

A Brief Status Update on Venus Long Lived Lander Technologies

Gary W. Hunter
NASA Glenn Research Center
Cleveland, OH

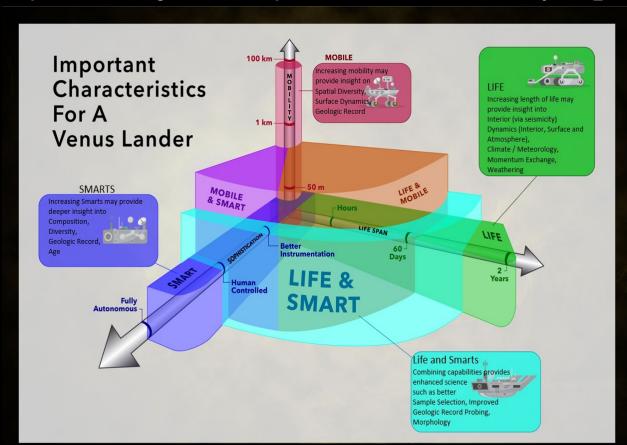
International Conference and Exhibition on High Temperature Electronics (HiTEC)
April 18-20, 2023

Outline

- Introduction
 - Venus Missions
 - Venus Studies
 - > Technology Challenges
- Long Lived Platform Development
 - > Electronics
 - > Sensors
 - > Communication
 - > Power
 - Actuation
 - Summary and Future Prospects

Decade of Venus Exploration

- Three Missions chosen for Venus Exploration in the next decade
- Two orbiters and one decent probe to explore Venus science
 - The DAVINCI⁺ probe descends to the surface but is not a lander mission
 - Development of one orbiter (VERITAS) presently delayed
- Extended duration surface measurements not addressed by these missions
- A number of science questions, e.g., seismology, are best addressed by in-situ measurements



L. Glaze, Venus Exploration Analysis Group Meeting, November 8–9, 2021 https://www.lpi.usra.edu/vexag/meetings/vexag-19/presentations/Glaze.pdf

Venus Surface Platform Study: Lander Characteristics Leads: T. Kremic and M. Amato

https://www.lpi.usra.edu/vexag/documents/reports/Venus-Surface-Platform-Study-Final_11-4-21.pdf

Venus Surface Platform Study Capability to Science Links

Capability to Science Links

Interior	Time	Smarts	Mobility	MSM
Structure	Н			Н
Composition	Н	S		S
Dynamics	Н			Н
Heat Escape	S			S

Surface	Time	Smarts	Mobility	MSM
Composition		S		S
Dynamics (Eruptions, flows,	Н		Н	
Diversity (Spacial)	Н	S	Н	S
Morphology	Н	S	S	Н
Age	S	Н	S	S
Geologic Record (Layers,	Н	Н	Н	Н
craters,)				

Interactions	Time	Smarts	Mobility	MSM
Gas and Surface Composition	Н	Н		Н
Winds	Н			Н
Reactions	Н	Н		S
Momentum Exchange	Н		S	Н

An "H" in a field signifies that the capability is highly impactful in understanding that aspect of the science. A "S" in a field signifies somewhat impactful.

Technology To Capability Links

Technology	Capability					
	Time	Smarts	Mobility			
Power (L – low, 10's of watts or less)	Н	Н				
Power (H - high, 100's of watts)			Н			
Cooling (Needs Power H)	S	Н				
High Temp Electronics / Memory	Н	Н	Н			
Mechanisms (Drills, Wheels,)	S	S	Н			
Autonomous Ops, Nav	S	Н	Н			
SOA Instruments	Н	Н	Н			

An "H" in a field signifies that the capability is highly impactful in understanding that aspect of the science. A "S" in a field signifies somewhat impactful.

