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Introduction 

1.1 Scope 
The scope of the book is to introduce basic Physics of Failure (PoF) concepts and give example 
case studies of their application to all systems and materials at NASA. It presents the foundations 
of PoF approaches to reliability applications at NASA. This book is intended to be a living 
document, with updates as time progresses. 

1.2 Background 

Since an item’s reliability or longevity is dependent not only on its design but also on how it is 
used, manufactured, and tested, and the stresses it has or will experience, all these factors must 
be considered in failure likelihood assessments. While an item’s design will introduce 
susceptibilities (e.g., radiation tolerance, stress) to internal or external failure mechanisms, how 
well it is made (its inherent or assured/screened quality or compliance with accepted standards) 
and age will also affect its reliability. A high-quality part may have fewer inherent 
susceptibilities to use or stresses (e.g., thermal, voltage, current, age exposure, mechanical, 
environmental), but manufacturing or installation issues may increase susceptibility or 
exacerbate existing weaknesses. Therefore, in reliability analysis, it is essential to consider all 
contributions to failure, and their underlying physics, to accurately formulate failure rates and 
assess probabilities.  
Reliability assessments based on the underlying physics are more effective at contributing to the 
following than reference failure rates/probabilities, and may be applied across the life cycle of a 
NASA project, as shown in Figure 1 [Diventi, 2020]: 

• Defining the environmental conditions or controls that components or assemblies will
experience or need to function, by simulating the actual hardware operation in its
assumed and refined stress states. For example, if the proposed thermal or radiation
stress an item will experience is applied to it in a model/digital twin PoF analysis (or in
test) and it induces failure, then the final design or operations concept, or Fault-
Detection- Isolation-and-Recovery (FDIR), can be adjusted to prevent or mitigate the
potential for that failure mechanism.

• Optimizing environmental/qualification or stress tests to excite susceptibilities or
verify susceptibilities are mitigated. For example, if a model/digital twin and
analytical physics methods are used to identify an item’s susceptibilities to certain
stresses, these can be the focus of testing.

• Enabling better design tradeoffs via enhanced sensitivity studies, where design parameters
such as materials, geometries, configurations, and stresses may be easily manipulated in
computational models and optimized prior to fabrication and use. For example, if the
analysis shows that there will be a thermal distortion leading to a connection loss then the
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material or item planned can be revised before acquired or fabricated. 
• Improving hardware life and reliability estimations with failure mechanism or

mode likelihood accuracy by applying simulated stress conditions to physics-
based failure models. For example, the reliability of an item may decrease if the
stresses proposed show any of its failure mechanism or mode’s likelihood
increasing with in situ conditions and planned exposures.

• Prompting the definition of operational monitoring and diagnostics, operational and
contingency procedures, and FDIR designs to mitigate effects of failure
potentials/likelihoods.

• Informing production acceptance and operations decision-making by providing failure
risk/likelihood updates based on modelled/simulated nonconformance or failure
conditions. For example, if a product is found to be noncompliant with defined
optimal manufacturing standards, its reliability should be reassessed using this new in
situ knowledge. The PoF risk/likelihood results in this case would then be able to be
factored into use-as-is or replacement decisions and to target updates to operational
and contingency procedures.
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Figure 1. PoF Application Across the NASA Life Cycle 
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1.3 Physics of Failure Foundations 

Applying physics to failure likelihood assessment is called Physics of Failure (PoF). PoF is a 
reliability technique that leverages the knowledge of an in-situ design or condition of an item 
with an understanding of the stresses, processes and mechanisms that induce its failure to predict 
its reliability. Those predictions can be given as a point estimate or as a number within statistical 
confidence bounds. However, it cannot be assumed that any single PoF model will represent an 
item’s full likelihood of failure. Therefore, it is essential that all failure mechanisms or modes 
that are possible be characterized through the application of experimental or theoretical physics 
principles to develop a full understanding of the reliability or life of any item or system. 

Characterization of failure rates using experimental physics is an empirical approach to PoF. 
Empirical PoF (Chapter 3) uses an item’s/system’s degradation and failure data from 
experiencing physics, during field studies, operations, and lab tests, and statistical methods to 
predict the reliability. These statistics use mathematical models to describe (or approximately 
match) the observed physical behavior to develop a probability density function that can be used 
to extrapolate further performance or like-system performance. Not all systems have this type of 
data, therefore PoF also includes characterization of failure probabilities with theoretical physics 
or a deterministic approach to PoF (Chapter 4). Deterministic PoF uses modeling to analyze the 
dominant failure mechanisms due to accumulated damage from stress, erosion, diffusion, and 
corrosion leading to sudden or eventual failure. To develop a valid forecast of an item or 
system’s reliability or performance risks, the reliability analyst must select the best PoF method 
or methods for deriving or updating failure rates.  

This may mean that a single method or multiple methods would be utilized or should be used 
concurrently with, or in lieu of, reference rates (e.g., handbook data) to capture a complete 
reliability forecast. When multiple likelihoods are derived or available for an item or system 
with, or in lieu of, reference rates, it will be necessary to combine those findings. Considering 
this, it is important for the analyst to evaluate the magnitude, independence, and dependence of 
each likelihood result on a case-by-case basis so that an aggregated or all-inclusive failure 
likelihood can be attained. Independence or dependence can be assessed using the cause-and-
effect relationship established in a Failure Mode Effects and Criticality Analysis (FMECA), 
Fault Trees, or similar method [Fischer, 2016]; (Chapter 5).  

Page 10 of 94 
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2. Handbook Application Guide

This handbook can be used to inform reliability analysts on PoF methods, determine data needs 
for deriving failure rates using physics, guide analyses, and to further the PoF methods. It 
explains PoF methods, with supporting case study references, across three sections: Empirical 
(based on historical data or experimental physics), Deterministic (based on theoretical physics or 
physical modeling of failure mechanisms), and Aggregation (deterministic and empirical 
estimation combination methods). This means that users can concentrate on any of the 
experimental or theoretical physics application methods for reliability individually, research data 
needs to define tests or experiments that support PoF-based failure rate development, or review 
sections and select the best PoF method or methods for deriving or updating failure rates based 
on system physics and data available.  

Readers can concentrate on any of the many experimental or theoretical physics application 
methods for reliability individually since each method is explained in an independent section and 
supported with case study references. In the Empirical section, the reader will be able to discover 
the data needs and usefulness of statistical models (Exponential, Weibull, Normal, Lognormal, 
and Binomial) and parametric modeling approaches (Bayesian Inference) to convert the physics 
experienced (test or operational physical phenomena/experiences) by a system into a forecast of 
reliability. In the Deterministic Methods section, the reader will see how predicted stresses and 
theoretical physics relationships can be used to forecast reliability or system-usage risks (or 
usage changes). 

Analysts and data creators can research or define tests/experiments to acquire the data needed to 
develop PoF-based likelihoods of failure by referring to the Empirical and Deterministic sections 
of this handbook. For example, use/failure data will be needed for Bayesian Inference; material 
fatigue properties will be needed for fatigue/structural analysis; and Total Ionizing Dose and 
Radiation Susceptibility will be needed for radiation-induced failure probabilities. 

PoF analysts can use this handbook to review and select the best PoF method or methods for 
deriving or updating failure rates based on the data available, until all failure mechanisms or 
modes that are possible for the scenario of interest are characterized through physics (see figure 
2). This will mean the analyst will need to fully define the analysis goal and data available first, 
then test or use differing methods with that data and system/stress modelling to develop 
likelihood estimates. These results will then need to be validated as plausible and that they fully 
capture the scenario of interest and aggregated (Chapter 5) as warranted. 

While the physics underpinning of the PoF practices are well defined, the methodologies and 
supporting infrastructures to determine the likelihood of failure are continually being refined and 
advanced (Chapter 6). Therefore, readers are encouraged to provide the team with updates, 
modifications, and case studies that may extend or enhance the concepts discussed in this 
handbook and advance the community of practice. 

Page 11 of 92 
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Figure 2. PoF Handbook Analysis Guide Use Cases 
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3. Empirical Methods

3.1 Empirical Reliability Approach 

Failure rate empirical estimation methods used in science and engineering are often based on 
past data. Using component failure data from field studies, warranty claims, and lab tests, 
reliability engineers have developed techniques to predict the reliability of systems. Statistical 
modeling (empirical methods) has at its foundation experimental physics processes and are 
discussed in these sections. 

For additional insights and guidance, see case studies digitally linked here. 

3.2 Statistical Modeling Analysis (Exponential, Weibull, Lognormal, Normal, 
Binomial, Bayesian) 

Statistical modeling analysis is the discipline of using statistical models to describe the physical 
behavior of components and systems. These items range from piece parts (e.g., Electrical, 
Electronic and Electromechanical Parts), components (e.g., reaction wheels), subsystems (e.g., 
spacecraft avionics systems), or systems (e.g., spacecraft and instruments). Statistical analysis is 
particularly useful when deterministic models (e.g., Force = Mass x Acceleration), further 
described in chapter 4, that can adequately describe the relationship between variables or inputs 
and corresponding outputs of the items under evaluation do not exist.  

This chapter addresses five fundamental statistical models (Exponential, Weibull, Normal, 
Lognormal, and Binomial) and one more-advanced parametric modeling approach (Bayesian 
Inference), which enables physical data to be combined with engineering knowledge about the 
item of interest. Each of these primary statistical modeling and analysis techniques is described 
below: 

Table 1. Statistical Modeling Methods 

Section Title and Description Application Examples 
3.2.1 Exponential Describing end-item characteristics such as 

reliability or lifetime estimates associated 
with constant failure rates 

3.2.2 Weibull Describing end-item characteristics such as 
reliability or lifetime estimates associated 
with increasing, constant, or decreasing 
failure rates 

3.2.3 Normal Characterizing the capability or quality of 
manufacturing processes in meeting 
defined upper and lower end item 
specification limits 
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Section Title and Description Application Examples 
3.2.4 Lognormal Characterizing knowledge or epistemic 

uncertainty associated with likelihood 
estimates 
Describing the likelihood of extreme or 
rare event occurrences 

3.2.5 Binomial Describing end-item characteristics such as 
reliability or lifetime estimates associated 
with only two end states (success/failure). 

3.2.6 Bayesian Inference Describing end-item characteristics such as 
reliability or likelihood estimates when the 
availability of corresponding physical 
system data is extremely limited at the 
onset of analysis activities 

For additional insights and guidance, see case studies digitally linked here. 

 

The exponential distribution is often used in reliability analysis to model both the failure rates of 
individual components and of complete systems. The exponential distribution is a special case of 
the gamma distribution. It is also related to the Poisson distribution (a property which is useful in 
queuing theory) since the occurrence of failures in the exponential distribution is a Poisson 
process. The exponential distribution has a constant failure rate over time; as time increases, the 
probability of failure during a given time interval increases. 

While theoretical discussions of the statistical characteristics of the exponential distribution and 
the theoretical basis for how it is used to model the reliability of systems involve complex 
mathematical derivations, in reliability practice use of the exponential distribution is simple. 
Given a component with a constant failure rate (under given conditions) of λ failures per unit of 
time, the probability of successful operation for a given time t is: 

p(success) = e-λt. 

For a simple reliability model of a series of components, any one of which if failed would result 
in system failure, an exponential model can be used (even when some of the individual 
components have failure rates determined by other distributions). In this case, the equation for n 
components is: 

where λi is the failure rate of the ith component. 

3.2.1 Exponential 
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For individual components, use of the exponential distribution is justified when infant failures 
have been eliminated and the wear-out phase of time is not expected to be encountered during 
the usage lifetime of the item. For components that degrade over the usage time, the Weibull (or 
another) distribution is more appropriate. 

For additional insights and guidance, see case studies digitally linked here. 

3.2.2 Weibull  

NASA uses Weibull analysis to estimate reliability when there is sufficient relevant failure data 
available for an item that might not have a constant failure rate, i.e., an item that might have an 
increasing failure rate (wear out) or a decreasing failure rate (infant mortality). Analysis is 
performed in two steps; estimation of Weibull parameters based on failure (and success) data and 
probability calculation based on those parameters.  

Developing a Weibull-based model to replace handbook data can have multiple benefits. Weibull 
can specifically model different stages of the hardware life (i.e., infant mortality, constant failure 
rate, and wear out). And if the reliability data used is specific to (or just more similar to) the 
hardware and/or environment being analyzed than handbook/manufacturer data, then a more 
accurate calculation can be achieved. However, misapplication of Weibull analysis can result in 
misleading estimations. Reliability data that includes insufficient data (particularly very few 
failures) is difficult to accurately analyze with Weibull, leading to very little confidence in the 
calculations. Similarly, mixing reliability data from across multiple hardware life stages can 
affect calculation accuracy and confidence. 

The Probability Density Function (PDF) for a two-parameter Weibull distribution is 

f(t) = θβtβ−1e−θtβ 

where t > 0, θ > 0, β > 0. Below is a graph of the probability density as a function of time, t, for 
different values of β and θ. β is the shape parameter. In reliability analysis, θ is the characteristic 
life, the time when 0.632 of items in a lot will have failed. When β = 1, the Weibull distribution 
reduces to the exponential distribution.  

Page 15 of 92 
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Figure 3. Weibull Distribution Probability Density

Weibull PDF characteristics are summarized in this table (adapted from table 4.2, Tobias & 
Trindade, 1995, p. 87). 

Table 2. Weibull Probability Density Function Characteristics 

Shape, β pdf characteristic Failure rate 
0 < β < 1 exponentially decreasing from 

infinity 
decreasing 

β = 1 exponential distribution constant 
β > 1 rises to peak then decreases increasing 
β =2 Rayleigh distribution linearly increasing 
3 ≤ β ≤ 4 has normal (Gaussian) 

distribution shape 
rapidly increasing 

β > 10 similar to Type I extreme value 
distribution 

very rapidly increasing 

For individual components, the Weibull is best used when empirical data appear to indicate 
variability in failure rates over the usage lifetime of the item. In support of NASA missions, this 
method normally focuses on wear out or increasing failure rates since preoperational component 
testing and part screening tend to mitigate instances of infant mortality or improving failure 
rates. 

For additional insights and guidance, see case studies digitally linked here. 
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f(x) =  
1

σ√2π
e−

(x− μ)2
2σ2

 Below is a graph of the normal PDF for various values of µ and σ. 

Figure 4. Normal Distribution Probability Density 

For additional insights and guidance, see case studies digitally linked here. 
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3.2.3 Normal 

The normal (Gaussian) distribution is used in statistical quality control and in analyzing 
measurement and statistical modeling errors. The measurements of outputs of random industrial 
processes often follow a normal distribution. For example, the fill levels in bottles of liquids for 
sale follow a normal distribution, reflecting random variations in the filling process. Standard 
plus or minus three-sigma quality control limits, used to assess process stability, are based on the 
normal distribution. In addition, the normal distribution has numerous properties that make it 
useful in statistical analysis. It is not generally used for the modeling of failure times in 
reliability. However, as noted in the next section, it is used to calculate lognormal distribution 
probability values. The normal distribution is symmetrical and characterized by is mean, µ, and 
standard deviation, σ. 

The equation for the normal distribution is 
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f(t) =  
1

σt√2π
e�− 12�

ln t−μ 
σ ��

2

with µ ≥ 0, σ > 0. σ is the standard deviation and shape parameter. µ is the location parameter. 
The lognormal cumulative density function (CDF) can be written in terms of the normal 
distribution CDF, so that normal CDF tables can be used in computations. Below is a graph of 
the lognormal PDF for various σ values when µ = 0. Increasing µ shifts the PDF to the right 
along the t axis.  

