heat capacity, Cp, because of its importance in 
CALPHAD calculations. 

Machine learning (ML) approaches to predict materials properties have seen substantial development 
over the past decade. Advancements in ML for materials include feature descriptor development, model 
development, and interatomic potentials for molecular dynamics (MD) simulations. Supervised learning 
regression models to predict single properties for a broad chemical space have been implemented into 
software packages including SchNetPack (Ref. 12), MEGNET (Ref. 13), and CGCNN (Ref. 14). In many 
studies, properties such as thermal expansion have been correlated to various rare-earth cation properties, 
including the ionic radius of the rare-earth cation and/or the geometry of the crystal cell (Refs. 6 and 15 to 
20). This is likely because of the dependence of cell volume on the phonon frequencies within the quasi-
harmonic approximation of lattice vibrations, which plays a key role in the transfer of heat through a 
material (Refs. 20 and 21). Some of the feature descriptors used in this work are included with this in 
mind. ML models have been developed for EBC thermomechanical properties such as CTE, using similar 
input feature properties (Ref. 6). However, this work focuses on the use of ML models for EBC 
thermochemical properties. This model could therefore be used, for example, as a surrogate model in 
thermochemical codes to predict thermodynamic stability of candidate EBC materials, either for  
pure material phase stability or in the presence of chemical contaminants such as calcia-magnesia-
alumina-silicates (CMAS). 

2.0 Methods 
2.1 Density Functional Theory 

Plane-wave DFT simulations were performed using the Vienna Ab initio Simulation Package (VASP) 
(Refs. 22 to 25). Calculations employed a plane-wave cutoff energy of 520 eV and a k-space integration 
mesh of 1,500 k-points per reciprocal atom. Projector-augmented wave (PAW) pseudopotentials modeled 
the core electrons (Refs. 26 to 28), while the Perdew-Burke-Ernzerhof modified for solids (PBEsol) 
exchange-correlation functional modeled the valence electrons (Refs. 29 and 30). Initial structures were 
obtained from the Materials Project database (Ref. 31). Geometries were optimized to a maximum 
residual force tolerance of 1×10–4 eV/Å on any individual atom. Phonon vibrational modes and heat 
capacities were calculated via the finite-displacement method using the Phonopy package for the Python 
programming language and using VASP for the single-point energy calculation for the displaced 
structures (Ref. 32). Displaced structures were generated using 2×2×2 supercells. The quasi-harmonic 
approximation was used to model thermodynamic properties at non-equilibrium volumes (Ref. 33). 
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2.2 Machine Learning 

Neural network models were constructed using the multilayer perceptron regressor (MLPR) as 
implemented in BaggingRegressor, the scikit-learn package for the Python programming language  
(Ref. 34). The initial, unoptimized structures from the Materials Project database (Ref. 31) were used for 
ML input. Two datasets were used to train parallel models: one with scaled data and one with unscaled 
data. For both datasets, the only categorical variable (space group) was transformed using one-hot 
encoding. For the scaled dataset, the numerical variables were scaled to a range of 0 to 1. MLPR 
hyperparameters were tuned using the grid search method. The MLPR algorithm minimizes the negative 
mean-squared error loss function during model training. Early stopping and leave-one-group-out cross-
validation, where the data for each crystal structure were considered as a group, were used to minimize 
overfitting during hyperparameter optimization. 

Error estimates were calculated using the bootstrapping method and sampling with replacement via 
BaggingRegressor. An ensemble of 50 MLPR models were trained using the parameters found from the 
grid search hyperparameter optimization. Each model was trained on a randomized subset of the Cp data, 
and the remaining out-of-bag (OOB) data were used as a test set to calculate model accuracy. The error 
bounds for the prediction capability of the ensemble model were determined by taking the mean and 
standard deviation of the 50 models comprising the ensemble. 

3.0 Results 
3.1 Correlation Matrix 

A summary of the materials considered in this work is shown in Table I. A correlation matrix was 
calculated using the initial input descriptors to determine the strength of their effects on the predicted Cp. 
The correlation matrix can be seen in Figure 1. Larger absolute values indicate a stronger correlation, 
while smaller absolute values indicate a weaker correlation. Positive values indicate a positive correlation, 
while negative values indicate a negative correlation. The strongest prediction correlation is the 
temperature, with a correlation coefficient of 0.54. Rare-earth cation atomic number, rare-earth cation 
electronegativity, lattice parameter b, and lattice angle β all have correlation coefficient absolute values of 
less than 0.1, indicating weak correlations with Cp. Temperature has the strongest positive correlation of 
0.54, whereas the lattice parameter a and the conventional cell volume have the strongest negative 
correlations of –0.47 and –0.43, respectively. In all the candidate rare-earth disilicates considered in this 
study, the α and γ angles are both 90°, so they have identical correlations with Cp. Additionally, the 1P

space group demonstrated a correlation of 1 to both the α and γ angles. Therefore, the γ angle and the 1P
space group feature columns were removed from the feature matrix for model training.  