VEXAG Technology Plan 2019

Sample

Far-Term 2033 to 2042 : Venus Exploration More Like

Other Planets, but Major Challenges
Far-Term Missions

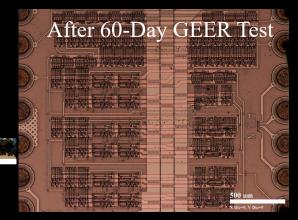
Advanced

Aerial

Lander -

Lander

	Mission Mode	Orbiter /Smallsat Networks	Cooled, Long Duration	Network- Long Duration	Mobile Surface	Return Clouds	Return Surface	
	, Aerocapture							
	Entry Descent and Deployment Landing Flight Landers	1						
	Descent and Deployment	1						Г
	Landing							
	Flight	1						
	Landers	1						
	Mobility							
	Ascent Vehicle Small Platforms							
https://www.lpi.usra.edu/vexa	Small Platforms				_			
	Automation and Autonomy							Ц
g/documents/reports/VEXAG_ = Venus_Techplan_2019.pdf	Energy Storage- Batteries	1						
	Energy Generation- Solar							
	Energy Generation - Radioisotope							٦
	Power							
	Energy Generation - Radioisotope Power Energy Generation-Alternative Sources Thermal Control - Passive	3						
								'n
	Thermal Control - Active							
	High temperature mechanisms	1						
	Thermal Control - Active High temperature mechanisms Moderate temperature electronics High temperature electronics							
	High temperature electronics	1						
	Communications							
	Guidance, Navigation, and Control							
	Remote Sensing - Active							
	Remote Sensing - Passive							٦
	In-Situ Aerial Platform and Probe In Situ Surface - High Temperature Sensor Sen							٦
	In Situ Surface - High Temperature							
	Sensors							
	In Situ Surface - Long Duration Mobile							٦
	Lab							
						•	-	_


Challenges of Venus Surface Exploration

- Venus has a very hostile environment with an average surface temperature of 465°C and surface atmospheric pressure of 90 atm. in the presence of corrosive species
- Missions that have landed on the surface of Venus have typically lasted at most
 ~2 hours due to the high temperatures and harsh conditions
- Long term measurement of Venus planetary conditions has been limited by the lack of electronics, communications, power, sensors, instrument, and actuation systems operational in the harsh Venus environment
- Surface exploration of Venus for extended durations has notable science impact and is becoming more viable
- This presentation will provide a sampling of high temperature development and technologies that may have an impact on future Venus surface exploration

Material Choice (and GEER Testing) Matters

SiC Clock IC Chip Optical Microscope Photos (These IC Materials Work - Chip operated for 60 days)

Wave Guide Before and After 60 Days of GEER Testing (These materials react – grow crystals – will NOT work)

Evolving "Handbook" of What Works in Venus Ambients

Devices	Materials	Outcome		
Electronics Packaging	Pb	PbS		
	Al_2O_3	No reaction		
Insulation	CaO	CaSO ₃ , CaSO ₄		
SiC Electronics	Pt	PtS; fibers when present as thin film		
	Pt (in the presence of Au)	PtS spheres		
	Au	No reaction, but mobile		
	Ir	No reaction, but mobile		
	SiC	No reaction		
	SiO ₂	No reaction		
Feedthrough Materials	Cu	Cu ₂ S crystals		
	Ni	NiS crystals		
	CuBe	Cu ₂ S crystals; Cl found on surface		
SiC Pressure Sensor	Kovar (Ni-Co-Fe)	NiS, Fe _x O _y		
	AIN	No reaction		
	Ag-Cu Braze	Segregation into Cu ₂ S and Ag; Ag mobile		
GEER Components	Inconel 625 (Ni-Cr-Mo-Fe)	NiS, Cr _x O _y		
	304 SS	Mirror finish, low corrosion rate		
	Al foil/Mg doped	MgO on surface, MgF inner layer, Al bulk no reaction		
New Materials	Sputtered Aluminum	Reacts with HF to form AIF ₃		
	Titanium	Oxide on surface decreasing into bulk		

https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2017EA000355

Surface Technology Development Overview

- Technologies relevant for Venus surface applications may often have their origin in other harsh environment applications e.g., aeronautics or industrial processing
- Material systems and engineering approaches standardly used for even harsh environment terrestrial applications may not be viable for Venus missions
- A major challenge is operation in Venus surface conditions without significant degradation and for extended periods of time
- Testing of proposed technologies in first at high temperature leading up to Venus simulated conditions include relevant chemistry, is core to technology advancement
- The status of Venus technology development is in some cases at the level of 1970's to 1980's technology; at these levels significant science can be accomplished.
- A mission needs a complete compliment of relevant technologies for success

GEER: 92 atm, 465 °C + chemical composition found at the surface of Venus (CO_2 , N_2 , SO_2 , H_2O , CO, OCS, HCI, HF, and H_2S)

Long Lived Surface Platforms Development LLISSE, SAEVe, HOTTech, etc.

Computer

Memory

Diamond

Flectronics

ASICs &

Sensors Primary

Batteries Rechargeable

Power

Flectric

Motors

Generation

Batteries

Solar Power

Vacuum

Electronics

HOTTech Project Technology Areas

HOTTech 16 (GFFR Testing Recently Completed for Some Technologies)

110	Trech to (GLER resting Recently Completed for Some 1	eciliologies	
Technology	HOTTech Tasks	PI	
Area			
Packaging	500°C Capable, Weather-Resistant Electronics Packaging for Extreme Environment Exploration	Simon Ang	Un
Clocks & Oscillators	Passively Compensated Low-Power Chip-Scale Clocks for Wireless Communication in Harsh Environments	Debbie Senesky	
GaN Electronics	High Temperature GaN Microprocessor for Space Applications	Yuji Zhao	Ari