Figure 5. Lognormal Distribution Probability Density 

Choosing between the Weibull and lognormal distributions to model failures due to stresses 
(such as mechanical fatigue or electromigration in electronics) can be based on experimental or 
field data. Tobias and Trindade summarize an approach for choosing: 

One trick that occasionally helps choose whether a lognormal or Weibull will work better 
for a given set of data is to look at a histogram of the logarithm of the data. If this is 
symmetrical and bell-shaped, the lognormal will fit the original data well. If, on the other 
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 3.2.4 Lognormal 

The lognormal distribution is often used in reliability to model components whose failure is due 
to stresses over time. The PDF for the lognormal distribution is 
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hand, the histogram now has a left skewed appearance, a Weibull fit to the original data 
might work better [Tobias and Trindade, 1995]. 

In support of NASA missions, this method normally applies to items that are showing symptoms 
of stress or stresses that are higher than forecast. 

For additional insights and guidance, see case studies digitally linked here. 

 

The Binomial distribution is used to formulate a probability for failures in a set of components 
that have only two outcomes (success/failure or defect), and empirical data shows failure/defect 
events over time/demands. For this situation, the probability that x failures or less will occur in a 
random sample of n items is given by: 

where 

Figure 6. Binomial Probability 
[Reliability Analytics Corporation, 2010-2023] 

F(r) is the probability of obtaining not more than r failures in a sample of n items 
where p is the probability of failure/defect and q (or 1 – p) is the probability of 
obtaining success or an unflawed item. 

In support of NASA missions, this method is best applied to manufacturing lots or 
redundant item architectures or testing to assess the probability of a specific 
outcome (e.g., all redundant components fail, component selected is flawed). 

For example, if manufacturing process creates defects at a rate 
of 2.5% (p=0.025) then sample of 20 would have: 

The probability of finding exactly 1 defect in 20 samples is 0.3091. 
The probability of finding 1 or fewer defects in 20 samples is 0.9118. 
The probability of finding 2 or more defects in 20 samples is 0.0882. 

3.2.5 Binomial 

http://reliabilityanalytics.com/blog/wp-content/uploads/2011/08/binomial_f_of_x.png
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For Example, if a system has 4 identical items/units the risk 
of having a common failure or unacceptable quantity of 
failures (2 or more out of 4) given a failure rate of 2.5% 
(p=0.025) would be: 

The probability of having exactly 1 failure in 4 units is 0.0927 (or a 
success potential of 0.9073). 
The probability of having 1 or fewer failures in 4 units is 0.9964. 
The probability of having 2 or more failures in 4 units or system 
failure is 0.0036 (or 0.9964 probability of success). 

For additional insights and guidance, see case studies digitally linked here. 

Bayesian inference is a method of continual statistical inference in which Bayes' Theorem is 
used to update the probability of a hypothesis or failure rate estimate, as more evidence or 
information about the system’s responses to operational physical stresses become available. This 
process can be considered an applied physics method that takes a prior distribution and evidence 
to statistically infer a new probability distribution, known as the posterior distribution. In terms 
of reliability this method uses all of the (currently available) information or the effects of physics 
on a system and leads to superior parameter or failure rate estimates. 

Figure 7. Bayes’ Theorem [Dezfuli, 2009] 

Since this method is dependent on both the evidence and the prior, it is important to scrutinize 
and be discriminatory in the data being applied and to validate that the prior distribution is 
consistent with what is known about the system. It is best used when there are components for 
which an accepted failure rate point estimate, or an established or previously derived/posterior 
failure distribution (informative prior) is known, and there is enough success and failure data to 
inform a new hypothesis, but not enough data to derive a new and statistically credible failure 
rate or distribution. All data applied should be weighted and validated in applicability to the 
system in question. This may mean certain data is not applied or is weighted differently than 
other data. Whereas the prior and its homogenous or nonhomogeneous distribution type (e.g., 
binomial for failures in n demands, Poisson for events in time, or gamma for n failures in time) 
should be selected and defined as accurately as possible to efficiently reach convergence (the 

3.2.6 Bayesian Statistical Inference for Updating Failure Rates 
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point where additional data will not significantly change the posterior). Any prior will reach 
convergence if enough data is applied [Clyde, 2021]. 

In support of NASA missions, this method can be continually used from design through in situ 
operations since Bayesian inference learns from data incrementally. Each update will better 
inform analyses and risk decisions and bring the new failure rate estimate closer to convergence. 
For example: If a Bayesian inference is begun with a prior failure rate from a handbook, it will 
be a constant value of n failures in time prior that may be conservative, but it will not be an 
elicited value or a complete prior distribution. Therefore, a gamma prior distribution should be 
developed with an elicited guess, agreed upon assumed standard deviation or coefficient of 
variation CoV(λ), such as 0.5, thereby making a subjective prior distribution (or an 
uninformative or weak prior [Zhu, 2004], or Jeffrey’s prior [Glen, 2021] as considered by some) 
that can be used to generate a gamma posterior (new failure distribution), but will not overly bias 
results. To generate the posterior distribution, the prior should be combined with experience data 
(failures (r) and time (T), or Poisson data) or a point estimate at the assumed CoV: 

λBayesian =  
δ′

ρ′
=
δ + r
ρ + T

given  ρ =  δ
E(λ)

  and   δ =  1
[CoV(λ)]

The results of this method are a posterior distribution or a point estimate, as noted above. The 
posterior distribution is best used for further system assessment since it is more precise over time 
than a selected point estimate. However, if the use of a distribution is not possible in a system 
assessment, a point estimate (i.e., mean) from that distribution can also be used with appropriate 
caveating or assumptions noted.   

Note: Once a posterior is obtained using Bayesian inference, it should be updated when 
significant experience/failure data is available. This is done by using the generated posterior as 
the new prior and applying this additional data, so its failure rate distribution becomes more 
indicative of performance. 

For additional insights and guidance, see case studies digitally linked here. 

3.3 Peck’s Temperature-Humidity Relationship Prediction 

Empirical models used in reliability are not limited to those based on past field failure data. 
Peck’s temperature-humidity model, based on test data, can be used to predict electronic 
semiconductor life. 

As industries and products become much more sophisticated in terms of both design and 
materials selection, empirically based models that can provide a reasonable degree of coverage 
for a specific technology still enjoy significant use and support. One such model is the Peck 
model for degradation due to humidity [Peck, 1986]. The specific technology area of interest 
here was plastic packaged semiconductors. Initial integrated circuits were mostly sold in 
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hermetically sealed ceramic packages. The packages were quite heavy and expensive to make. 
Epoxy-based encapsulants were an important innovation in the late 1970s and early 1980s. 
Metallurgies of this era mostly involved aluminum interconnects that were quite sensitive to 
moisture. Peck provided a model relating life of semiconductor electronic components to 
humidity and temperature. 

tf = A(RH)−ne
Ea
kT

Here RH = relative humidity. 

The Peck formula can be put into the Eyring form using the inverse power law for humidity and 
the Arrhenius equation for the temperature. The Eyring model is discussed in section 3.4.6.  

For additional insights and guidance, see case studies digitally linked here. 

3.4 Accelerated Performance Analysis 

The foundational concept of acceleration is based on the Arrhenius relationship, which is 
described in some detail. Then, a variety of practical accelerated relationships that are based on 
the Arrhenius expression are discussed. These include Inverse Power, Coffin-Manson, Zhurkov, 
and Palmgren. All these relationships have failure time expressed in an exponential relationship 
with one or more real world stressors on the system such as temperature or voltage. These 
relationships form the “physics” in the Physics of Failure expression. 

For additional insights and guidance, see case studies digitally linked here. 

 

The fundamental principle of all modern PoF acceleration is the Arrhenius relationship. The 
Arrhenius relationship takes the following mathematical form: 

tf = Ae
−Ea
kT

Here, tf is a time to fail, A is scaling constant, Ea = activation energy, k = Boltzmann’s constant, 
and T is temperature. In the most practical and frequent applications, the Arrhenius equation is 
used to define acceleration factors (AF) between a lab or test temperature and the final use 
temperature of the device. This temperature acceleration factor (AF) is defined by 

AF = exp [
Ea
k
�

1
Tuse

−  
1

Ttest
�] 

The effect of the exponential nature of this relationship can be seen in the graph below. Here, 
acceleration factors for a variety of use temperatures are calculated for two different test 
temperatures, for a particular activation energy. Over a typical range of possible use 
temperatures, the acceleration factor changes by two orders of magnitude. This exponential 

3.4.1 Arrhenius 
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acceleration feature enables practical laboratory test times (hours to a few weeks) to be relatable 
to long term product use conditions (months and years). 

Figure 8. Arrhenius Acceleration Factors 

A typical example of this is the 1,000 hr life test requirement of all modern semiconductor 
devices. Here a sample of usually 77 parts is stressed at high temperature, usually 125C to 150C. 
With an activation energy of 0.7 eV (as used in the above graph), one hour of stressing at 125C 
has an acceleration factor of (or is equivalent to) 77.8 hours of use at 55C. Hence 1,000 hours at 
125C is equivalent to 77,800 hours at 55C or about 8.8 years.  

The mathematics of the Arrhenius relationship are both very simple and very compelling. Proper 
use of the Arrhenius relationship however depends on understanding the underlying physics that 
the equation represents. Two key concepts are highlighted by the constants used in the Arrhenius 
acceleration expression: 

• Activation energy
• Boltzmann’s constant

Both constants open up the discussion of how materials change over time and the basics of 
thermodynamics that govern these processes.  

Maxwell-Boltzmann statistics are used as the foundation of the kinetic theory of gases. This 
theory describes the interaction of particles in an idealized gas encompassed inside a given 
container. The particles move freely inside the container until they collide with each other. These 
collisions are described by the momentum and energy of the particles and the exchange of these 
quantities between particles and the existing thermal environment inside the container. The 
resulting Maxwell-Boltzmann statistics provide an expression for distribution of speeds of the 
particles. 
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dN
N

= (
m

2πkbT
)
1
2e

−mν2
2kbT dv 

dN/N is the fraction of molecules moving at velocity v to v + dv. 

The exponential nature of the Arrhenius relationship can now be seen to have a formal 
thermodynamic basis. It can be seen that this exponential term can be interpreted as containing 
the kinetic energy of the particles. This allows for the beginning of formulating the activation 
energy as being a description of the detailed state of matter. This expression can be used to 
define the concept that the heat contained in a gas is a measure of the movement of the individual 
particles [Feynman, 1963]. Arrhenius’ key contribution was to recognize that this expression not 
only describes the temperature dependence of physical processes but could be applied to 
chemical reactions as well [Arrhenius, 1903]. 

Arrhenius was addressing the problem of electrolytic dissociation of various inorganic salts and 
sulfates (MgSO4, BaCl2, etc.). Arrhenius described that a minimum amount of energy is needed 
for these various dissociative reactions to occur. This minimum amount of energy required for a 
chemical reaction and/or physical process to take place can now be seen to be the activation 
energy. Arrhenius also used the Boltzmann distribution to describe the kinetic energy of these 
molecules.  

NASA Electronic Parts Assurance Group (NEPAG) Amendment to the Arrhenius model 

The Arrhenius equation is widely followed for the burn-in and life test of semiconductor 
devices.1 However, it gives no guidance on limitations for setting the test (stress) temperature. 
NEPAG would like to introduce the following amendment to the Arrhenius model: The stress 
temperature used should be the safe operating temperature; one that would not damage the 
device under test. It is recommended that the parts are characterized at the stress temperatures for 
DC, AC and functional operations to ensure there are no anomalies in the data (look for signs of 
damage to the device). The NASA and other users should exercise extreme caution in picking the 
stress temperature; one cannot just select a test temperature to shorten the test time/meet 
schedule constraints. 

For additional insights and guidance, see case studies digitally linked here. 

 

The Arrhenius discussion now provides the bedrock for modern physics of failure topics and 
discussion. First up is the general concept of Inverse Power. The inverse nature of the 
relationship is evident from the Arrhenius expression where the logarithm of time is inversely 
proportional to temperature as shown below:   

1 Arrhenius modeling covers the whole spectrum of devices from discretes to monolithic/hybrid/2.5D and 
3D microcircuits, and others. The up-screening of commercial-grade devices requires special attention. 

3.4.2 Inverse Power 
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ln (tf)  ∝  
1

kT

This simple relationship implies that higher temperatures produce smaller lifetimes. It is important 
to recognize that the inverse relationship is between time and energy as kT has units of joules 
(energy). This is a much more profound result. Namely that lifetime is inversely related to the 
amount of energy “applied” to a system. Energy applied to a system can take on many practical 
engineering forms like temperature, voltage, etc. From a reliability physics of failure point of view, 
this energy can be considered as a “stress” upon the system.  

Operational stresses on devices/boards are much less stressful than accelerated test conditions 
that can be applied in the laboratory. This embodies the inverse relationship of stress vs time. 
This is graphically shown in figure below: 

Figure 9. Operational Life Versus Stress 

The graph highlights the basic inverse concept that significant stress has a corresponding 
significant reduction in operational life. The converse holds as well for very limited stress 
prolongs operational life. This relationship between stress and life is practically a very non-linear 
relationship as highlighted by the Arrhenius equation and its exponential relationship. The terms 
“stress’ and ‘Operational Life’ have significant depth to each of them that need to be explored 
and discussed. 

Stress can mean temperature, voltage, mechanical strain, vibration, corrosion, excess humidity, 
etc. And often these stressors occur in combinations, not just individually. So being able to 
precisely articulate the physical interactions with stressors is often one of the most important 
aspects of physics of failure work. 

Operational time means time to when the devices stopped meeting requirements. A device can 
fail to meet requirements when it fails to function and can no longer be made to function, fails to 
function but can be repaired or restarted, or when the device’s performance degrades past a level 
of acceptable performance or capability, but the device still functions.  

Each of these definitions of life is acceptable, but each also needs to be formally tied to stress 
conditions to provide a meaningful expression of inverse relationship between stress and time. 
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An example would be where a transistor’s subthreshold leakage current degrades enough due to 
buildup of oxide traps over time to make the transistor too leaky (pass too much current) for a 
memory cell to function. The transistor however still operates in terms of being able to turn off 
and on a conducting channel between a source and drain. Once the oxide traps build up, and 
there is a dielectric breakdown and the gate oxide is compromised, then at that point in time the 
transistor has ceased to function and can no longer be made to work.  

At a more basic level the discussion of time being inversely related to stress (energy) provides an 
opportunity to define reliability in true thermodynamic terms. In their key 1996 paper, 
"Connecting Parametric Aging to Catastrophic Failure Through Thermodynamics. "Feinberg and 
Windom, the authors start with the same Maxwell-Boltzmann statistics mentioned above and 
define ageing as a fractional rate of change parameter: 

Damage =  
∑Wactual(t)

Wactual−failure

The inverse power relationship discussion also assumes a mathematical and hence physical 
continuity in stressors [Feinberg and Windom, 1996]. This must be carefully understood in real 
life as too much stress may change the failure mechanism of the device and result in an 
inaccurate prediction of life. This is where statistical life testing needs to be undertaken to ensure 
that there is indeed a predictable and justifiable continuity. A graphical example of a statistical 
life test is shown below: 

Figure 10. Stress Versus Lifetime 

For additional insights and guidance, see case studies digitally linked here. 

 

Another method for accelerating life is temperature cycling a component or system to induce 
thermal fatigue. However, when choosing the test conditions, it is important that the upper and 
lower temperatures selected do not exceed the item’s temperature limits or erroneous failures 
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could be observed. It is also important not to remain at the dwell temperatures for too long since 
this can also induce erroneous results from failure induced by non-operational mechanisms (e.g., 
melting solder, crossing the glass transition temperature of a polymer, etc.).  