TABLE I.—COMPOUND AND STRUCTURE INFORMATION FOR MATERIALS USED FOR TRAINING AND TESTING ML MODELS. 
[ Initial structures were obtained from Materials Project database (Ref. 31).]  

Formula MP-ID Space group a, 
Å 

b, 
Å 

c, 
Å 

α, 
deg 

β, 
deg 

γ, 
deg 

Volume, 
Å3 

Dy2Si2O7 mp-17062 1P 6.66 6.69 12.15 94.32 91.32 91.97 539.89 

Er2Si2O7 mp-7064 C2/m 6.86 9.00 4.77 90.00 102.08 90.00 288.08 
Er2Si2O7 mp-7624 P21/c 4.75 10.81 5.59 90.00 96.21 90.00 285.19 
Gd2Si2O7 mp-13775 Pnma 5.13 8.34 14.00 90.00 90.00 90.00 598.92 
Ho2Si2O7 mp-18662 Pnma 5.08 8.16 13.75 90.00 90.00 90.00 569.64 

Ho2Si2O7 mp-16809 1P 6.64 6.67 12.12 94.28 91.49 92.11 534.64 

Lu2Si2O7 mp-7193 C2/m 6.77 8.87 4.76 90.00 102.24 90.00 279.43 

Tb2Si2O7 mp-17308 1P 6.69 6.72 12.19 94.24 91.21 91.86 545.52 

Tm2Si2O7 mp-1095467 C2/m 6.83 8.94 4.76 90.00 102.09 90.00 284.59 
Y2Si2O7 mp-5652 C2/m 6.93 9.09 4.79 90.00 101.89 90.00 295.34 
Yb2Si2O7 mp-4300 C2/m 6.86 9.29 4.91 90.00 102.24 90.00 306.02 
Dy2SiO5 mp-752405 P21/c 6.75 6.90 9.14 90.00 105.87 90.00 409.89 
Dy2SiO5 mp-768317 C2/c 14.54 6.82 10.52 90.00 122.18 90.00 882.80 
Er2SiO5 mp-16993 P21/c 6.71 6.77 9.14 90.00 103.57 90.00 404.01 
Gd2SiO5 mp-542831 P21/c 6.78 7.11 9.22 90.00 107.51 90.00 424.40 
Lu2SiO5 mp-18195 P21/c 6.68 6.61 9.12 90.00 100.33 90.00 396.41 
Lu2SiO5 mp-16969 C2/c 14.28 6.67 10.29 90.00 121.99 90.00 831.72 
Y2SiO5 mp-554420 P21/c 6.75 6.96 9.14 90.00 106.38 90.00 411.81 
Yb2SiO5 mp-17702 C2/c 15.83 6.37 11.21 90.00 128.30 90.00 887.26 

Dy2O3 mp-2345 Ia3̄  10.68 10.68 10.68 90.00 90.00 90.00 1216.81 

Er2O3 mp-679 Ia3̄  10.55 10.55 10.55 90.00 90.00 90.00 1174.40 

Gd2O3 mp-643084 C2/m 14.45 3.58 8.83 90.00 100.78 90.00 448.57 

Lu2O3 mp-1427 Ia3̄  10.36 10.36 10.36 90.00 90.00 90.00 1113.46 

Lu2O3 mp-556477 C2/m 13.77 3.39 8.42 90.00 100.47 90.00 386.72 

Yb2O3 mp-2814 Ia3̄  10.71 10.71 10.71 90.00 90.00 90.00 1228.92 

N
A
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Figure 1.—Correlation matrix for input features to target Cp values of rare-earth silicate and oxide. Positive values 

indicate positive correlation, negative values indicate negative correlation, and values close to 0 indicate no 
correlation. 
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TABLE II.—HYPERPARAMETERS CONSIDERED FOR MODEL ARCHITECTURE 
DURING HYPERPARAMETER OPTIMIZATION 

Hidden layer sizes (1), (10), (100), (1,1), (10,10), (100,100), (1000,1000), 
(1000,100), (10,10,10), (100,100,100), 
(1000,1000,1000), (1000,100,10) 

Activation function Logistic, RELU 

Learning rate schedule Constant, adaptive 

L2 regularization strength coefficient 0.0001, 0.001, 0.01 

Solver LBFGS,a stochastic gradient descent, Adam 

Maximum iterations 5,000 

Iterations before early stopping 200 
aLimited-memory Broyden-Fletcher-Goldfarb-Shanno optimization algorithm. 