High Temperature Diamond Electronics for Actuators and Sensors

Field Emission Vacuum Electronic Devices for Operation above 500 degrees Celsius

SiC Electronics To Enable Long-Lived Chemical Sensor Measurements at the Venus Surface

High Temperature-resilient And Long-Life (HiTALL) Primary Batteries for

Venus and Mercury Surface Missions

High Energy, Long Cycle Life, and Extreme Temperature Lithium-Sulfur

Battery for Venus Missions Low Intensity High Temperature (LIHT) Solar Cells for Venus Exploration

Mission

Hot Operating Temperature Lithium combustion IN situ Energy and Power System (HOTLINE Power

System)

Development of a TRL6 Electric Motor and Position Sensor for Venus

niversity of Arkansas

Stanford University Arizona State University

Organization

High Temperature Memory Electronics for Long-Lived Venus Missions

NASA GRC

Yuji Zhao Phil Neudeck Bob Nemanich

Darby Makel

Ratnakumar Bugga

Jitendra Kumar

Jonathan Grandidier

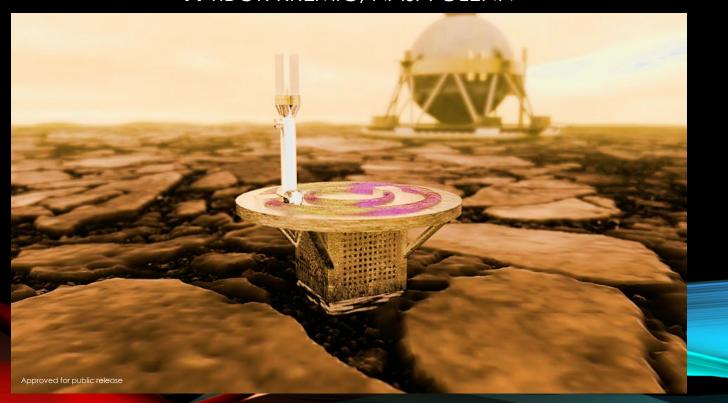
Michael Paul

Kris Zacny

Leora Peltz

Arizona State University Boeing Corp. Makel Engineering, Inc.

NASA IPI


University of Dayton

NASA IPI

JHU/APL

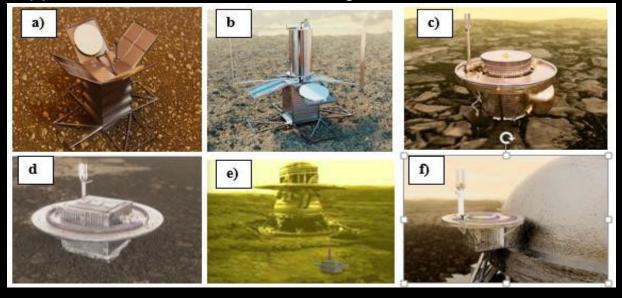
Honeybee Robotics, Inc.

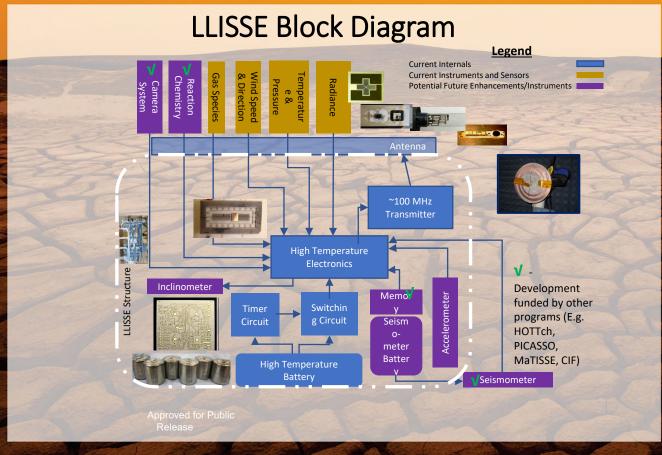
LONG-LIVED IN-SITU SOLAR SYSTEM EXPLORER (LLISSE) PI TIBOR KREMIC, NASA GLENN

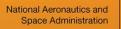
LONG-LIVED IN-SITU SOLAR SYSTEM EXPLORER (LLISSE)

- LLISSE is a small and "independent" probe for Venus surface applications
- LLISSE acquires and transmits simple but important science
- Three key elements leveraged
 - Recent developments in high temperature electronics
 - Focused, low data volume measurements
 - Novel operations scheme

Operations Goals:


- Operate for a minimum ½ Venus solar day capture one day/night transition
- Take / transmit measurements periodically timed for science need and to maximize transfer to orbiter / data relay


LLISSE



An Approach to achieve a class of long-lived landers for Venus

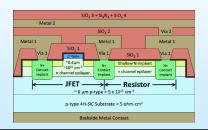
Artist's conceptions of the LLISSE platform and its various embodiments: a) Early concept for a battery-powered LLISSE after deployment; b) Wind-powered LLISSE after deployment; c) SAEVe lander; d) V-BOSS lander; e) Notional comparison of the V-BOSS lander to a Venera lander; f) A version of LLISSE mounted on a traditional, larger lander.