The amount of acceleration induced by thermal cycling is defined by the Coffin-Manson 
equation, which describes the relationship between temperate range and thermal cycles as shown 
below: 

where the 𝜀𝜀 and c are material-specific fatigue coefficients that are determined experimentally, N 
is the fatigue life of the material, E is the Young’s modulus, and was the result of Coffin and 
Manson, materials research scientists, in the 1950’s [Coffin, 1954]. Simplified this equation 
becomes: 

AF = (ΔTtest / ΔTuse) m 

where AF is the acceleration factor, ΔT is temperature difference (°C), and m is the Coffin-
Manson exponent [Delsero Engineering Solutions, 2015]. Where m is typically found to lie in 
one of three relatively narrow ranges: m for ductile metal fatigue is 1-3, m for commonly used 
integrated circuit metal alloys and intermetallics is 3-5, while m for brittle fracture (e.g., 
ceramics) is 6-8.  Knowing the acceleration factor of a test or exposure allows use-case life 
expectancy to be estimated (Life-exp = AF*Exposure-cycles/Use-case cycles per time unit). This 
relationship can also be used to estimate unexpected life usage from anomalous thermal use 
conditions that can be used to estimate remaining life by subtracting the anomalous exposure life 
estimate from the baseline life expectancy estimate. Further, any life expectancy, with 
appropriate statistical analysis, can also translated to a MTTF or failure distribution for reliability 
use. 

However, if temperature cycling profile parameters (e.g., dwell, time, dwell temperature, ramp 
rates/frequency, cycle length) are known, then the Coffin-Manson equation evolution of Norris 
and Landzberg (1969) shown below, can be used to resolve the limitations of the simplified 
Coffin-Manson equation only taking into account the physical effects of temperature changes: 

Acceleration Factor (AF) = (∆TA
∆TB

)α (fB
fA

)β exp (Ea
k

[ 1
TB
−  1

TA
]) 

where N is fatigue life, ΔT is the temperature range, f is frequency, T is temperature, Ea is the 
activation energy, K is the Boltzmann constant, and α and β are experimentally defined 
parameters (e.g., with β =0.33, α =1.9, and Ea/k=1414 for lead free solder [Vasudevan and Fan, 
2008]. The inclusion of frequency of cycling gives the Norris-Landzberg expression very 
practical and relatable means to accelerate life between applications and laboratory settings, that 
Reliability can use to derive a MTTF or failure distribution from life expectancies results and 
appropriate statistical analysis like with Coffin-Mason shown above. Also, the JEDEC has 
adopted the above expression in both the JESD47I, Stress-Test-Driven Qualification of 
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Integrated Circuits and JESD94A, Application Specific Qualification Using Knowledge Based 
Test Methodology over Engelmaier and Darveaux expressions that are less accurate. Whereas 
tools like Sherlock Automated Design Analysis and CALCE use the Blattau stress/strain 
expression.  

For additional insights and guidance, see case studies digitally linked here. 

Following directly from the Coffin-Manson discussion of materials, specific failure mechanisms 
is another materials-focused relationship, the Zhurkov equation. The Zhurkov equation is used to 
predict the durability of polymers and general large macromolecules based on replicated 
substructures. In its most general form, the Zhurkov equation is 

τ = τoexp {
U − νσ

kBT
} 

Where τ is the lifetime of a specimen under tensile load σ at temperature T, kB is Boltzmann’s 
constant, U, τ0 and ν constants. Zhurkov originally proposed this model in 1965 [Zhurkov, 
1965]. The core concept of the theory is thermofluctuation of fracture. The fracture process of a 
given solid is determined by mechanical stress and temperature. Uniaxial tensile stress on a wide 
range of material was used as the experimental basis for the equation. The physical details of the 
constants listed in the equation above can be defined as τ0 = the natural oscillation frequency of 
the atoms in the sold, U = the binding energy, and ν as the proportionality constant related to 
molecular disorientation. The importance of the Zhurkov approach is that it defines the kinetic 
concept of the fracture process proceeding in three separate stages: 

1. Excitation of the bonds broken as a result of tension-related stresses
2. Breakage of the above excited bonds due to thermal fluctuations
3. Continual accumulation of broken and ruptured bonds that finally precipitate loss of

material stability resulting final breakdown

These three processes define the concept of thermofluctuation of fracture. While focused on the 
details of the solid materials studied, the Zhurkov expression continues to reenforce the validity 
of the fundamental Arrhenius expression and its thermodynamic foundation, namely that the 
inverse exponential relationship of lifetime as a function of stress condition continues to hold 
true.  

For additional insights and guidance, see case studies digitally linked here. 

 

The Palmgren equation for lifetime is sometimes called the Palmgren-Miner equation [Palmgren, 
1924; Miner, 1945]. This is another equation that expresses the lifetime of solid material based 
on its materials properties. The Palmgren-Miner equation provide a linear damage accumulation 
approach where failure (or end of life) is usually defined as the appearance of a crack in the 
material. The accumulation approach allows for a variety of stresses to occur and then be 

3.4.4 Zhurkov Equation 

3.4.5 Palmgren 
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compared, each individually, to an existing stress life (SN) curve. Such a life-stress life curve is 
empirically derived and conceptually looks like the following: 

Figure 11. Stress Versus Number of Cycles 

The decreasing stress as a function of life cycles can be either a linear-linear or linear-log 
relationship. The flat (zero-slope) portion of the curve defines a condition of “infinite life.” This 
means at stress levels at or below this level, the lifetime of the material no longer degrades. The 
Palmgren-Miner equation is: 

�
ni
Ni

k

i=1
= C 

Where ni = number of cycles accumulated at stress Si and Ni = average number of cycles to 
failure at that stress, Si. C is a constant and usually assumed to be 1. The linear summation 
approach enables superposition of different numbers of stress cycles to accumulate over time 
until the end of lifetime is calculated at C = 1. The Palmgren-Miner expression is simple to 
comprehend and introduces a key concept. It does not correctly account for sequencing effects 
where different combinations of stress levels are assumed to be independent when in fact they 
are not. High/low versus low/high stressing has been shown to have different results. 

For additional insights and guidance, see case studies digitally linked here. 

 

The Eyring model [Eyring, 1935] is a very powerful tool that is important both empirically as 
well as from a theoretical first principals’ point of view. At first the Eyring model resembles a 
seemingly straightforward generalization of the Arrhenius expression, i.e.  

tf = ATα �
∆H
kT

+ �B +
C
T
� ∗ f(V, T, … )� 

For example, with B = 0 and C = 1, the Eyring expression becomes a special form of the 
exponential life stress model with a typical term for an inverse temperature behavior. However, 
the Eyring model can be derived directly from transition state theory. This is different from the 
Arrhenius model, which started out as a heuristic explanation of empirical results. Because the 
Eyring model has a formal mathematical basis, it has extensibility across broad areas of 
chemistry and physics. The Eyring model can rightly be considered as the penultimate theoretical 

3.4.6 Eyring Modeling 



NASA/SP-20230004376 

Page 30 of 92 

justification of the work initially pioneered by Arrhenius. Transition state theory (TST) was 
needed to formally describe the activation energy and pre-exponential factors of the Arrhenius 
expression. Because of this TST is widely used to determine the rate coefficients of chemical 
reactions. TST is rigorously based on the assumption that transition state is a hypersurface in 
phase space that divides reactants and products. This allows for both a classical as well as a 
quantum approach to TST. 

From a practical point of view the flexibility and power of the Eyring model is often quoted in 
semiconductor literature to express acceleration factors with variety of environmental stresses 
besides temperature.  

K = a
kT
h

e
−Ea
kT Sα

Here S can represent voltage, humidity or mechanical stress. The Eyring model features 
prominently in JEDEC JEP122F (2010), which discusses hot carrier injection for NMOS 
devices, time to failure modes for surface inversion, and a back end of line (BEOL) mechanical 
time to failure model. JEP122F actually provides a general table of failure mechanisms and 
model parameters with the statement that “All models are inherently Eyring; so take product of 
Arrhenius and other functions.” This is an indication of how important and all-encompassing the 
Eyring model truly is. 

For additional insights and guidance, see case studies digitally linked here. 

4. Deterministic Methods

4.1 What are Deterministic Methods? 

Deterministic models analyze the dominate failure mechanisms behind a failure and how they 
limit the functional capability of the component [Varde, 2001]. Failure mechanisms described by 
deterministic models include degradation (due to accumulated damage from stress), erosion, 
diffusion, and corrosion phenomenon leading to sudden or eventual failure [Schenkelberg, 2020]. 
The model incorporates the component load profiles, material specifications, and environmental 
stresses to recreate the life conditions a component or system experiences as a means to predict 
the reliability. Often this approach is based on the utilization of software applications which has 
advantages such a predefined or tailorable load profile and the ability to define geometric and 
electrical properties of the component under analysis. Over the years modeling precision and 
accuracy have increased, which has led to a deeper understanding of failure mechanisms and 
more realistic predictions [Matic and Sruk, 2008].  

For additional insights and guidance, see case studies digitally linked here. 
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• Point defects:

– Vacancy: missing ion at a certain crystal lattice position
– Interstitial impurity ion: extra impurity ion in an interstitial position
– Self-interstitial ion: extra ion in an interstitial position
– Substitution impurity ion: impurity ion, substituting an ion in crystal lattice
– Frenkel defect: extra self-interstitial ion, responsible for the vacancy nearby

• Line defects:

– An edge dislocation is an extra half plane of ions inserted into the crystal lattice.
Due to edge dislocations and their mobility, metals possess a characteristic high

NASA/SP-20230004376

4.2 Electromigration in Electrical and Electronic Components 

Electromigration is the process in which metal ions move under the influence of an 
electrical field E, which is the gradient of the electrical potential V: E = −∇V; this has 
caused the failure of many components. Migration can also be induced by gradients of 
concentration (diffusion), gradients of temperature (Soret effect), and gradients of 
mechanical stress; these processes have also caused failures. 

4.2.1 Metals 

Metals are the chemical elements in the periodic table that form a metallic bond with other 
metal atoms when in a condensed aggregate (phase); a metallic bond forms when the outer- 
most electrons of the atoms detach from the atoms, which then become ions; these detached 
electrons move throughout the entire condensed phase, becoming a “sea” of conduction 
electrons. The metallic bond is strong and directionless, pulling the ions in the condensed 
phase into a close-packed crystal, such that each atom usually has 12 touching neighbors; 
this results in a (usually) high melting point and a high boiling point. Metallic bonds cause 
many of the traits of metals, such as strength, malleability, ductility, luster, and a facile 
conduction of both heat and electricity. An alloy is a solution of metals. 

As typically formed, the crystal structure of a metal is not perfect over greatly extended 
distances; rather, a typical metal is made of many “crystal grains,” which are regions of 
crystalline regularity. These grains are joined at grain boundaries where there are 
misalignments across the joining region. Grain size is typically log-normally distributed, 
with a median grain size ranging from fractions of a micrometer to several micrometers for 
the metals typically used in components. 

There are a variety of imperfections within, and between, grains. Since the mechanisms of ion 
migration, and of metal deformation, are controlled by these crystal imperfections, these play an 
essential role in these processes. 

There are three conventional types of crystal imperfections: point defects, line defects, and 
planar defects: 
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plasticity, including ductility and malleability. 
– A screw dislocation is formed when one part of a crystal lattice is shifted

(through shear) relative to the other crystal part. It is called a ‘screw’ since
atomic planes form a spiral surface around the dislocation line.

• Planar defects – an imperfection in form of a plane between uniform parts of the
material. The most important planar defect is a grain boundary. Formation of a
boundary between two grains may be imagined as a result of rotation of the crystal
lattice of one of them about a specific axis. Depending on the rotation axis direction,
two ideal types of a grain boundary are possible:

– Tilt boundary: rotation axis is parallel to the boundary plane
– Twist boundary: rotation axis is perpendicular to the boundary plane: An actual

boundary is a mixture of these two ideal types.

The density of point defects of a crystal in equilibrium at an absolute temperature T is their 
number per volume, and this cannot be zero, no matter how carefully the condensate is 
formed. As Yakov (or Jacov) Frenkel noted in his Kinetic Theory of Liquids [Frenkel, 1946], 
written in WWII, a crystal in equilibrium will have a number of vacancies (missing ions) 
determined by the Boltzmann factor exp [−EI/kBT ], where EI is the binding energy of the 
ion in the lattice, and kB is Boltzmann’s constant. In practice, the actual number of 
vacancies can be substantially higher. Vacancy density is critical for migration processes: ions 
can only migrate thru crystal imperfections. 

The density of edge dislocations is the total length of edge dislocations in a unit crystal 
volume. The edge dislocation density of annealed metals is about 1010/m2 to 1012/m2. After 
work hardening, the dislocation density increases up to 1015/m2 to 1016/m2. Further increases 
of edge dislocation density causes cracking, and then fracture. 

Grain boundaries accumulate crystal lattice defects (vacancies, dislocations) and other im- 
perfections, therefore they effect metallurgical processes. Diffusion along grain boundaries 
is much faster than throughout the grains. 

Segregation of impurities in form of precipitating phases in the boundary regions causes a 
form of corrosion, associated with chemical attack of grain boundaries. This corrosion is 
called Inter-Granular corrosion. 

For additional insights and guidance, see case studies digitally linked here. 

 

Migration is movement from one place to another. The ions within a metal at a temperature 
T are in perpetual motion. In the absence of any biasing forces, this motion is random: an ion 
will vibrate around its average lattice position with a range of frequencies up to about 1012 
Hz, and very occasionally jump to a neighboring vacancy, if one is available. So, a steady, 

4.2.2 Migration 
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nondirected migration happens and ions slowly move at random throughout the condensed 
phase. 

Various situations can install a biasing force and impose an average direction to the 
migration. These include: 

• An electrical field E = −∇V, where V is the electrical potential. In a metal with an
electrical conductivity σ, an electrical field induces an electrical current density J =
σE. (This is Ohm’s law, expressed using the fields J and E.) The conduction of the
current by the mobile electrons involves these electrons losing momentum p to the
ions – this is related to σ – and conservation of momentum implies that there is a
steady force applied to these ions: Fwind = dp/dt; this is usually called the force of the
“electron wind.”

There is a second effect: the ions are electrically charged, and so the electrical field
acts directly on the ions; however, the conduction electrons distribute themselves
around each ion to partially shield it, so it is the force on the shielded ion, with
effective charge Qshield, that matters: Fion = QshieldE. Usually, this is a substantially
smaller effect than the “wind.” This biases the ion’s jumps to be in the direction of
the net force: F = Fwind +QshieldE.

• A concentration gradient of ions. This introduces a ion-flux J = −D∇c where c is the
concentration of the ions, and D is the diffusion parameter (also called the
diffusivity): this is ‘Fick’s First Law.’

For additional insights and guidance, see case studies digitally linked here. 

 

The Fluctuation-Dissipation Theorem says that when there is a force-driven process that 
dissipates energy, turning it into heat, there is a related process describing thermal 
fluctuations when the system is in thermal equilibrium. This is best understood by 
considering examples. 

For additional insights and guidance, see case studies digitally linked here. 

4.2.4 Viscous Drag and Brownian Motion 

An object experiences viscous drag when it is moved through a fluid, and this generates 
heat. A measure of this viscous drag is the mobility µ of the particle, which is the ratio of 
the particle’s terminal drift speed under the applied force. The corresponding fluctuation in 
thermal equilibrium is the Brownian Motion that the object exhibits in the fluid, while in 
thermal equilibrium. 