3.2 Hyperparameter Optimization 

Hyperparameter optimization was performed using the grid search method and leave-one-group-out 
cross-validation to determine the optimal neural network model architecture. Variables considered in the 
hyperparameter optimization included number of hidden layers, size of hidden layers, L2 regularization 
strength coefficient, learning rate update method, activation function, and solver for a combined 288 
unique model architectures. An overview of the hyperparameters used for model optimization can be seen 
in Table II. The negative mean-squared error was used as the scoring function during cross-validation. 
The best model was found to have an architecture of a single hidden layer with 100 neurons, adaptive 
learning with a L2 regularization strength coefficient of 0.01, the rectified linear unit (RELU) activation 
function, and the Adam solver. The mean-squared error of the model on the test dataset was converted to 
a root-mean-squared error (RMSE) to compare directly to the target Cp values. The optimized model 
architecture yielded an average RMSE of 5.12±3.37 J/mol-K. 

Interestingly, the best model was found to use scaled feature data and unscaled target data, as the 
models trained on the unscaled data and scaled data (including features and target) both had both a larger 
RMSE and a larger standard deviation. The RMSE of the model trained on unscaled data was  
6.57±4.40 J/mol-K, whereas the model trained on the fully scaled data was 11.98±23.55 J/mol-K. The 
optimized model trained on the unscaled data had the same architecture as the optimal model, whereas the 
model trained on the unscaled data had an architecture that included two hidden layers, the first with 1000 
nodes and the second with 100 nodes (size (1000,100)), with all other hyperparameters the same. 

It is important to note that not all models converged within the restricted number of iterations, but 
these models were discarded because of their apparent training difficulty. Scaling of the input features 
helped to minimize the number of models that did not converge. 

3.3 Single-Model Prediction Accuracy 

The optimal model found during hyperparameter optimization was trained to predict Cp. The  
loss as a function of training epochs of the optimized model is shown in Figure 2. Again, the loss function 
for the MLPR model is negative mean-squared error, so units are (J/mol-K)2. The parity plot showing the 
DFT-calculated Cp data versus the MLPR-predicted data can be seen in Figure 3. In the parity plot, 
perfect predictive capability would be indicated by all the predicted data points having equal x and y 
values; that is, values falling on the line with a slope of 1. As can be seen in Figure 3, the MLPR model 
predicts the calculated Cp data with good accuracy. There is a small deviation at the high-Cp end of the 
plot because the Cp data for Er2Si2O7 trends upward in the DFT data at high temperature. Because this is 



NASA/TM-20230004256 7 

the only material that displayed this upward trend at high temperature, the MLPR model did not learn this 
trend and therefore underpredicts its Cp. If other materials are added to the dataset that display this trend, 
the MLPR model would be more likely to learn this trend for materials that display it. 
 

 
Figure 2.—The loss as a function of training epochs for a single MLPR model trained 

using the optimal architecture determined from grid search hyperparameter optimization.  
 

 
Figure 3.—Parity plot showing model prediction accuracy for Cp of rare-earth 

silicates compared to DFT results for single MLPR model using best 
parameters obtained from grid search hyperparameter optimization. Perfect 
predictive capability would result in all points falling on red line (slope = 1). 
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3.4 Ensemble-Model Prediction Accuracy 

To establish an error range for the ML model, 50 models were trained to create an ensemble of 
models for statistical purposes. The OOB score for the ensemble model was 0.997. Each model in the 
ensemble was used to predict Cp of Yb2Si2O7. The mean and standard deviation of the ensemble were then 
calculated for these predictions, and the prediction range can be seen in Figure 4. The average standard 
deviation for the ensemble-model Cp prediction across the entire temperature range is 1.1 eV. This error is 
lower than the RMSE for the model and therefore the model accuracy is limited by the model accuracy 
rather than the model variance. A parity plot of the Cp predictions for all materials in the dataset is shown 
in Figure 5. Although the model accuracy is likely insufficient for extremely accurate thermochemical 
calculations, it is likely sufficient for establishing trends or rough screening calculations. It is also 
possible that including additional sources of Cp data including experimental and literature data could 
improve the model accuracy. 