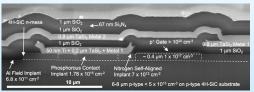
HOTTech-21 Projects

Title	PI Information				
Title	First Name	Last Name	Organization		
Venus Surface Solar Array	Joel	Schwartz	Jet Propulsion Laboratory		
Non-Volatile, Low Power, and High Density SiC Memory For Future Venus Missions	Phil	Neudeck	NASA Glenn Research Center		
High-Temperature MEMS based Venus Seismometer	Tibor	Kremic	NASA Glenn Research Center		
High Temperature UV near field Imager	Emad	Andarawis	GE Research		
A High Temperature Transmitter for Venus Surface Environment	Laurence	Sadwick	InnoSys, Inc.		
Advanced Co-Based Nanocrystalline Soft Magnetics for Extreme Temperature Inductor Applications	Paul	Ohodnicki	University of Pittsburgh		
A Venus Durable Actuator and Electronics System	Erik	Mumm	Honeybee Robotics Spacecraft Mechanisms Corporation		

https://www1.grc.nasa.gov/space/pesto/space-vehicle-technologies-current/high-operating-temperature-technology-hottech/

Electronics

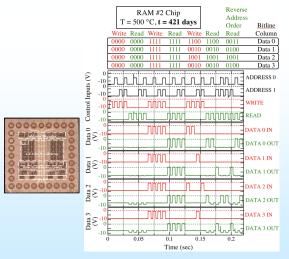

NASA

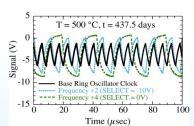

High Temperature Electronics Advancements

R&D 100 Award 2018

- Unique capabilities have produced the World's First Microcircuits at moderate complexity (Medium Level Integration) that have the potential for long-lived operation at 500°C
- Circuits contain 10's to ~1000 of Junction Field Effect Transistors (JFETs); An order of magnitude beyond a few JFETs previously demonstrated
- Enables a wide range of sensing and control applications at High Temperatures
 - > In-package signal conditioning for smart sensors
 - > Signal amplification and local processing
 - > Wireless transmission of data
- > A tool-box of signal conditioning, processing, and communications circuits are being developed and demonstrated

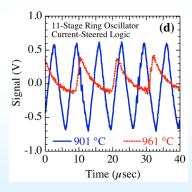
Cross-sectional illustrations of NASA Glenn 4H-SiC JFET-R devices with two levels of interconnect. (a) Simplified device structure drawing. (b) Scanning electron micrograph of Generation 10 JFET source and gate region



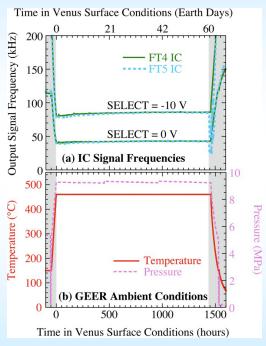

NASA GRC Electronics Development

2017 NASA Glenn SiC JFET IC "Version 10" 1+ year of operation in Earth air oven at 500 ° C Achieved

Version 10 ICs set high temperature durability world records in T ≥ 500 °C Earth-atmosphere oven testing.


Complex ICs Operating more that 1 Year at 500 °C^[1]

ICs Operating at World Record 961 °C^[2]


[1] 2018 Int. Conf. High Temperature Electronics p. 71 [2] IEEE Electron Device Letters vo. 38 p. 1082 (2017).

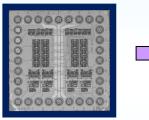
60-Day Venus Environment IC Test (in GEER)^{1,2}

Two IC Version $10 \div 2/\div 4$ Clock ICs (175 JFETs/chip) successfully operated in GEER Venus surface conditions for 60 days duration.

After 60 days GEER **Before GEER**

¹Neudeck et al., IEEE J. Electron Devices Soc., vol. 1, p. 100 (2018).

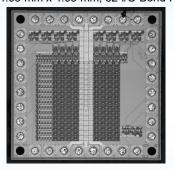
²Chen et al., Proc. 2018 Int. High Temperature Electronics Conf.