Albert Einstein developed a precise treatment of this in his doctoral dissertation (1905). He 
considered the sequence of displacements in successive time-intervals, each of duration τ , of 
a small particle,  ∆1(τ), ∆2(τ),…, in a fluid in equilibrium, and showed  that the mean of  the 

4.2.3 The Fluctuation-Dissipation Theorem 
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squared displacements in equilibrium �∆��(�τ��)�2� was related to the mobility µ of the particle, 
which is measured out of thermal equilibrium, when the particle is moving under an applied 
force:  

∆(τ)2��������

τ
=  2µkBT . 

Where kB is Boltzmann’s constant, and T is the absolute temperature. 

For additional insights and guidance, see case studies digitally linked here. 

4.2.4.1 Electrical Resistance and Johnson-Nyquist Noise 

The electrical current passing thru an electrical resistor experiences a drag that causes a drop 
in the electrical potential across the resistor and generates Joule heat. In equilibrium (i. e., 
when the average current passing thru the resistor and the average voltage across the resistor 
both vanish), the instantaneous current thru the resistor fluctuates in time: this is called the 
Johnson-Nyquist noise. 

This type of noise was discovered and first measured by John B. Johnson at Bell Labs in 
1926. He described his findings to Harry Nyquist, also at Bell Labs, who was able to explain 
the results, and derive the relation: 

V2����

∆ν
= 4RkBT 

where V2 is the mean of the squared voltages within the frequency bandwidth ∆ν (that is, the 
“noise”), R is the resistance, kB is Boltzmann’s constant, and T is the absolute temperature. 

For additional insights and guidance, see case studies digitally linked here. 

4.2.4.2 Generalization by Callen, Welton, and by Kubo 

The Fluctuation-Dissipation Theorem was proven by Herbert Callen and Theodore Welton in 
1951 and expanded by Ryogo Kubo in the mid-1960s. There are antecedents to the general 
theorem, including Einstein’s explanation of Brownian motion during his annus mirabilis 
and Harry Nyquist’s explanation in 1928 of Johnson noise in electrical resistors. 

One way to exhibit the Fluctuation-Dissipation Theorem is the following. Let X(t) be an 
observable quantity of a system that can be in thermal equilibrium, and therefore has thermal 
fluctuations around the mean value X0. The Fourier transform is X(ω) where ω = 2πf is 
the angular frequency and f is the conventional frequency. 

The power spectrum of these fluctuations is S(ω) = X(ω)*X(ω). 

Switch on a stimulus f (t). To first order, the response of the system is characterized by the 
(linear) susceptibility χ(t): 
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 X(t)����� = X�0 + � χ(t − t′)f(t′)
t

−∞
dt′. 

The Fluctuation-Dissipation Theorem states 

S(ω) =  �2kBT
ω
� ∙ I[χ(ω)] (4) 

Where I[∙] means the imaginary part, and χ(ω) is the Fourier transform of χ(t). The left-hand 
side measures fluctuations in X in equilibrium, while the right-hand side measures the 
(energy) dissipation generated in first order while driving the system out of equilibrium. 

For additional insights and guidance, see case studies digitally linked here. 

In one class of electromigration phenomena, an interconnecting trace or via in an integrated 
circuit deforms under the influence of electrical currents: one class of deformations induces 
voids, and these have caused an open circuit that has destroyed the proper functioning of the 
circuit; another class induces extrusions of metal, some of which have caused short circuits 
that have destroyed proper functioning. The median lifetime Lmed for both classes have been 
usefully described by Black’s Law

Lmed = �
A
Jn
� ∙ exp �−

E∗

kBT
�  , 

where J is the electrical current density flowing thru the interconnection, kB is Boltzmann’s 
constant, and T is the absolute temperature. The activation energy E* and the parameters A 
and n are empirically determined for the particular materials and geometry of the 
interconnection. 

At the time of first widespread introduction of integrated circuits in the early 1960s, 
electromigration-driven voiding of interconnects was a common failure mode. Most 
designers learned by the mid-1970s to choose sizes for interconnects to limit current 
densities thru them, to give a nominal decade of median lifetime at the design currents and 
temperatures. However, there has remained a drizzle of design mistakes and manufacturing 
blenders that has caused some electromigration-induced failures. The failure in 2008 of Side 
A of the Scientific Instrument Command & Data Handling (SI-C&DH) system in the 
Hubble Space Telescope was caused by electromigration of the power traces of a 
microcontroller integrated circuit, as was determined when the system was returned from 
orbit and studied in GSFC’s Parts Lab. 

Advances in the technology of integrated circuits, including the widespread movement from 
interconnecting traces made of aluminum to traces of copper, and the continuing shrinkage 

4.2.5 Electromigration in Interconnection Traces and Vias in Integrated Circuits 

(5) 
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of scale, indicate that the median lifetimes caused by electromigration will decrease to less 
than five years by the mid-2020s: this has ominous implications for spacecraft missions with 
planed durations of five years or longer. This is treated in detail in the book Fundamentals 
of Electromigration-Aware Integrated Circuit Design [Lienig and Thiele, 2018]. 

For additional insights and guidance, see case studies digitally linked  here. 

Examples of Electromigration 

• Electromigration in hot filaments, as are used (for example) in incandescent lamps,
electron sources, and the filaments of electrical fuses. This was the cause of
premature failures of incandescent lamps in the early Geostationary Operational
Environmental Satellite (GOES) series of weather satellites, resulting in several
congressional investigations. It has caused the premature failure of calibration lamps
in examples of the Moderate Resolution Imaging Spectroradiometer (MODIS)
instruments. And it was a life limiting mechanism for the early versions of the
electron sources in the Planetary Instrument for X-ray Lithochemistry (PIXL) for the
Perseverance Rover, until this mechanism was addressed.

• Electromigration along moist surfaces. This is a recurring mechanism for the failure
of electrical parts; for example, it was the cause of the failure of one of the six
Battery Charge/Discharge Units in International Space Station (ISS). (These are
essential for the operation of ISS.) It is also a common mechanism for the
development of electrical short circuits in Multi-Layer Ceramic Capacitors (MLCC)
that have one or more cracks between the capacitors outside at the eternal electrodes
of the capacitor.

• Electromigration over dry surfaces. This is a mechanism for the development of
electrical short circuits in Multi-Layer Ceramic Capacitors (MLCC) that have
internal cracks bridging between alternate electrodes.

• Electromigration thru the porous membrane separating the electrodes in an electro- 
chemical cell (e. g. a battery).

For additional insights and guidance, see case studies digitally linked here. 

4.3 Thermal Physics of Failure 

The “thermal mechanisms” that cause failure may be classified as absolute temperature effects, 
relative temperature (gradient) effects, or thermal cycling effects. In some cases, specific failure 
modes may result from both absolute and gradient temperature effects.  

Failure mechanisms may be generalized as falling within three categories that are all affected by 
temperature: 
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1. Structural effects resulting from physical forces generated by temperature-driven
deformations, including cyclical mechanical loading. As motion (towards the atomic
scale) is directly related to heat, there is a direct connection between most failure modes
and thermal conditions.

2. Chemical effects resulting from the reaction of materials with elements across interfaces
and/or decomposition of metastable material phases. The chemical reactions may be
exothermic (release heat) or endothermic (absorbing heat) related to the enthalpy and
entropy of starting materials and reaction end products.

3. Electrical/Optical stressors, including electrical fields (voltage) and power (current flow
or optical density absorbed). Heat plays a role where it changes the distribution of
electronic states of atoms in materials, carrier densities, and scattering physics affecting
absorption and emission characteristics.

Absolute temperature is especially important in thermal diffusion and chemical reaction-based 
failures, where temperatures can induce changes in local chemistry affecting material properties. 
Differences in coefficients of thermal expansion for dissimilar materials that are in contact is a 
particularly important factor in reliability. This is because differing expansion in adjacent 
materials creates stress, voiding, and cracking. 

For additional insights and guidance, see case studies digitally linked here. 

 

Temperature-related failure modes for most hardware found on NASA projects involve multi-
physics processes. Temperatures are traditionally assessed using single-physics thermal models 
that provide temperature information based on the physics of heat transfer only. The temperature 
information is then used in other types of analysis programs to assess failure modes via other 
physical processes, such as fatigue stress, distortion, etc. 

Thermal engineers deal with the “movement” of heat, or heat transfer, governed by the First Law 
of Thermodynamics (Conservation of Energy), via different heat transport mechanisms2: 

Conduction (Fourier): Convection (Newton’s Law of Radiation (Stefan-Boltzmann): 
Cooling): 

Thermal models are constructed from corresponding CAD models to simulate the conduction, 
radiation, and sometimes convective or evaporative heat transfer processes. Appropriate thermo-
physical and thermo-optical properties are added for materials and surfaces, as required, to 

2 All of the four classical heat transport mechanisms – conduction, convection, radiation, and evaporative cooling – 
may be represented in spacecraft thermal models, although conduction and radiation are the predominant modes of 
heat transport in most space applications. Convection heat transfer is usually of greater importance in ground-based 
systems, launch vehicles, or human spaceflight missions such as ISS. Fluid transport systems, such as those used in 
pumped cooling loops, also include convection heat transfer. Evaporative cooling is sometime encountered on 
human spaceflight systems where cooling is required for short time periods. 

4.3.1 Thermal Failure Mechanisms 
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generate a node and conductor network. Some software platforms combine heat transport and 
fluid transport within a single package.  

The purpose of thermal analysis is twofold—to provide sufficiently detailed temperature 
predictions to allow an assessment of the impact of the temperature on the many constituent parts 
and materials of the assembly being analyzed, and to determine any heater power needed to 
maintain minimum temperatures. The temperature predictions are compared to the various 
known material/part temperature limits and can also allow a mechanical assessment of the 
physical/mechanical stress and strain on the system caused by material expansion and 
contraction with temperature. This latter analysis requires a mapping of the temperature over a 
structural Finite Element model. 

Failures of electronic units are a major cause of mission degradation or failure. Electronics boxes 
consist of many piece-parts of different types, most of which are sensitive to thermal 
environmental conditions. Electronic units therefor receive considerable attention in reliability 
calculations and thermal testing. The thermal environment failure mechanisms for these different 
parts can vary and include hot and cold temperatures, temperature gradients, thermal shock, 
time-at-temperature, and thermal cycling. Table 3 provides common thermal failure mechanisms 
for different types of electronic box parts and the associated failures seen for these mechanisms. 

Table 3. Predominant Failures Seen in Electronic Box Parts for Different Thermal Test Failure 
Mechanisms 

Part Type Thermal Test Failure Mechanism Failure 
Semiconductor  
devices and integrated 
circuits 

Temperature cycling Cracking of die, delamination at chip-resin interface, Hillock formation 
Temperature cycling, thermal shock Die-bond defect, package-seal defect, CTE mismatch, substrate defect 
Thermal shock Cracking of resin 
High temperature, thermal shock Thermomigration/electromigration, Dielectric breakdown, Cracking of 

encapsulation 
High storage temperature Metallization defect, corrosion, bulk-silicon defects 
High temperature in accelerated test Electromigration 
Low temperature Increase in leakage current, hot-electron effects 

Printed wire boards High temperature, thermal shock Discoloration, cracking, warping, delamination, “measling” 
Conformal coatings High temperature, thermal shock Cracking of coating (lack of protection) 
Resistors Temperature cycling, thermal shock, high 

temperature 
Discoloration, charring, change in resistance, open circuits, melting 

Inductors / 
transformers 

Temperature cycling, thermal shock, high 
temperature 

Open circuit; short circuit between windings 

Capacitors Elevated temperature life test Changes in capacitance, dielectric strength, insulation resistance; 
surface cracking 

Electrolytic capacitors High temperature, thermal shock Damage to hermetic seal, drying or leakage of electrolyte 
Chip capacitors Temperature cycling, elevated temperature Cracks in body/attachment joints; oxygen vacancy migration 
Crystal oscillators Temperature change Drift in oscillation frequency 
All electronic parts  
(& cables/connectors) 

High temperature, thermal shock Damage to mechanical joints, loosening of terminations, softening of 
insulation, solder grain coarsening, opening of solder joints, change in 
electrical characteristics, cracking of part cases and wires 

Low temperature Cracking on bonds and wires, CTE mismatches, deformation and 
hardening of materials at glass transition temperatures 

Thermal gradient Creep-induced strain, creep-fatigue in solder joints, 
thermomigration/electromigration 

For additional insights and guidance, see case studies digitally linked here. 
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4.3.1.1 Absolute Temperature Effects 

Absolute temperature is responsible for changes in material characteristics including strength, 
ductility, and hardness, but also optical and electrical properties.  

In physical chemistry, the Arrhenius equation is a formula based on empirical assessments for 
the temperature dependence of reaction rates and has an important application in determining 
rate of chemical reactions and for calculation of energy of activation. It can be used to model the 
temperature variation of diffusion coefficients, population of crystal vacancies, creep rates, and 
many other thermally induced processes/reactions. Mostly a consideration in the realm of micro-
electronics, an Arrhenius model uses steady-state temperature to model the mean time-to-failure 
for each failure mechanism, as applicable [White, Bernstein, 2008]. (Refer to section 3.4.1 
Arrhenius equation usage.) 

For additional insights and guidance, see case studies digitally linked here. 

4.3.1.2 Relative Temperature Effects 

In addition to absolute temperature, stresses due to temperature changes, temperature rates of 
change, and spatial temperature gradients must be considered for hardware design, reliability 
predictions, and testing. The traditional thermal model will provide temperatures for the many 
parts of a component, assembly, or system by analyzing the sources of heat within a structure 
(which may be considered as static or changing in time) and by calculation of thermal diffusion 
rates to predict how heat will move through different materials and across interfaces. The relative 
temperature of parts can be used to determine physical distortions of the parts by “mapping” the 
temperatures over a corresponding structural model of the part being analyzed. Temperature 
gradients can significantly impact failure modes related to strain and diffusion along or across 
materials and interfaces. Further, the time scale of cyclical stresses, including heating and 
cooling, can impact failure modes.  

When a material is heated or cooled, it will expand or contract, respectively. If the material is 
physically unrestrained, the material can expand or contract freely without generating internal 
stresses. The change is physical dimensions can be computed using the material’s coefficient of 
thermal expansion, 

ΔL = Lα∆T 

where ΔL is the change in length, L is the original length, α is the thermal expansion coefficient, 
and ΔT is the temperature difference between the final and initial states. If the material is 
restrained, such as being attached to a rigid surface, it cannot expand or contract, and internal 
stresses develop within the material. Under such thermal gradients, the internal stress produced 
can be computed from 

σ = Eα∆T 

where σ is the thermal stress and E is Young’s modulus. The material’s stress-strain curve will 
indicate the yield and ultimate stress at which point the material begins to fail. Thermal gradient 
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equivalently a failure rate λ = 1
MTTF

, and the statistical model is the exponential distribution. This 
combined Arrhenius-exponential model can be found within MIL-HDBK-217F where the 
method of predicting failure rates is generally of the form 

λp = λbπT �πvarious 

where λb is the base failure rate for the component in question, and λp is the predicted failure 
rate, derived by the multiplication of λb by πT and various other π-factors describing the 
characteristics and operating conditions of the component [Defense, U. S. D. o., 1991]. πT is 
notable as it describes the impact of junction temperature, Tj, on the predicted failure rate. It can 
be seen from the equation specified to derive πT, 

πT = exp �−C�
1

Tj + 273−
1

298�� 

where C is a constant, that  πT is equivalent to 1
AF, where AF is the acceleration factor described 

in section 3.4.1, if C = Ea
k

,  Tj is the use temperature, and 25℃ is the test temperature used to 
establish λb. 

NASA/SP-20230004376 

stresses of concern in hardware design include those within solder joints, composite-material 
booms, and booms and struts at the interfaces of dissimilar materials. For rapid heating or 
cooling, the surface of the material responds to the changing environment quicker than internal 
locations. The extreme case of thermal expansion stresses is thermal shock, where the heating 
and cooling is very rapid. 