Figure 4.—Values of Cp for Yb2Si2O7 predicted using ensemble model compared to 
those calculated with DFT. Dashed line indicates mean of 50 models comprising 
the ensemble, and shaded area represents first standard deviation. 
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Figure 5.—Parity plot showing model prediction accuracy compared to DFT results 
of ensemble model for all materials in the dataset. Perfect predictive capability 
would result in all points falling on red line (slope = 1). 

4.0 Discussion 
To demonstrate the robustness of the model, the model was retrained using the optimal 

hyperparameters determined previously on the database, excluding values of Cp for Yb2Si2O7. This 
allowed insight into the ability of the model to predict Cp for materials that were not included in the 
original dataset. There is only a minor loss of accuracy in the predicted Cp values compared to those 
predicted by the model that included Yb2Si2O7 in the training dataset. This resulted in a slightly greater 
underprediction at temperatures in the lower end of the range (i.e., below 200 K) and a slightly greater 
overprediction at higher temperatures (i.e., above 1,000 K). Because it is likely that trends are more 
important than absolute predictions, this error may not influence coating design, but it points to the 
general robustness of the model. These results are shown in Figure 6. 

The model was then used to predict Cp for structures not included in the dataset, including Nd and Sc 
disilicates. These materials are promising EBC candidate materials. The results are shown in Figure 7. 
These predicted Cp values are quite reasonable within the context of the Cp values of the other similar 
disilicate materials. However, we note that the predicted Cp values for Sc2Si2O7 begin to decrease at high 
temperatures, which is likely an unrealistic result due to weaknesses in the model. This again indicates 
that while the model is likely sufficient for material screening purposes, it is inadequate for high-accuracy 
Cp calculations. However, it should be noted that Cp values for these materials were not found in the 
literature, so the model was able to provide predictions for materials where no data currently exists in a 
timeframe short enough for practical materials screening applications. 
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Figure 6.—Values of Cp for Yb2Si2O7 predicted using ensemble model trained on all 

materials in dataset, excluding Yb2Si2O7, compared to those calculated with DFT. 
Dashed line indicates mean of all 50 models comprising the ensemble, and 
shaded area represents first standard deviation. 

 

 
Figure 7.—Cp predictions for β-Sc2Si2O7 and G-Nd2Si2O7 using the ensemble 

model trained on all materials in dataset. Dashed line indicates mean of all 50 
models comprising the ensemble, and shaded area represents first standard 
deviation. 
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To improve the predictions on unseen materials and to enable additional capabilities such as mixed 
rare-earth silicate solid solutions, it is likely that additional feature information may need to be 
incorporated. One possible improvement could be the inclusion of local chemical environment 
information, such as nearest-neighbor bonding configurations, for the materials considered here in the 
input features. A variety of feature descriptors have been implemented in the literature to describe 
crystalline structures, including atom-centered symmetry functions (ACSF) (Refs. 35 and 36), smooth 
overlap of atomic positions (Ref. 37), and graph-based feature representations (Ref. 14). Several 
extensive reviews of feature representations for chemical descriptors have been recently published 
(Refs. 38 and 39). Crystal graphs have been used to develop ML models such as the Crystal Graph 
Convolutional Neural Network model by Xie and Grossman (Ref. 14), Chen et al. (Ref. 13), and others. 
These models use graph-based representations of the periodic crystal structure, where each node in the 
graph represents an atom and each edge represents a bond, to create a crystal graph for each material. 
These features are then fed into a convolutional neural network to develop a model that considers the 
local bonding environment of the constituent atoms in each material. 

5.0 Conclusions 
In this report, a neural network model was trained to predict heat capacities (Cp) in the  

RE2O3-SiO2 chemical space (RE is a rare-earth metal). The model used the cell lattice parameters, the 
identity of the rare-earth cation, the space group, and the temperature as input features. The model was 
trained using a grid search to find the optimal model architecture, and the accuracy of the optimal model 
was determined using k-fold cross-validation to prevent model overfitting. The optimal model accuracy 
was found to be 5.12±3.37 J/mol-K. The model can predict Cp several orders of magnitude faster than 
density functional theory calculations (i.e., seconds as compared to days) and therefore could be used as a 
surrogate model for chemical thermodynamics calculations via, for example, the calculation of phase 
diagrams method. Although accuracy for materials not included in the training set was lower, the model 
likely produces results at sufficient accuracy for cursory screening applications. An improved feature 
matrix and/or an improved model architecture is likely needed for better predictions of Cp for materials 
out of the training set. Future model development can also focus on prediction of additional properties to 
guide environmental barrier coating design. 
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