NASA Glenn SiC JFET IC Technology Progress

"Learn by doing" fabricating and testing successive upscaled generations of prototype IC wafers/chips See P. Neudeck Presentation For Latest Results

"IC Gen. 10" (2017)

(16-bit RAM, 195 SiC JFETs)
2 prototype 75 mm diameter SiC epi-wafers
6 µm gate length, 6 µm resistor width
3 mm x 3 mm, 32 I/O Bond Pads

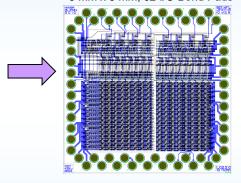


Key IC Version 10 Accomplishments*

- 400+ days stable 500 °C electrical operation
- 60 days stable Venus surface environment electrical operation
- 961 °C electrical operation (short-term)
- -190 °C cryogenic electrical operation
- Radiation immunity through 7 Mrad(Si) ionizing dose and 86 MeV-cm²/mg heavy ions (25 °C)

"IC Gen. 11" (2018)

(120-bit RAM, ~ 1000 SiC JFETs)
4 prototype 75 mm diameter SiC epi-wafers
6 µm gate length, 3 µm resistor width
4.65 mm x 4.65 mm, 32 I/O Bond Pads



Key IC Version 11 Accomplishments

- 5-fold reduction in logic gate power
- First ICs designed for LLISSE
- 500 °C 8-bit Analog to Digital converter
- Few days 500 °C ~1 kbit ROM operation

"IC Gen. 12"

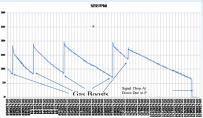
(248-bit RAM, ~ 2000 SiC JFETs)
6 prototype 100 mm diameter SiC epi-wafers
3 μm gate length, 2 μm resistor width
5 mm x 5 mm, 62 I/O Bond Pads

Wafer fabrication in progress

Example Sensors/Instruments

LLISSE Chemical Sensors Status Chemical Sensors Summary

Background: Sensor Array Developed Under Completed NASA Phase I and Phase II SBIR


- ➤ Demonstrated Measurement of Key Species Including SO₂, H₂O, OCS, CO, HCl, and HF Under Relevant Conditions
- > Sensors are selective to targeted species with minimal cross sensitivity to other species in Venus atmosphere

Current Status:

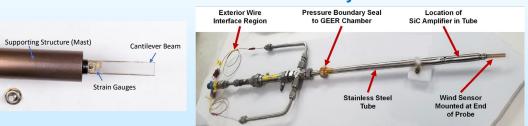
- Development of Chemical Sensors (including GRC sensors) Integrated with NASA GRC SiC Electronics On-Going in HOTTech project
 - ➤ Four Chemical Microsensors (SO₂, CO, OCS, HF) Tested for 60 days in Venus Simulated Conditions in GFFR
 - All 4 Sensors Operated Nominally During 60 Day Test
 - First Demonstration of In-Situ SO₂ Tracking in GEER for Extended Periods
 - ➤ HF Sensor Integrated With Signal Transduction/Amplification SiC Electronics Monitored HF Boosts in GEER 10 Day Test
- Permanent installation as a monitoring system in GEER planned
- Modules being developed for measurement of volcanic gas emissions (SOx, CO, OCS, H₂O, NO, HF) using high temperature gas sensors and GEN-12A chemical sensor ASIC (single chip with all functions) near fissure/vent.

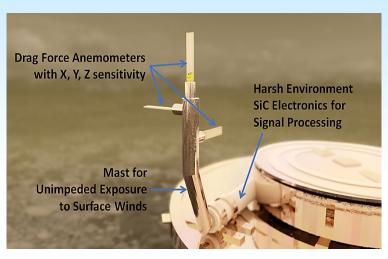
SO₂ Sensor Operation in GEER for 60 Days in Venus Simulated Conditions

SO₂ MicroSensor

Compact "Credit Card" Format Board Single Sided

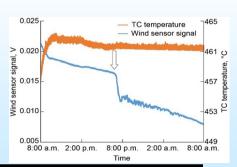
LLISSE Surface Wind Sensor

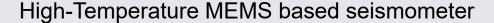

Background: Drag-force anemometer (cantilever) baseline approach with significant history of demonstrations in engine environments


- ➤ Full-bridge strain gage approach allows flow measurements with minimal power consumption
- ➤ Force of wind bends cantilever; deformation measured using thin film strain gages
- Wind speed/direction determined using up to 3 perpendicular cantilevers along each axis

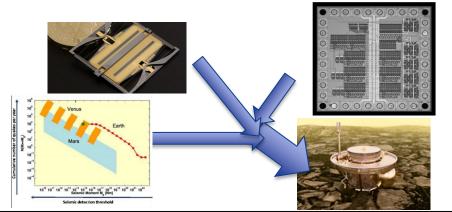
Current Status: Wind sensor tested in wind tunnel and multiple times in GEER environment showing viability of approach

- Core material compatibility demonstrated
- Wind sensor integrated with electronic amplification has shown ability to track gas flow in GEER-simulated Venus surface conditions


LLISSE Wind Sensor Assembly and Installation



LLISSE Wind Sensor Approach



HOTTech – High Operating Temperature Technology

Team Member(s)/Institution(s)

T. Kremic / PI NASA Glenn Research Center (GRC)

D. Spry / CO-I GRC M. Krasowski / CO-I GRC

R. Herrick /Science PI Univ. of Alaska/Fairbanks (UAF)

Michael West / CO-I UAF

T. Pike / Collaborator Imperial College of London

Technology Overview/Description Overall objective:

Leverage existing MEMS seismic sensor, recent developments in high-temperature electronics and sensors, terrestrial analogues and Venus seismicity studies, and an expert team to design and mature a MEMS based seismometer suitable for use on long-duration Venus landers, like SAEVe.