Temperature cycling induces stresses within an assembly. This occurs due to differences in the 
coefficient of thermal expansion of the various materials of which the hardware is constructed 
and the changing temperature gradients within the assembly being temperature cycled. 

Thermal analyses may be conducted to predict temperatures and temperature gradients within a 
part or assembly and those temperatures may be mapped onto a structural model to predict 
resultant deformations and stresses. By modelling both absolute and relative temperature effects, 
material properties such as strength, ductility, and hardness may thus be assessed with respect to 
physics of failure modes. In some cases, other physical properties affecting failure can be 
predicted. These may range from availability and behavior of charge carriers (electrical) to 
changes in optical absorption or emission.  

For additional insights and guidance, see case studies digitally linked here. 

4.3.2 Thermally Induced Failure Likelihood  

The probability of failure due to thermal effects (or other stressors) can be estimated by 
combining the Arrhenius (section 3.4.1) statistical mode with other relationships of relating 
stress to a life parameter relating operating time to probability of failure. 

In the simplest case, the life parameter of interest is the mean time-to-failure (MTTF), or 
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Once a temperature-dependent life parameter, e.g. λp, is computed, it is straightforward to 
estimate the probability of failure for a given operating time as follows: 

P(failure in time t) = 1 − e−λpt 

This approach can be generalized to any statistical model where one or more parameters are 
surmised to exhibit a temperature dependence. While the exponential-Arrhenius formulation is 
common due to its simplicity and indeed foundational to reliability models utilizing MIL-
HDBK-217F or similar frameworks, other statistical models, such as the Weibull or lognormal 
distributions are generally more appropriate when assessing temperature dependence on 
probability of failure [Defense, U. S. D. o., 1991]. For Weibull-distributed data, the scale 
parameter θ (also known as characteristic life) is dependent upon temperature according to an 
Arrhenius relationship, while the shape parameter β is generally considered independent of 
temperature.  

Substituting the Arrhenius relationship for θ in the Weibull cumulative distribution function 
results in: 

P(failure in time t, temperature T °K) = 1 − e
−� t

Ae−
Ea
kT
�

β

with k Boltzmann’s constant and each of parameters A, Ea, and β either assumed known or 
estimated from data (e.g., via maximum-likelihood estimation). 

A similar formulation can be used to adapt the lognormal or other location-scale family 
distribution to a temperature-dependent time-to-failure model. Where appropriate, other 
equations relating various stressors to life parameters can be combined with statistical models to 
estimate probability of failure in a similar fashion. 

While the Arrhenius relationship is widely used in many applications, it does not apply to all 
temperature-acceleration problems, notably thermal cycling and transients, where the activation 
energy can change with the cycle count and cyclic extremes. The Arrhenius relationship is only 
adequate over only a limited temperature range [Meeker, 1998]. Furthermore, when estimating 
parameters for statistical models to predict probability of failure as a function of time and 
temperature, care should be taken to account for estimation uncertainty, as such uncertainty can 
be magnified when extrapolating from test to use conditions. Additionally, the choice of 
statistical model and stress-life relationship should be rigorously evaluated against all available 
data. 

For additional insights and guidance, see case studies digitally linked here. 

 

Thermal margins must be applied to cover the uncertainties inherent in predicted temperatures 
and to ensure a design is not allowed to operate at a temperature that is too close to a failure 

4.3.3 Thermal Failure Uncertainties 
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threshold. These margins are part of the overall strategy for minimizing the probability of 
operational failures. To account for analysis and design uncertainties, temperature margin, or 
control authority margin on active thermal control systems like heaters or pumped cooling loops, 
must be maintained between temperatures predicted by a thermal model and the temperatures to 
which an operational unit is acceptance tested. To ensure design robustness, additional 
qualification margin is generally required and demonstrated by test. The quantitative values for 
these margins vary somewhat between various government and commercial organizations, but 
the concept of using margin as a failure mitigation strategy is common among them.  

For additional insights and guidance, see case studies digitally linked here. 

4.4 Fluid (Pipe Flow) 

Fluid flow failure-inducing mechanisms (vibration/turbulence, impact, erosion/corrosion, and 
viscosity changes) can impact NASA systems in a multi-physics manner. These mechanisms can 
be evaluated via these TBD PoF techniques. 

For additional insights and guidance, see case studies digitally linked here. 

4.5 Electromagnetics (Wave Optics, Ray Optics, AC/DC) 

Electromagnetic conditions internal and external to a space-system can cause failure in the form 
of interference, optical disruptions/aging, and short-circuits. These mechanisms can be evaluated 
via these TBD PoF techniques. 

For additional insights and guidance, see case studies digitally linked here. 

4.6 Structural Analysis Modeling 

The purpose of structural analysis is to assess the likelihood of failure due to the physical/ 
mechanical stress and strain on the system. In general, there are two classes for these types of 
analyses. They are the inherent/nominal tolerance of the design to planned loads, Fatigue 
Analysis, and the residual/resultant tolerance after impairment or including nonconformances, 
Fracture or Damage Tolerance Analysis. The methodology applied to each analysis class is 
similar but has distinct variations as described below. 

For additional insights and guidance, see case studies digitally linked here. 

4.6.1 Fatigue Analysis  

Fatigue or structural failure under cyclic loading analysis, in general, establishes the potential for 
fatigue or damage leading to failure under the loading conditions. Fatigue is the weakening of a 
material under periodic or cyclical mechanical loading events that result in failure or progressive 
structural damage, the formation of minute cracks, which can lead to eventual failure. Evaluation 
of fatigue involves determination of the mean (i.e., non-cyclic) and alternating (i.e., cyclic) stress 
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applied based on the geometry and loading, and the system’s susceptibility to that loading and 
results in a determination of the failure risk based on a cumulative damage assessment. Various 
methods can be employed to make these stress or load spectra determinations: 

a. Use of closed-form hand calculations when using simple geometry, such as those found
in Roark’s Formulas for Stress and Strain [Young and Budynus, 2002].

b. Measured test data from a component under appropriate loading (both cyclical and non-
cyclical). Examples of an approach for random vibration, sine vibration and acoustic
cyclic loading can be found in a legacy document prepared at NASA/GSFC: General
Fracture Control Plan for Payloads Using the STS [Cooper, 1988].

c. Finite Element Modeling or other validated mathematical analysis tools. Examples
include MSC and NX NASTRAN, Ansys, ABAQUS, and COMSOL.

When general stress results are obtained, they can be recalculated into the following forms for 
use in both Fatigue and Damage Tolerance analysis: 

σm = mean stress σa = alternating stress 
σmax = maximum stress = σm + σa σmin = minimum stress = σm - σa 

Material-based fatigue data, or the susceptibility of the material used, in the design to loading is 
determined by the S-N curve [Young and Budynus, 2002]. This is a plot of the magnitude of 
alternating stress versus the number of cycles to failure for a particular material. Typically, S-N 
curves for common materials are obtained through general literature searches. One common 
document used by NASA is Metallic Materials Properties Development and Standardization 
[Battelle Memorial Institute, 2020], where S-N curves are available for various metallic 
materials. Updated versions the document are produced yearly, the latest being MMPDS-15 
[Battelle Memorial Institute, 2020]. S-N curves can also be developed through specific fatigue 
testing, using various ASTM standards such as Standard Practice for Conducting Force 
Controlled Constant Amplitude Axial Fatigue Tests for Metallic Materials (ASTM-E466) and 
Standard Test Method for Strain-Controlled Fatigue Testing (ASTM-E606) [ASTM, 2015, 
ASTM, 2019]. 

Note: Before direct application of the alternating stress values to the S-N 
curve, one must also consider adjusting these values for the presence of the 
mean stress (i.e., the S-N curves are normally assessed assuming fully-
reversed or R = σmin/σmax = -1 data, which by definition means σm = 0). To do 
this, the modified Goodman approach can be used, viz., 

σa
σe

+
σm
σut

=
1

FS
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where FS is the applied factor of safety, and the other variables are as 
described above [Shigley and Mischke, 1989]. Solving this equation for σe 
and equating this value to an updated alternating stress (call it σe'), allows one 
to then use this directly for S-N application in determining a corresponding 
number of fatigue life cycles. 

Ultimately a cumulative damage assessment or the potential for failure determination is 
performed using the mean and alternating stress estimates (and associated number of cycles) and 
the correspondingly adjusted material S-N curve described above, using Miner's Rule [Shigley 
and Mischke, 1989]. In this method a total summation of these corresponding life cycles 
compared against the stress-inducing cycles determined allows one to perform a cumulative 
damage assessment for fatigue, 

�
ni
Ni

k

i=1
= C 

where ni = number of applied stress cycles at each stress level and Ni = allowable fatigue life at 
each corresponding stress level. The approach is then to compare the summation of these ratios 
to that of an experimentally determined failure factor, which is normally set to 1.0. If the 
summation is shown to be less than 1.0, additional fatigue life is present with the component 
under the mission loading, and it will withstand the life of the mission. If the summation is 
shown to be greater than or equal to 1.0, no additional fatigue life is present for the component, 
which will likely fail under cumulative mission loading. 

For additional insights and guidance, see case studies digitally linked here. 

 

A damage tolerance analysis involves many of the same evaluations of the mean (i.e., non-
cyclic) and alternating (i.e., cyclic) stresses applied based on the particular geometry and loading 
and the system’s susceptibility to that loading, as described above. This results in a determination 
of crack growth potential versus a cumulative damage assessment. 

In a damage tolerance assessment, material-based crack growth (or propagation) data is utilized 
versus S-N fatigue data to establish the system’s susceptibility with existing flaw size and critical 
crack size or geometric case to make its determination. For material-based crack growth (or 
propagation) data, specific testing is performed to measure the change in the characteristic length 
of a predetermined crack (“a”) versus the number of cycles under cyclic loading (at a particular 
R value). As part of this testing, a parameter called the stress intensity factor (K) is also 
calculated, which describes the stress state near the crack tip caused by the cyclic load. In 
general, this is written as 

K = σ √πa f(a/W), 

4.6.2 Damage Tolerance (Fracture) Analysis  
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where σ is the stress, and f (a/W) is a geometry-dependent function of the crack length, a, and the 
specimen width, W. With knowledge of the K-value at each cycle, a crack propagation curve can 
be developed for use in the damage tolerance assessment. This shows the relationship between 
the change in the crack size with number of cycles versus the change in the stress intensity factor 
K, or a da/dN versus ∆K relation. A general crack growth equation is then fit to this third-order 
polynomial function and used in the crack propagation prediction (see below). This takes the 
general form of the Paris’ Law, where C and m are fit parameters: 

da
dN

= C(∆K)m 

Further, from the available test data, the material-dependent property fracture toughness (Kc) is 
typically established to define the stress intensity factor above which unstable crack propagation 
occurs. Testing for this intrinsic property is also performed explicitly; see Standard Test Method 
for Measurement of Fracture Toughness and Standard Test Method for Measurement of 
Initiation Toughness on Surface Cracks Under Tension and Bending for examples [ASTM, 
2020]. 

Flaw size, a measurable crack size (ao), is established by using one of various nondestructive 
evaluation (NDE) techniques for each piece of assessed hardware. NASA-STD-5009, 
Nondestructive Evaluation Requirements for Fracture-Critical Metallic Components [NASA, 
2019], details the NDE methods such as magnetic resonance, ultrasonic, and dye-penetrant 
inspection. Due to the resolution of each method, minimum detectable crack (or flaw) sizes are 
established based on a 90/95 % probability of detection (90% probability of detection with 95% 
lower confidence bound). Depending on the NDE method and geometry type, these minimum 
sizes are then used as the initial crack size for the damage tolerance assessment. 

Critical crack size, ac  should be determined using the appropriate shape function assumption to 
determine when cracks will grow with added stress or spontaneously. For example, the Griffith’s 
crack growth equation can be used with the material’s fracture toughness, KIC, if a shape factor 
of 1 is appropriate:  

Note: If the size of the crack at any time, an, reaches ac, there will be spontaneous catastrophic 
crack growth through the material. 

Using the parameters above and the fatigue crack propagation law (below) the crack growth rate 
(da/dN) and fatigue life (Failure cycles, Nf) can be estimated: 
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Reactions) 

Chemicals inherent in designs can limit design life due to the nature of the chemical reaction 
being used (e.g., battery degradation), while the exposure to certain chemicals in the operational 
space environments can cause irreparable damage or degradation to optics, structures, and 
electronics. These mechanisms can be evaluated via these TBD PoF techniques. 

For additional insights and guidance, see case studies digitally linked here. 
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As with a fatigue assessment, the large uncertainty associated with the crack propagation data 
necessitates the use of a 4x multiplier on the loading spectra (i.e., mission life cycles). Results 
from the analysis indicate if the crack case geometry under the applied loading spectra shows an 
unstable crack growth from the initial flaw (a0 will exceed the critical crack size during the 
mission). If not, the part is deemed damage tolerant to the mission-specific cyclic loading (cycles 
to failure (Nf) < mission cycles). 

Typically, though, a crack growth prediction tool, like NASGRO®, is used for the assessment 
and enables (i) crack-case and initial flaw size, (ii) appropriate material data, (iii) loading 
spectra, (iv) analysis parameters, and (v) output data requests.  

For additional insights and guidance, see case studies digitally linked here 

4.6.3 Creep  

Creep (also referred to as cold flow) phenomenon of a solid material to dimensionally changing 
via slow deformations while subject to persistent stress which can lead to failure-inducing 
mechanisms (solder joint breakage, mechanical inference, fracture, diffusion) that can impact 
NASA systems in a multi-physics manner. These mechanisms can be evaluated via these TBD 
PoF techniques.  

For additional insights and guidance, see case studies digitally linked here. 

4.7 Acoustics 

Sound exposure from a system itself or its exposure from other sources can cause failure by such 
multiphysical processes as exciting harmonics, inducing structural damage, initiating vibration 
damage to hardware that can cause software faults, and more. These mechanisms can be 
evaluated via these TBD PoF techniques. 

For additional insights and guidance, see case studies digitally linked here. 

4.8 Chemical (Batteries and Fuel Cells, Electrodeposition, Chemical 
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4.9 Radiation Physics of Failure in Semiconductors 

Radiation effects on semiconductor devices and Integrated Circuits (ICs) generally fall into two 
types of physics of failure models – non-stochastic (wear-out events like parametric shifts) and 
stochastic (random events like bit flips). Total Ionizing Dose (TID) and Total Non-Ionizing Dose 
(TNID) are cumulative, which make them fundamentally different from the instantaneous Single 
Event Effects (SEE) caused by a single random particle strike. Radiation environment 
predictions and susceptibility analyses are empirically driven, and therefore call upon a number 
of methodologies to assess mission risks. The contents that follow provide an explanation of 
physical mechanisms that are the root cause of these different families of effects as they are 
understood in susceptible technologies. This section’s content and more are covered in Avionics 
Radiation Hardness Assurance (RHA) Guidelines [NASA, 2021]. In that document, further 
categorization of irreversible processes vs. reversible state changes are covered in detail, and 
guidance on how to carry these responses and failure modes into analysis of higher-level system 
failures is suggested. This document section seeks to define the types of failures and, when 
applicable, how deeper analysis using physics of failure can be done to understand system 
impacts. 

TID is the absorbed dose in a target material caused by energy deposition of ionizing radiation, 
i.e., charged particles in the natural space radiation environment. The absorbed energy results in
the creation of electron-hole pairs within the semiconductor and insulating materials (e.g.,
oxides). TID amounts are communicated by energy deposited per unit mass of medium, which
can be measured via the SI unit, Gray (1 Gy = 1 J/kg), or more commonly in the US radiation
community, as rad (1 rad = 100 erg/g). The absorbed dose depends not only on the incident
radiation but also on the absorbing material, so absorbed dose must be reported as a function of
target material (e.g., rad(SiO2) or Gy(Si)). Dependence on target material is one complicating
factor that can make TID more difficult to assess for an entire system. In the space environment,
TID usually results from exposure to protons, x-rays, and electrons over the entire mission
duration from both trapped radiation in planetary magnetic fields and Solar Particle Events
(SPEs). Bremsstrahlung (energetic photons), secondary radiation produced when primary
radiation is slowed or stopped, can dominate the TID exposure in heavily shielded
environments.

How TID Mechanisms Manifest 

An energetic particle incident on a material can ionize target atoms, producing electron-hole 
pairs within the semiconductor and insulating materials (e.g., oxides). Some of this charge is 
trapped in insulators or leads to the formation of interface traps at the semiconductor-insulator 
surface. TID mechanisms are an accumulation of many electron-hole pair creation and charge 
trapping which typically occur gradually over mission lifetime. TID exposure is always time-
dependant, and conditions at which devices start to behave anomalously may have an abrupt 
onset or appear gradually depending on the trapped charge locations and device functions. Figure 
10 shows how charge creation leads to charge migration and eventually permanent trapping in 
metal oxide semiconductor (MOS) structures.  

4.9.1 Total Ionizing Dose (TID) 

https://ntrs.nasa.gov/citations/20210018053
https://ntrs.nasa.gov/citations/20210018053
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    Figure 12. Process of TID damage occurring in MOS structures 

Examples 

The following (non-exhaustive) list contains some of the ways devices are affected by TID 
which may result in unexpected or erroneous operating conditions or failures:  

• In complimentary metal-oxide-semiconductor (CMOS) structures, TID creates trapped
charge in the oxide or near the oxide semiconductor interface which causes a shift in the
gate threshold voltage, resulting in a reduction in threshold voltage for N-type MOS
devices, or an increase in voltage threshold for P-type MOS devices.

• In isolation oxides, TID can create leakage pathways, resulting in parasitic power
consumption which may result in other functional complications.

• In bipolar devices, trapped charges along isolation or passivation from TID can increase
surface recombination, decreasing the gain of bipolar transistors. If the trapped charge
density is high enough, an inversion layer can be created in p-doped regions that increase
the surface area of the junction. This also affects transistor gain and can cause substantial
increases in leakage current.

• Bipolar and bipolar-CMOS (BiCMOS) technologies can also suffer from enhanced low
dose-rate sensitivity (ELDRS), where device electrical parameters can degrade more
under low-dose-rate conditions (e.g., the natural space environment) than under high-
dose-rate conditions (this is important for consideration of accelerated/standard TID
testing).

TID is a cumulative effect that will often look like ageing or wear out of parametric outputs of 
the device that depend on oxides, interfaces, passivation, etc. Most high reliability devices show 
graceful degradation that is predictable and repeatable, therefore past data can be useful if there 
are no changes to the manufacturing process, while other devices may show more lot-to-lot or 
part-to-part variability. As IC complexity goes up parametric shifts on chip can result in devices 
that stop operating completely without external connections to measure the parametric 
degradation that leads to failure.   
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Figure 13. Potential Isolated Defects in Silicon induced by Incident Particle 
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For additional insights and guidance, see case studies digitally linked here. 

4.9.2 Total Non-Ionizing Dose (TNID)/Displacement Damage Dose (DDD) 

An energetic particle can also cause damage within materials via the creation of phonons 
(vibrational energy) as well as the displacement of atoms within a crystalline lattice. The 
introduction of defects through displaced atoms (i.e., termed displacement damage) can 
significantly impact fundamental material properties such as recombination lifetime. TNID or 
DDD (Dd) has units of MeV/g, energy per unit mass. It is typically given in terms of the product 
of total particle fluence (φ) and the Non-Ionizing Energy Loss (NIEL) factor, representing the 
nonionizing energy loss via displacement damage and resulting in the Dd = φ x NIEL. NIEL 
factor is typically expressed as (MeV-cm2/mg) representing the rate at which nonionizing energy 
is lost to the production of atomic displacements in a given material. Like TID, the NIEL factor 
(and thus overall TNID damage) is dependent on the incident particle and energy, and the 
absorbing material.  

How TNID/DDD Damage Mechanisms Manifest 

When atoms are dislodged from within a lattice, a pair of defects is created, whereby the absence 
of the atom within the lattice is referred to as a vacancy and the dislodged atom within a non-
lattice position is referred to as an interstitial. Depending on the amount of energy transferred to 
the original displaced atom known as the Primary Knock-on Atom (PKA), the PKA can in turn 
displace additional atoms, creating a cascade of the defects that form localized clusters of 
disorder. Therefore, defects created from TNID can create either isolated defects or a 
combination of isolated and clustered defects, which will vary in stability as well as the impact to 
material characteristics. Following generation, these defects can anneal to form stable 
configurations, which are temperature and excess carrier dependent. Like TID, TNID is a 
exposure/time-dependent phenomena, which can also depend on temperature during irradiation 
and subsequent storage. Figure 11 demonstrates the potential defects created in a crystal lattice 
via TNID.  
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Examples 

The following (non-exhaustive) list contains some of the ways devices are affected by TNID 
which may result in unexpected or erroneous operating conditions or failures:  

• In Charge Coupled Devices (CCDs), TNID damage can result in degradation in Charge
Transfer Efficiency (CTE) as trapped charges are released as time constant depending on
the energy state of the trap. Increased dark current resulting effectively in increased
“noise” within a device, Hot Spots, which manifest as “bad pixels” or bright spots on
imaging devices.

• TNID induces damage in CMOS Image Sensors (CIS) where damage can manifest as
dark current, increased hot spots, as well degradation in responsivity.

• TNID damage in Photodiodes can act as recombination/generation centers, which can
result in degradation of the photocurrent or a generation of excess current, which can
appear as dark current.

• Within Laser Diodes, TNID creates increases in non-radiative recombination centers,
which results in decreased output power, typically drawing higher to maintain consistent
power.

Special attention should be called to the susceptibility of opto-electronic devices to TNID. 
Phototransistors, photodiode detectors, and light-emitting diodes all degrade due to introduction 
of generation and recombination centers. The light output of LEDs is reduced, the optical 
responsivity of photodiodes and phototransistors is degraded, the leakage current increases in 
diodes and transistors, and the phototransistor gain is reduced. In some devices, cumulative 
damage due to TNID far outstrips damage due to TID. Devices that inherently depend on 
material properties (e.g., recombination lifetime, carrier concentrations) will typically be more 
susceptible to DDD effects.  

TNID is a cumulative effect that will often look like ageing or wear out of material properties 
within the device that depend on lattice structure. Most high reliability devices show graceful 
degradation that is predictable and repeatable when there aren’t manufacturing changes, while 
others show lot-to-lot or part-to-part variability. Due to sensitivity and operation some devices or 
portions of the device may stop operating completely.  

For additional insights and guidance, see case studies digitally linked here. 

 

SEEs are memoryless stochastic (i.e., Markov) processes; their probability in the mission 
depends on the specific component’s susceptibility and the local/temporal radiation environment, 
but not previous (mission) history. SEEs are caused by interaction of a single primary or 
secondary ionizing particle (e.g., proton, neutron, or heavy ion) within a semiconductor part. All 
semiconductor parts containing p-n junctions (referred to as “active electronics.”), with natural or 

4.9.3 Single Event Effects (SEE)  
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applied electric fields are potentially susceptible to SEE [Petersen, 2011]. SEE can be destructive 
or non-destructive. Destructive effects are typically instantaneous catastrophic failures to short or 
open and are non-recoverable. Non-destructive effects are typically recoverable, where parts or 
components will regain functionality or operability naturally or through user-intervention (e.g., 
power-cycling). However, non-destructive effects can potentially cause non-recoverable system-
level effects if not accounted for in designs.   

SEEs are usually discussed with reference to the susceptibility to the incident ionizing particle 
using the term Linear Energy Transfer (LET). LET is the measure of the ionizing energy 
deposited per unit length as an energetic particle travels through a material, while accounting for 
the energy and mass of the incident particle and the material properties of the target material, and 
has units of MeV/cm2-mg. LET can be expressed as the incoming particle stopping power 
normalized to the target material density. Many SEE types only occur above a certain LET 
threshold (LETth), which dependent on several factors including individual device, and SEE type, 
and operating conditions (e.g., operating temperature, input voltages or current). For example, 
most RHA standards will require that destructive SEEs must have an LETth > 75 MeV/cm2-mg.   

How SEE Mechanisms Manifest 

Ionizing particles passing through a semiconductor lattice lose energy through Coulombic and 
nuclear processes. This lost energy generates excess electron-hole pairs in the semiconductor, 
inducing a current if the charge is generated in or near electric fields and changes the nominal 
electric fields. While some of the electron-hole pairs will recombine, the remaining charge can 
get swept into the junction contacts. If the resulting charge generated exceeds the critical charge 
of the device, it can result in immediate observable effects in device operation (SEE). The 
observed effect from SEE depends on device type, operating conditions, and circuit 
configuration. Figure 12 shows a p-n junction and an ion strike that creates a charge funnel (i.e., 
liberated charge or electron-hole pairs) that propagates as an SEE disturbing nominal operations. 

     Figure 14. Ion entering the depletion region of a biased p-n junction resulting in a charge funnel. 
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Destructive Examples 

Destructive SEE types include Single-Event Latchup (SEL), Single-Event Dielectric Rupture 
(SEDR), Single-Event Gate Rupture (SEGR), Single-Event Burnout (SEB), and permanently 
stuck bits. The following (non-exhaustive) list contains some of the ways devices are affected by 
SEE which may result in unexpected or erroneous operating conditions or failures:  

• CMOS-based devices can experience SEL, which results in a sustained high current state
that can cause thermal runaway and can damage the affected device as well as other
devices in the current path. The high current state caused by SEL can be recovered from
by power cycling the affected device.

• Power devices can experience SEB and SEGR, which result in permanent loss of device
functionality.

• On chip capacitors can suffer arcing or SEDR.

Non-Destructive Examples 

Non-destructive SEE types include Single-Event Transient (SET); Single-Event Upset (SEU), 
including Single-Bit Upset (SBU) and Multiple-Cell Upset (MCU); and Single-Event Functional 
Interrupts (SEFI). Multiple-Bit Upset (MBU) refers to single event upset of multiple cells in the 
same logical word or frame occurring from one particle [JEDEC, 2017]. The following (non-
exhaustive) list contains some of the ways devices are affected by SEE which may result in 
unexpected or erroneous operating conditions or failures:  

• Bits in memory devices can be flipped by SBU or MBU. Error Detection and Correction
(EDAC) software can sometimes be used to fix flipped bits effectively.

• When an SEU occurs in registers, or control circuitry has an unexpected change of state,
Single-Event Functional Interrupts (SEFI) can occur, rendering the device unresponsive,
causing a reset, changing the operating mode, adding offset Analog-Digital Converters,
etc. SEFIs can typically be recovered from by power cycling or reloading the device’s
programming. If not planned for, power cycling at a higher architectural level may not be
able to fully power cycle or remove the SEFI.

• SET are deviations from expected outputs or nominal outputs on devices that are
temporal. They are typically short-lived (lasting nanoseconds to milliseconds) and may
be small or large excursions from nominal, however, extreme or long-lived excursions
may exceed downstream circuit limitations and can therefore be destructive (e.g., tight
tolerance applications such as FPGA cores).

SEE is an evolving field that encompasses a wide range of failure mechanisms and anomalous 
behaviors in EEEE parts. As new devices are developed and tested existing taxonomies, 
classifications, acronyms, and terminology are not always consistent. As a reference, SEE type 
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effects and SEE. The responses not only depend on the type of radiation the part has been 
subjected to, but also the technology and its materials within. Some radiation effects may cause 
physical damage, but not immediate failure, however the integrity and reliability of the device 
operation may be hindered afterwards. Both cumulative and instantaneous effects will be 
explored in the following sections, with discussions on how effects can propagate through a 
system or component and how risk and radiation hardness assurance are evaluated. In all cases, 
the assessment of potential failures must look at the design implementation and requirements to 
determine if radiation induced changes to device operation (reversible or non-reversible) are 
considered a failure. There exist many applications and mitigation techniques that provide 
system tolerance to reversible effects. The design architecture plays a crucial role, and the 
criticality of the device operation and function will determine the fidelity or extent of analysis 
required. Through radiation hardness assurance practices, an iterative approach of looking at a 
system’s sensitivity to possible failure modes in the selected technologies will reduce the number 
of tests and increase reliability overall. 

For additional insights and guidance, see case studies digitally linked here. 

4.9.4.1 Cumulative Radiation Effects Failures 

Cumulative radiation effects are first addressed as a deterministic problem of expected 
environment doses and inherent shielding profiles. Statistically bounding estimates of dose are 
made with simple geometries and predictive environment models. The environment models are 
built and updated from in-situ measurements by a growing number of science instruments, 
allowing for confidence levels on the expectations. In some cases, devices (e.g., rad-hard 
components show guaranteed hardness on their datasheet) have sufficient margin such that more 
analysis is not necessary. If the parts are well shielded or the environment is benign with respect 
to the performance of a technology/family of devices, deeper analysis is typically not required. 
First principles of parametric shifts (threshold voltages, leakage currents, etc.) and what they 
mean to the system can further help to identify where more analysis is needed (e.g., transistors 
used as a switch with a gain of 1 will not care about gain degradation from 400 to 300 over the 
mission dose). Where deterministic evaluations are insufficient (i.e., lack of margin), 
probabilistic methods can be used, however applicable test data must be available.  

In cases where the margin between part survivability and failure is tight for cumulative effects, 
high-fidelity modelling and ray-tracing methods can be used to obtain a clearer understanding of 
the dose on specific parts and components. Theses modelling efforts can account for complex 
shielding geometry within spacecraft, providing a much more precise dose estimate and reducing 
the bounding estimate for expected failure. This high-level modelling is relatively time-

NASA/SP-20230004376

definitions exist within standards and literature [ASTM, 2018; JEDEC, 2017; ESCIES, 2014; 
Petersen, 2011; JEDEC, 2013].   

For additional insights and guidance, see case studies digitally linked here. 

4.9.4 Analysing Radiation-Induced Failure Modes  

Semiconductor and IC failures induced by radiation can manifest very differently for cumulative 
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consuming compared to models obtained via simple spherical geometry but is often far more 
cost-effective than pursuing probabilistic methods (i.e., testing).  

When the mechanisms or physics of failure are not understood (e.g., new technologies, new 
applications), subject matter expertise and testing may be made necessary. This is especially true 
for cumulative effects, where results tend to be more lot specific: small changes in the 
manufacturing process can result in large radiation response changes (e.g., oxide thickness, 
interface imperfections, passivation layer materials). 

4.9.4.2 Cumulative Radiation Effects Failures in a System 

At the system level, TID/TNID hardness assurance is based on understanding degradations at the 
piece-part level and how they may impact system operation. This is a methodology to assure that 
microelectronic piece-parts meet specified requirements for system operation with sufficient 
margin, such that further analysis is not required. The requirement for system operation allows 
for a failure definition that is determined by the application of all parts in the system. The 
requirement to meet functional requirements at a specified radiation level allows a deterministic 
approach to approving a total system that has margin in its operation constraints. 

In the methodology described in Figure 13, based on MIL-HDBK-814, all the microelectronic 
piece parts are categorized for each system application and localized radiation environment. For 
any system’s piece-part hardness assurance program, designers and RHA engineers must start 
with the application of the part in the system and its necessary functions. The application will 
determine the failure level of the part that has the potential to propagate to a system level.  