Accomplishing this involves:

- Assessing / modifying existing MEMS seismic sensors that may be suitable for Venus applications
- Developing driving/interfacing electronics to support required operations and interfaces of a notional lander
- Design and fabricate a 1-axis instrument (but readily scalable to 3 axis) and verify performance via tests and analysis. Iterate.
- -Mature instrument and demonstrate performance of breadboard system in Venus surface conditions against model-based predictions and reach a TRL of 4 or greater

Technology Goals

- Develop science-based requirements for a Venus seismometer that consider the Venus unique operations circumstances
- Assess MEMS seismic sensors, modify as required, and fabricate and test under Venus conditions
- Analysis and the sensor / electronics system and design, fabricate and test a 1 axis system that meets requirements and is consistent with expected Venus mission applications
- Demonstrate operations of breadboard 1 axis instrument in Venus conditions

Starting TRL: 2 Ending TRL: 4

Venus In Situ Surface Imager (VISSI)

PI: Jeffrey Balcerski, Ohio Aerospace Institute

<u>Target Application:</u> Venus surface – long duration

Science:

- Obtain high resolution digital images of the surface of Venus at multiple scales
- Resolve geologic features near landing site at a resolution of 1 mm/px at 1 m
- Observe transient phenomena (i.e. active sediment transport) over the period of days to weeks
- · Resolve basic rock and mineral types via optical filters

Objectives:

- Develop imaging array of high-temperature photodiodes sensitive to visible spectrum
- Develop high-temperature electronics to produce transmit-ready digital image data
- Identify and integrate appropriate optical lenses and filters
- Test and demonstrate the operation of all components at Venus surface conditions for extended time (days to weeks)

Cols: Gary Hunter, Geoffrey Landis, Phillip Abel – NASA Glenn Research Center; Martha Gilmore – Wesleyan University

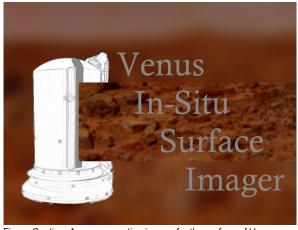


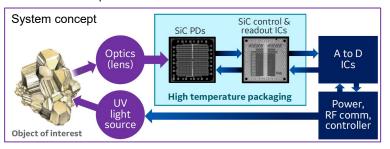
Figure Caption: A new generation imager for the surface of Venus.

Planned Key Milestones

- Performance requirements for VISSI
- Demonstrate Photodiode and Amplification at 500°C
- Demonstrate Photodiode for 60 days at 500°C
- First generation VISSI electronics evaluated at 500°C
- Integrated photodiode array and electronics providing image at 500°C
- Image produced at 500°C
- VISSI proof-of-concept demonstration in Venus simulated conditions

TRL 3 to 4

High Temperature UV near field Imager



HOTTech - High Operating Temperature Technology

Team Member(s)/Institution(s)

- NASA Glenn Research Center
- General Electric Research Center
- Ohio Aerospace Institute

Technology Overview/Description

The project team will develop a silicon carbide (SiC) ultraviolet (UV) near-field camera that will operate continuously in high-temperature environments, thereby enabling missions to the surface of Venus. GE Research's SiC optical sensing device combined with NASA Glenn's SiC integrated circuits with proven durability in simulated Venus conditions, guided by OAI's expertise in planetary science, provides an innovative solution to enable capturing close-up images of geological samples in environments up to 500°C.

Technology Goals

- Provide near field (<1 meter away) imaging capability to future Venus surface lander mission surviving 500°C for 60 days
- Circuit board co-packaging of multiple SiC chips: SiC photodiode array chip(s) + amplifier readout chip(s)
- Test and demonstrate subsystem in simulated Venus surface environment (Glenn Extreme Environment Rig)

Starting TRL: 2 Ending TRL: 5

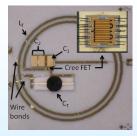
Communications

LLISSE Communications Summary

History of Cutting Edge Development in High Temperature Wireless Communications

- Wireless Signal Spectra For High Temperature Seismometer Sensor Displacements Demonstrated (2012)
- Demonstrated Wireless Pressure Sensor At 475°C Including Pressure Sensor, SiC Circuitry, and Wireless Circuit (2013)

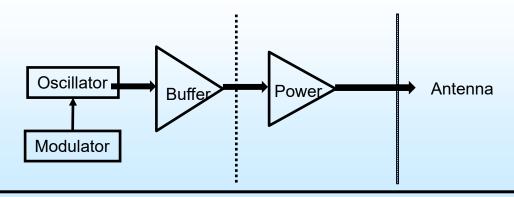
Development Approach


- Activities Include Venus Relevant Development Of Antennas, Transmitters, and Other Components
- Increasing Capabilities and Complexity of High Temperature Electronics Circuits Increases Communication System Capabilities
- Targeted Operation of Communication System from 100 to 150 MHz.