Figure 15. Piece-Part RHA Methodology (adapted from Poivey, 2017) 
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There are three categories in which a part may be placed: (1) Hardness Non-Critical (HNC), (2) 
unacceptable, and (3) hardness critical. This can be determined at different 

(1) For parts that are categorized as HNC, no further testing or analysis is required.

(2) For parts that are categorized as unacceptable then either a different part must be used in
the application or mitigation factors must change. The factors that may be changed
include:

• Radiation specification level using shielding and/or more detailed radiation transport
analysis (i.e., ray-tracing).

• Failure definition through application circuit redesign.
• Radiation failure level through part substitution, application condition, hardening of

the part, or specific lot selection.

(3) For parts that are categorized as hardness critical analysis may require more detailed
analysis for both radiation transport and performance predictions. When it does come to
needing higher fidelity or detailed analysis there exist probabilistic methodologies to
ensure hardness assurance at the piece-part level in the following section.

4.9.4.3 Cumulative Radiation Effects Failures in a Part or Component 

For components or parts categorized as hardness critical, their mission environment application 
and lifetime will all play a role in their predicted performance. As previously discussed, 
cumulative degradation through TID/TNID are time-dependent phenomena. In select 
circumstances, hardness assurance will call for ground-based testing or test data. It should be 
clearly understood that cumulative radiation degradation effects cannot be mitigated by 
redundancy between devices, as multiple devices will still experience the same degradation over 
time (this is true for biased and unbiased devices). The most used mitigation strategy for 
cumulative radiation degradation effects is varying shielding, which will be discussed further. 
Determination of the probability of failure can be understood as product of the expected 
probability distribution lifetime mission dose (either TID or TNID) and the expected probability 
of parametric failure of a device.  

During mission planning (i.e., pre-phase A), an environment must be defined for radiation 
analysis to proceed. Radiation environments are typically defined by the orbital parameters and 
mission duration, although additional factors also affect the radiation analysis, such a mission 
featuring direct insertion, phasing loops, or variations on transfer method. Any changes in these 
mission parameters will also incur a change in the radiation environment. Once a radiation 
environment is defined, a probability function for dose can be generated. As an example, figure 
14 shows the probability distribution function for a 1-year GEO mission with varying levels of 
shielding and confidence levels ranging from 1% to 99%. This probability distribution function 
for the radiation environment can be referred to as H(x). The probability that a device exceeds 
this dose can be seen as 1-H(x). Shielding levels from right to left, are 10, 50, 100, 200, 500 and 
1000 mils Al. 
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Figure 16. TID Probability Distributions 

After a radiation environment is defined, devices are reviewed, selected, and tested based on 
expected mission dose and parametric failure concerns. Although parts are usually screened for 
failure prior to selection, some devices may be tested if part behavior in the radiation 
environment is not thoroughly understood. Through lot testing, the parametric failure distribution 
of a device can be determined. Figure 17 displays the parametric failure distribution of the 
SFT2907A bipolar transistor, based on test of ten devices. A lognormal fit of the data can then be 
taken as the Cumulative Density Function (CDF) of the parametric device failure. This Total 
Dose device failure distribution can be referred to as g(x). The line is a lognormal fit to the data 

Figure 17. TID Failure Distribution for SFT2907A Bipolar Transistor 
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Once both distributions have been determined, the distributions can be combined to obtain the 
probability for device failure during the mission for a dose interval of x to x + dx, as given by the 
equation:  

[1 − H (x)] · g(x) dx 

Integrating over all possible dose values gives the total dose failure probability, Pfail, during the 
mission: 

Pfail = �[1 − H (x)] · g(x) dx 

It should be noted that in cases where parametric failure distribution is much higher than 
expected mission dose, Pfail will be close to 0, and, conversely, where parametric failure 
distribution is much lower than expected dose, Pfail will be close to 1. In cases where the 
distributions overlap, Pfail will between 0 and 1. An example of probability of failure distribution 
with respect to device shielding can be seen in figure 16, where device failure is shown for 
multiple orbits of the bipolar transistor example from figure 15.  

      Figure 18. Failure Probabilities for the SFT2907A Bipolar Transistor as a Function of Shield Thickness for 
Different Orbits and Mission Durations 

The example of the transistor used, is a simplified case, but shows how failure distributions of 
parts and the confidence levels on the environment can be used to determine the probability of 
success for any given device parameter or sensitive application if ground-based data exist for 
TID/TNID/DDD. 

For additional insights and guidance, see case studies digitally linked here. 
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• Error-Critical: functions where SEEs are unacceptable. Part failure in this system would
endanger the mission irrevocably:

o Power management parts/ICs throughout the mission: no destructive effects
allowed, due to the dependence on sub-system functions across system.

o Guidance, navigation, and control electronics during critical maneuvers (e.g.,
docking; entry, descent, and landing; touch-and-go; orbit changes, etc.): no
allowable interruptions to availability during these windows.

o Environmental control and life support systems throughout the mission.
• Error-Vulnerable: functions where low probability for SEE is required, response with

mitigation or risk of SEE is permissible.
o Power management parts/ICs: single event transient of sufficient magnitude may

reset a box or card at the wrong time.

NASA/SP-20230004376

4.9.5 Instantaneous Radiation Failures (Single Event Effects) 

Instantaneous radiation effects are handled differently than the cumulative counterpart. Due to 
the permanent loss of device function caused by destructive SEE, the typical focus of SEE 
hardness assurance is selection of parts insensitive to destructive SEE and system tolerance of 
non-destructive effects where they are unavoidable. Failure likelihood of recoverable and non-
recoverable effects are different to one another. Categorization of failure depends on a part’s 
response in its application, and the effect it has on system availability/operability; it depends on 
the function required of the part and the mode of failure/disruption to mission goals.  

The deterministic approach is to establish a LETth requirement structure for types of events such 
that anticipated likelihoods are low enough to accept the risk of the response (e.g., no destructive 
thresholds less than 75 MeVcm2/mg). Where this approach is insufficient for risk posture (or 
parts lack data), further mitigation, analysis and/or testing may need to be done. Often 
misinterpreted, shielding has limited effectiveness as a mitigation for single-event effects, which 
can be induced by deeply-penetrating, high-energy particles (e.g., Galactic Cosmic Rays). 
SEE analysis begins with device application and function within the system, and whether or not 
propagation of effects has an impact. If a given application is not susceptible to a device 
response or failure, having mitigation for the effect, or some level of redundancy, no further 
analysis is necessary. System tolerance and/or mitigation takes the form of fault isolation, 
detection, and recovery; EDACs; filtering circuitry; power-cycling; current limiting; and other 
techniques to mitigate or eliminate any effect on broader system operation. Where the 
application cannot be deemed acceptable or the response impact on propagation cannot be 
explained piece-part testing for the application may be necessary. 

For additional insights and guidance, see case studies digitally linked here. 

4.9.5.1 Instantaneous Radiation Effect Failures in a System 

Understanding the ability of a SEE response/failure to propagate from a device level through to 
the system level allows for the categorization of “criticality classes” that can express the 
unintended operation or part failure at a functional level. By categorizing the functions and 
addressing which components play a role in providing that function, a lot of SEE concerns can 
be addressed at the system level without further analysis.  
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o Data transmission: SEFI impact on availability during downlink over ground
station.

o Mission Processor (embedded or standalone) with known error rate may be
vulnerable at specific times during the mission.

• Error-Functional: functions may be unaffected by SEE; large probability of events may
be acceptable. 

o Data retention: memory storage can reliably detect and correct errors without loss
of information.

o Data transmission: transient effects or loss of packets acceptable for telemetry
having continued measurements.

Gathering the system susceptibilities in an analysis such as a SEE Criticality Analysis (SEECA), 
will capture failures for a mixture of non-destructive and destructive effects, using system level 
functions to identify and categorize impact of SEE. Figure 19 shows a decision tree for the 
categorization of criticality/severity of SEE response: 

Figure 19. Example of a SEE Severity Flow Diagram 

Likelihood calculations can then be reduced to the susceptibilities within the system that 
propagate, and the rate of upsets for the single event signatures that are impactful can be 
calculated and compared to required availability for success.  

4.9.5.2 Instantaneous Radiation Effect Failures in a Part or Component 

As previously discussed, failures from SEE are modeled as memoryless stochastic (i.e., Markov) 
processes, whose probabilities depend on the specific device and the local radiation environment, 
but not previous (mission) history. As such, the probability of an SEE occurring is constant 
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throughout the entire mission (notwithstanding changes in environment and/or device operating 
conditions). Failure from SEEs is typically defined based on the function of the devices and if 
the SEE is a soft or hard error. Failure definitions for soft errors include that the probability of 
outage/downtime during a particular window of time is less than a critical value or that the rate 
of bit-flips is sufficiently low. Failure definitions for hard errors include that the probability of a 
hard error occurring over the entire mission be sufficiently low. SEEs can be mitigated against 
through careful part selection, deliberate choice of operating conditions, or by using redundancy 
between devices, boards, and subsystems.  

The mission radiation environment is typically defined at the outset of mission planning. Factors 
including orbital parameters, mission duration, and others are used to simulate the expected 
radiation environment. Changes in these factors can cause changes in the radiation environment. 
For SEEs the most important aspects of the radiation environment are Galactic Cosmic Rays 
(GCRs), Solar Energetic Particles (SEP), trapped protons, and solar protons. These radiation 
sources are condensed into LET spectra, which show the expected flux for all particles based on 
their LET. Figure 18 shows some LET spectra for a near-Earth interplanetary orbit. LET spectra 
is affected by the solar cycle, so spectra at both solar maximum and solar minimum is shown. 
Spectra is also shown for Solar Particle Events, with spectra prediction for the worst possible day 
and 5-minute period of a solar particle event. As can be seen, LET spectra is several orders of 
magnitude higher during solar particle events than during nominal periods of activity, when GCR 
contribution dominates. As such, care must be given when evaluating rate calculations whether 
device operability and availability is required, i.e., if the device is required to operate during the 
worst periods of a solar storm.    

Figure 6. LET Spectra for the ISS Orbit at Solar Min (black) and Solar Max (red). 
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Fundamentally, calculating SEE error rates requires calculating the rate at which the radiation 
environment deposits the minimum amount of energy necessary into a device to produce an SEE. 

One common SEE error rate calculation method involves integration assuming an active region 
of a rectangular parallelepiped which can be done using publicly available CRÈME96. 
CRÈME96 calculates SEE error rates by integrating the LET spectrum over the chord length 
distribution for the device’s sensitive volume. Sensitive volumes can be defined by either a 
rectangular parallelepiped (RPP) and a critical charge, or through a Weibull distribution of SEE 
cross-sections; in either case, sensitive volumes are generally experimentally derived. This 
methodology is useful typically only when device response is well understood and characterized, 
typically via testing.  

Figure 21. Calculating Single Event Rates 

Alternative methods for rate calculations exist that are built from empirical data to estimate 
bounds of upsets for a given environment condition, such as SEE Figure of Merit (FOM). The 
FOM also uses the Weibull distributions of SEE cross-sections, and is defined: 

where is the limiting heavy ion cross-section at large LETs, and is the LET at 25% of the 
limiting cross-section. if the heavy ion cross-section has been fit to a cumulative Weibull 
distribution, can be calculated using the Weibull parameters (threshold LET), (width), and (shape 
parameter): 
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The SEE rate can then be calculated from the FOM by: 

where is the SEE error rate and is an orbit specific rate coefficient. 

FOM calculations can be useful for making an initial determination as to potential likelihood of 
failure. For instance, a calculation may reveal of a SEFI to be less than once per 1,000 years, 
therefore further consideration may not be required as to part susceptibility. However, FOM is 
not always accurate for rate-calculations of low-Z particles and should be used with some 
precaution. 

Both methods for calculating SEE error rates result is an error rate of SEEs per unit time, which 
can be used to calculate the probability of SEEs occurring over a particular time period. 

For additional insights and guidance, see case studies digitally linked here. 

When screening, mitigation, or system-level masking are not sufficient, analysis and/or testing 
are required to determine the likelihood of failure. For any radiation likelihood, no matter the 
physical mechanism, the determination must be done for the specific mission environment, 
application, and lifetime.  

Cumulative Effects 

Figure 7. Determination of TID/TNID/DDD Failure Likelihood 

Cumulative effects are permanent changes in the device operation. Figure 22 shows the basic 
information necessary to calculate the likelihood or probability of failure for a given part in each 
application on a spaceflight mission. See also the figure 16 on cumulative failure modes. Crudely 
put, 

Pfail =  �probability of mission dose ·  part failure distribution 

Part Failure 
Distribution

Environment 
Prediction for 
Total Mission

Shielding 
Profile

TID/TNID/DDD
Failure 

Likelihood

4.9.6   Likelihood of Radiation Induced Failure Summary 
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Cold sparing or redundancy is not an effective mitigation because cumulative effects can accrue 
even in the off state for semiconductor devices. The only system masking would be tolerance to 
degradation or drift of parametric values, or some sort of diverse redundancy that provides 
functional backup through a different design performing the same function containing different 
semiconductor parts. 

Destructive Single Event Effects 

Figure 23. Determination of DSEE Failure Likelihood 

Destructive SEE are irreversible failures at the part level. Figure 23 shows the basic information 
necessary to determine a likelihood of permanent failure for a given part. A device’s application 
cross-section and the worst-case environment that it will have to operate in can be used to 
calculate a predicted likelihood for a given mission phase, but the failure likelihood must also 
take into account nominal operations and availability required for the entire mission. The overall 
failure likelihood is the combined failure rate for every device in each application in each 
operational mode for the mission duration. Crudely put, 

Pfail =  �predicted rate ·  duration 

Systems may use mitigation, maintenance, or redundancy (cold sparing) in some instances to 
reduce likelihoods. The ability of DSEE to propagate are determined in a criticality analysis. 

Non-Destructive Single Event Effects 

Figure 8. Determination of NDSEE Failure Likelihood 
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Non-destructive SEE can lead to failure if they happen so frequently that operation is 
overwhelmed, or if they produce a device output that exceed limitations of downstream devices. 
Figure 24 shows the basic information necessary to determine a likelihood of DSEE failures. A 
rate calculation is done for a given part in each application, this uses the part’s cross-section and 
the environments predicted spectra of particle energies. If the effects can propagate and are too 
frequent such that availability is impacted; system masking such as error detection and correction 
are overwhelmed; or requirements are unable to be met; a failure mode and its likelihood are 
determined from the rate for duration of operation in that critical mode. Crudely put - 

Pfail = � predicted rate · duration 

The ability for N to propagate are assessed through a criticality analysis. 

For additional insights and guidance, see case studies digitally linked here. 

Formulating Comprehensive Results from Individual Pof Findings 

5.1 Aggregation Approach 

Each PoF analysis or method will result in deriving or updating the failure rate or likelihood for 
each failure mechanism or mode. Reliability analysts will need to combine individual findings to 
formulate a comprehensive result that fully captures all failure susceptibilities of a system or 
scenario of interest unless the likelihood of only one failure mechanism is the result of interest. 
This may be an iterative process or singular event depending on the quantity of findings and their 
relationships. 

In developing a comprehensive result, aggregated likelihood of failure, the relationship between 
each of the individual findings must be determined to avoid over or underestimating failure 
probabilities. The relationship between any two or more findings can be described in one of three 
ways, and each has its own precepts for accurate aggregation:  

1. Inclusive - Findings are considered inclusive when any likelihood covers the same failure
scenarios or is part of another likelihood or a working aggregated likelihood (figure
25.A).

2. Complementary - The findings are considered independent/disjointed when two or more
likelihoods (individual or aggregated) do not cover the same failure scenarios (figure
25.B), making them independent of each other.