Status

- Development of Circuit Hardware Architecture for Higher Frequency Communications Systems On-going
- Baseline LLISSE Antenna Materials and Design Approach Identified And Initial Material Testing In Venus Simulated Conditions Begun
- Proof-of-concept Demonstration of Ability to Determine Orientation of the Lander from the Communication System Achieved
- Propagation studies conducted in GEER at higher frequencies; transmission with limited losses observed.

Wireless seismometer and circuit in an oven at 500°C


Wireless Pressure Sensing Circuit

LLISSE Communications Status

Baseline Communications Approach

- Communications System Includes: Active Circuits, Passives, Antenna
- Targeted 100 MHz Frequency Range; Relevant for Venus Surface Operations
- Communication System Dependent on SiC Circuit Advancements
 - ➤ First SiC-based Communication Circuit Designed To Operate On A Long-lived Venus Lander Based on SiC JFET technology Demonstrated
- Final Communications System at 100 MHz Will Be Based on BJT (Not JFET)
 Transistors
- Antenna Materials Must Be Both Resilient to Venus Surface Conditions and Have High Permittivity

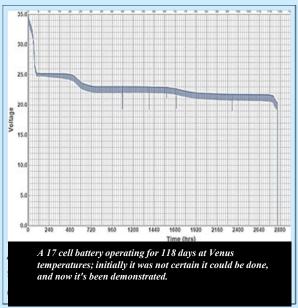
Power

LLISSE Power

Performance Summary

Voltage (max./min.): +25 V/ 0.0/-25

Current: 0.2 with pulses up to 12A

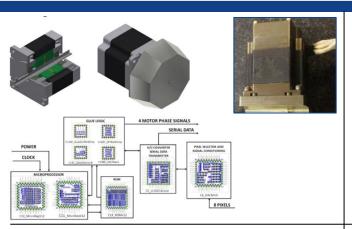

Life: 60 Earth days

Temperature: + 465°C

Environment: Venus Surface @ 90 Bar

Current Status

- Battery chemistry demonstrated for 118 days at Venus temperatures
- Currently performing sensitivity experiments to optimize battery packaging and mass for a flight-like 60-day battery.
- Trading packing options to maximize robustness to off-nominal impacts, orientation, and operations.
- Developing detailed mission driven scenarios to completed testing and verification plans for TRL-6.


Actuation

A Venus Durable Actuator and Electronics System

Drive Electronics I Actuator

Team Member(s)/Institution(s)

Principal Investigator: Erik Mumm, Honeybee Robotics

Co-Investigators:

Srihari Rajgopal, NASA Glenn Research Center Norman Prokop, NASA Glenn Research Center Jeffrey Balcerski, Ohio Aerospace Institute

Technology Overview/Description

We will demonstrate a TRL-6 Venus Durable Actuator and Electronics System designed for a lander and payload currently in development for long duration Venus exploration. The elements of the pointing system, namely actuator and drive electronics, can be applied to other applications requiring actuation. TRL6 demonstration includes operation in Venus surface conditions for extended duration up to 60 days in year 3 of the effort.

Technology Goals

- 1. Demonstrate a Long-Lived Actuator and Electronics system capable of operating for 60 days on Venus
- Develop actuator technology capable of long duration operation in Venus atmosphere which can be applied to various payload pointing and manipulation applications
- Develop motor drive electronics technology capable of operating for long durations in Venus conditions which can be applied to numerous motor/actuator applications
- Demonstrate performance of the system toward the Venus In-Situ Surface Imager (VISSI) application

Starting TRL: 4 Ending TRL: 6

SUMMARY AND FUTURE PROPECTS

- Venus Exploration Has Returned With Missions Planned In The Next Decade; Surface Exploration Not Presently Addressed
- Venus Surface Exploration Has Unique Technical Challenges Due To The Extreme Environment
- Venus Technology Plan: More complex missions are envisioned as a range of technologies mature
- The Combination of Smarts, Mobility, and Extended Life is Enabling for Surface Lander Platforms Impacting Both Science and Capabilities
- A Range Of Harsh Environment Technologies Are In Development To Enable Long Life Surface Missions in e.g., LLISSE and HOTTech
 - > Electronics
 - > Sensors/Instruments
 - > Communications
 - > Power
 - > Actuation
- Recent Advances Have Been Significant And The Prospect Of Long-lived Missions On The Venus Surface Is Becoming Increasingly Viable

Backup

Venus Technolgy Plan Team Members

Gary Hunter, NASA Glenn (Chair)

Jeffery Balcerski, Ohio Aerospace Institute/NASA Glenn

Samuel Clegg, Los Alamos National Laboratory

James Cutts, NASA JPL

Candace Gray, New Mexico State University

Noam Izenberg, Applied Physics Lab

Natasha Johnson, NASA Goddard

Tibor Kremic, NASA Glenn

Larry Matthies, NASA JPL

Joseph O'Rourke, Arizona State University

Ethiraj Venkatapathy, NASA Ames

Technology Framework

	Technology Area	Time Frame	Assessment
	Aerobraking	N, M	Aerobraking is a mature technology and autonomous aerobraking can reduce the cost and risk while improve the time to achieve the desired orbit.
	Aerocapture	N, M	A large gap in aerocapture has been met with a nearly mature HEEET technology. ADEPT with a sounding rocket sub-orbital flight test requires minimal additional development for enabling small and cube-sat missions to Venus.
	Entry (Upper Atmosphere)	N,M	ADEPT with a sounding rocket sub-orbital flight test requires minimal additional development for enabling small and cube-sat missions to Venus.
	Descent and Deployment	M,F	Control descent of probes, drop-sondes, and aerial platforms in development for future use in atmospheric profiling. Incorporating guidance, with improved navigation, could enable more accurate targeting for these systems.
	Entry, Descent, and Landing (EDL) Modeling & Simulation	N,M, F	Updates are needed for multiple modeling systems, including modeling for descent GNC pin-point landing and hazard avoidance.
	Aerial Platforms	N,M, F	Technology for near-term missions is mature. Technology investments are needed including new science instrumentation and modeling tools to characterize the behavior of vehicles in the Venus environment. However, there are no technological show stoppers to impede the development of these capabilities.
System Technologies	Landed Platforms	N,M,F	Three classes of landed platform will be needed of increasing technical challenge: short duration containing analytical instruments (near term, current technology), long duration with sensors (mid term) and long durations with a complex instrument suite (far term). Significant advances have been made to enable longer term surface platforms.
	Mobile Platforms	F	Mobile systems would require a range of subsystems technology to allow, e.g., motion, power, cooling, and actuation, for extended periods. These are major challenges for mobile systems on the surface, but achieving these objectives with floating platforms may be more viable but also challenging.
	Ascent Vehicles	F	Ascent vehicles are only needed for Venus sample return. This is a very immature technology and much more demanding than for Mars surface sample return. Some concepts for Venus Surface sample return require the Venus Ascent Vehicle to descend to the surface. Atmospheric return missions are more feasible but significant challenges remain.
	Small Platfroms	N, M, F	SmallSat, CubeSat and other small platform technology can make important contributions to Venus exploration. The development of small platform concepts as an addition to larger missions, as well as a new mission type or mission augmentation, is an integral part of a complete multistage Venus exploration program.
	Automation and Autonomy	M, F	Increasing capabilities for automation and autonomous decision-making combined with increasing computing power can change the way missions are conducted. Efforts to transition automation and autonomous technologies to Venus specific applications would enhance science delivered and mission success.

VEXAG Technology Plan 2019 Mid-Term 2023 to 2032: From This Baseline, New Missions and Science in Next Decadal Period

Mid-Term Missions

Mission Mode		MIG-Term Missions							
		Advanced Orbiters	Subsatellite/ Small Sat Platforms	Multiple Deep Probes and Sondes	Increased Duration Large Lander	Small Platform Lander- Long	Aerial Platforms Altitude. Control Upper and Mid Cloud		
w	Aerocapture								
Technologies	Entry •								
<u>00</u>	Descent and Deployment								
2	Landing								
당	Flight								
	Landers 1								
System	Mobility								
ste	Ascent Vehicle								
ŝ	Small Platforms								
	Automation and Autonomy								
	Energy Storage- Batteries								
vo	Energy Generation- Solar								
je.	Energy Generation - Radioisotope								
<u>8</u>	Power								
Technologies	Energy Generation-Alternative Sources								
Te	Thermal Control - Passive								
Ē	Thermal Control - Active								
ste	High temperature mechanisms 🌲								
Subsysystem	Moderate temperature								
g	electronics								
Ing	riigii teliiperature electronics								
	Communications								
	Guidance, Navigation, and Control								
	Remote Sensing - Active								
=	Remote Sensing - Passive								
Instrument	In-Situ Aerial Platform and Probe								
5_	In Situ Surface - High Temperature								
str	Sensors								
=_	In Situ Surface - Long Duration Mobile								
=	In Situ Surface - Long Duration Mobile Lab								