3. Interrelated – Findings where likelihoods have intersecting failure scenarios (figure 25.C)
are considered interrelated.

Each of these relationship states is supported by specific reliability and statistical techniques, 
such as fault trees, Bayesian networks, or conditional probability (see figure 26), which may be 
applied once or multiple times until all applicable likelihoods are combined or considered. 
Underlying analyses will dictate the amount of aggregation needed on a case-by-case basis. If 
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individual findings are not aggregated properly, the likelihood of any one or more mechanisms 
may be omitted or applied repeatedly causing erroneous results. 

For additional insights and guidance, see case studies digitally linked here. 

5.2 Inclusive Relationship Finding Aggregation

If likelihoods are inclusive, then the failure distributions or PoF finding estimations are for the 
same failure contributors and there will be dominate and nondominant contributions (figure 
25.A). If this is not the case then this type of aggregation would not be appropriate, since picking 
only one contributor’s failure rate would mean omitting the others and could create an 
underestimated failure probability prediction. For example, if a handbook parts count derived 
rate (1.33 failures per million hours 1.33 x 10-6 failures per hour (the blue circle in 25.A.2)) is 
known to include the failure contributions of thermal (Section 4.3) and electrical stresses
(Section 4.6), it may be more accurate to assume that likelihood than a thermal-only likelihood 
PoF finding (the hypothetical yellow circle in 25.A.2). Conversely, if the nondominant likelihood 
does include all the failure contributors of the dominant one, or is a working aggregated finding, 
then the analyst can use performance experiences to determine which is most indicative the 
actual failure potential (figure 25.A.1 or 25A.2 or 25A.3) and use that as the comprehensive 
result.

Figure 25. Potential Probability Relationship States for Aggregating Findings 

(Aggregation of only two findings is shown in this figure, but in an actual aggregation there may be many more than 
two findings to aggregate and each combination will have its own one of these relationship states to consider.) 

A. Inclusive States 

B. Complementary States 

C. Interrelated States 
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Figure 26. Potential Probability Combination Methods 

For example, if a reference or handbook derived parts-count rate (1.33 failures per million hours 
(1.33 x 10-6 failures per hour, the blue circle in 25.A.2) and a Bayesian updated rate (0.395 per 
million hours (3.95 x 10-7 failures per hour, yellow circle in 25.A.2), as described in section 
3.2.6, are being considered for aggregation, it is highly likely that they cover the same failure 
modes. Further, if the analyst knows that usage experience shows a 9.725 x 10-8 failures per hour 
metric (dotted circle in 25.A.2), then the analyst would choose the Bayesian finding since it is 
more similar to the observed performance. Given that choosing one failure likelihood over 
another is possibly subjective, it may be beneficial for a reliability analyst to provide to risk-
informed decision makers a range of probabilities, with uncertainties, that includes the alternate 
and the chosen likelihoods for better decision making. 

For additional insights and guidance, see case studies digitally linked here. 
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5.3 Complementary Relationship Finding Aggregation 

If the likelihoods are complementary, then the failure distributions or PoF finding estimations 
must be for different failure contributors or fully independent of each other (figure 25.B). This 
would be when the probability of a failure given one likelihood is not affected by the probability 
of another likelihood finding (e.g., P(Finding-A|Finding-B) = P(Finding-A) Under this 
circumstance, the analyst will need to combine them, via fault trees or Bayesian networks with 
the appropriate weightings, given experience or engineering judgment, to formulate a complete 
likelihood estimation [Heard and Rubin-Delanchy, 2017]. Conversely, if there is contribution 
overlap of some kind or probabilities are affected by each other, then interrelated or inclusive 
aggregation should be used. 

When using the fault tree method to perform a complementary aggregation, it is constructed with 
the envisioned aggregated result as the top-level event and the independent PoF probability 
findings as the subordinate failure events combined logically with the OR function (figure 26). 
The fault tree can then be solved using Boolean algebra (e.g., P(A or B) = P(A) + P(B) – 
(P(AANDB)) or a binary decision diagram (BDD) to compute the aggregate failure likelihood as 
shown in figure 26 [ Márquez, 2008]. Whereas a Bayesian network of independent cause 
probabilities would be evaluated by multiplying the probabilities of each independent cause 
initiating the failure event (P(E|C)) with the probability of the cause (C) in existence (P(C)) and 
the probability of the non-existence causes (1-Pc,d,e,f …) and summing the results of each 
permutation or  

     P (E) =∑C
C1
n P(E, C1, … Cn)  

Where n is the total number of causes including plausible combinations or 

P (E) = ∑ P(E|Ci) ∗ P(Ci) ∗ [1 − P(Ci′s above i)] ∗ [1 − P(Ci′s below i)n
i=1 ] or 

P (E) =  ∑ P(E|Ci) ∗ P(Ci) ∗ ��1− P(Ci + 1)�…∗ �1− P(Cn)�� ∗ [((1− P�Ci− (i− 1)� ∗ (1−n
i=1

P�Ci− (i− 2)�… �1− P(Ci− 1)�].

For example, a system is planning to use a proven and well-known terrestrial component (Ps = 
0.8 at the mission duration) in a space application, and it has been determined via radiation 
susceptibility testing, that the probability of failure from radiation, Pf, equals 0.7. In this case the 
analyst would be able to assume that the terrestrial and radiation failure mechanisms are 
independent or disjointed, and would use a fault tree to calculate the probability of failure as: 

(1-PsT) + PfR – PfTANDR = 0.2 + 0.7- (0.7*0.2) = 0.76 

or a Bayesian network to find: 

∑ (P(F|T, R) = (P(F|R)*PfR *1-PfT) + (P(F|T)* PfT * 1-PfR) +(P(F|(R|T))*(PfR *PfT)*(1-Pfothers)) 
∑ (P(F|T, R) = 1*0.7*0.8 + 1*0.2*0.3)+ (1*(0.7*0.2)*1) = 0.76 
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For additional insights and guidance, see case studies digitally linked here. 

5.4 Interrelated Relationship Finding Aggregation 

Most often, failure distributions or PoF finding estimations will have or can be assumed to have 
likelihoods that have interrelated or intersecting failure scenarios (figure 25.C). This would be 
when failure contributors overlap or are dependent on another contributor occurring to occur. 
This will require the reliability analyst to evaluate and compensate for the contributions of 
common scenarios to avoid over counting the likelihood of any scenario. This is best done using 
fault trees, conditional probability, Bayesian networks, or Binary Decision Diagrams (BDD) with 
appropriate handling of intersecting probabilities (figure 26).  

When fault trees are used to combine interrelated PoF probabilities, they are constructed with the 
envisioned aggregated result as the top-level event and the PoF probability findings as the 
subordinate events, as described earlier. However, in the interrelated cases these subordinate 
events or probabilities are combined with AND and OR logic-gates that capture their 
interdependencies and conditional probabilities (probability of event A occurring given the 
occurrence of event B or P(A|B) = P(AANDB)/P(B) = P(A)*P(B)/P(B)) as needed. The fault tree 
can then be solved using Boolean algebra (e.g., P(A or B) = P(A) + P(B) – (P(AANDB)) and 
P(AANDB)= P(A)*P(B)) or by capturing its characteristics in a Bayesian network of causes, as 
long as the analyst has calculated any conditional probabilities so that each cause-value is unique 
as shown in figure 22. Alternatively, the systems interdependencies can be modeled with a BDD 
(using summations of the multiplicative chains of failure scenarios) to compute the aggregate 
failure likelihood value as shown in figure 26.  

For example, if a project is considering a “Use-As-Is (UAI)” decision, a reliability analyst would 
be looking at a dependent assessment to inform this decision. Both the nominal (reference or 
derived, (nom)) failure potential (Pf = 0.2, the blue circle in 25.C.1) and the non-conforming 
failure potential (Pf = 0.12, the yellow circle in 25.C.1) would need to be combined with the 
commonality or duplicity eliminated. In a Fault Tree this would be captured by a three-
parameter-OR ((0.2-0.024)nom + (0.12-0.024)uai + (0.024)nom.AND.uai = 0.296), or Bayesian network 
(1*0.2*0.88 + 1*0.2*0.12+ 1*0.12*0.8 = 0.296) or Boolean algebra (0.2 + 0.12 -0.024) can also 
be used.  

For additional insights and guidance, see case studies digitally linked here. 

5.5 Aggregation Assistance 

Given the complexity of these dependency determinations and, in some cases, the cumbersome 
summations, it is best to employ statistical modeling tools to ensure an appropriate 
comprehensive result is attained.  

In some cases, multiphysics simulation and analysis tools (See Section 6.1) can assist with the 
challenge of creating and aggregating PoF results. However, users of such tools need to know if 
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the tool applies all appropriate failure models based on a comprehensive set of physics processes, 
as described herein, or just a limited set of these, such as static and dynamic mechanical stress and 
fatigue only; thermal stresses and fatigue only; or thermal acceleration only [Nikfarjam, 2020].  

Based on this knowledge, the analyst will be able to use the tool’s results appropriately as a 
comprehensive likelihood or working-aggregated likelihood that will then need to be further 
aggregated with other PoF findings, as shown above.  

For additional insights and guidance, see case studies digitally linked here. 

6. The Evolution of the Physics of Failure

6.1 NASA Path Forward 

While the physics underpinnings of the PoF practices are well defined, the methodologies, 
technology, and supporting infrastructures to determine the likelihood of failure are constantly 
being refined and advanced. NASA’s intention is that this NASA PoF handbook continues to 
evolve based on community lessons learned and the introduction of new assessment 
methodologies. Therefore, reliability engineers, physicists, designers, and operations/research 
teams are asked to provide additions, updates, modifications, and case studies that may extend or 
enhance the concepts discussed in the handbook. The desire for continued growth in PoF is an 
indication of a very fruitful and rewarding set of opportunities for new study and future 
investment. 

For additional insights and guidance, see case studies digitally linked here. 

6.2 Technology Support 

Technology support of PoF is a dynamic and fast-growing field. Ubiquitous and low-cost, high-
performance computing resources have revolutionized the ability to use sophisticated and highly 
accurate physics models. Currently, technology for PoF analysis is limited to statistical analysis 
and multiphysics simulation tools but can already assist with some of the aggregation methods 
and challenges presented in section 5.  Statistical analysis tools (e.g., R, Weibull++, BlockSim, 
ITEM ToolKit, Excel, MATLAB, R-DAT, Mathematica. OpenBUGS, BlockSim) are rooted in 
data analysis and fitting observed physics to mathematical expressions. Multiphysics simulations 
packages (e.g., COMSOL, MATLAB, Windchill, Ansys Sherlock, Cadence, and Altair) are 
also rapidly advancing with complex and sophisticated use of Artificial Intelligence (AI) or 
Machine Learning (ML) techniques. However, current multiphysics tools still generally use a 
limited set of coupled physics equations and Monte Carlo simulations that give damage 
accumulation estimates, time-to-failure forecasts, or fatigue life predictions, and statistical tools 
that still rely on curve fitting. 

For additional insights and guidance, see case studies digitally linked here. 
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6.3 Advanced Technology Infusion 

Historically, supervised learning approaches have had the limitations of time-consuming data 
processes, and non-physics-based extrapolation and error generation have been replaced with a 
variety of neural network solvers. For example, neural network forward solvers can be 
supervised based on governing physical laws only and do not require any extrapolated training 
data [Hennigh, 2021]. The constantly evolving capabilities of High-Performance Computing and 
technology have now allowed data analysis and empirical fitting to be commoditized with 
extensive AI-based visualization and data aggregation scripts that operate as simple drop-down 
menus. For PoF, this could take the form of AI and ML concepts, and real-time data/prognostics 
monitoring/analytics. 

For additional insights and guidance, see case studies digitally linked here. 

6.3.1 Artificial Intelligence (AI), Machine Learning (ML) 

The fields of AI, ML, and data science have expanded exponentially over the past 10 years to 
encompass every technical field, from theoretical physics to manufacturing engineering. By way 
of defining terms, AI is the overarching concept of trying to create intelligent machines that can 
mimic human thinking processes and behaviors. AI is usually divided into two general areas, 
Weak AI and Strong AI. The former is an AI that can perform a narrowly defined set of tasks or 
just one task. The latter is an AI that is capable of applying intelligence to a problem and even 
showing consciousness [IBM, 2023]. ML on the other hand is usually defined as a subset of AI 
focusing on training machines to learn from various data sources without specific and explicit 
software instructions [Wikipedia-MIL, 2023]. ML systems that learn and predict outcomes 
without manually programming a computer are also known as predictive analytics or statistical 
learning. These statistical learning techniques can be based on pattern recognition concepts and 
include supervised and unsupervised learning methods.  

AI and ML in a PoF context can be rephrased as Physics-Based Modeling with ML and can be 
implemented empirically or deterministically or both. Empirically, ML would monitor 
performance and utilize advanced pattern recognition capabilities to identify new signatures or 
modes of failure from the experienced physics of system operations. These new failure mode 
signatures could then be used to prevent failure with enhanced monitoring and contingency 
action planning. Further, these new modes would each have an observed or predictable 
occurrence rate that with appropriated statical analyses could be converted to a likelihood of 
failure for each mode and aggerated with existing likelihood values to develop a new and more 
accurate system PoF-based failure rate. 

Deterministically, this would be physics modeling with ML that begins with previously existing 
physical theories and related laws. Often these expressions are mathematical approximations that 
are needed for both clarity of description as well as ease of computation. ML modeling provides 
a new direction in modeling both physical processes that are not completely described or 
understood, as well as exploring other areas of incomplete knowledge very effectively. The 
complementary nature of heritage physics approaches mixed together with rapidly evolving ML 
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techniques has resulted in a fast and very active area of growing research, both at the scientific 
and the engineering level.  [Willard, 2020] 

This mix of approaches is sometimes referred to as the white box (versus black box) approach.  
The white box approach incorporates the known physics as a fundamental model to produce a 
casual change in state variable(s) as a function of environmental stress. The black box model is 
the data-driven model. Modern black box models are usually characterized by high 
computational complexity with an emphasis on speed and quality of prediction. The combination 
of the two results in grey box models and represents the final completion of the investigation.  
PoF predictions would follow this same methodology and could derive an estimate of Remaining 
Useful Life (RUL) (see 6.4.1) with achievement probabilities that with appropriate statistical 
analysis could be inferred as a new failure distribution for the RUL-period.  

These new and groundbreaking techniques are revolutionizing PoF efforts and provide fertile 
research opportunities.  Strategic investment in the entire AI/ML/Model-Based 
Engineering/Digital Transformation (DT) ecosystem will form the new generation of reliability 
analysis tools. 

For additional insights and guidance, see case studies digitally linked here. 

6.3.2 Data Monitoring/Analytics 

As mentioned throughout this handbook, many PoF analyses need data or operational truths to 
generate meaningful results. However, NASA challenges in conducting Data Analytics for 
Reliability/PoF applications have largely centered around generating the right data and limited 
access to that data (i.e., silos, restrictions, schema challenges), lack of data understanding (i.e., 
dependency on humans to explain schema), insufficient processing power (i.e., cost and access), 
discovery challenges (i.e., algorithms), and difficulties associated with sharing results as 
captured by Thomas [Thomas, 2019]. Therefore, NASA is leveraging ever-evolving technology 
to digitally transform its approach to data. NASA’s PoF-related DT focus areas are Data 
Management (DM), Model Based Anything (MBx), data collaboration, process transformation, 
and AI/ML infusion. [Diventi, 2022] 

Real-time monitoring that generates useable data for failure quantification is now a mainstay of 
many industries like automobile manufactures. These enterprises are using the data to foster 
improvements in customer satisfaction, operational/logistics intelligence, preventative 
maintenance, safety, and data analytics. NASA can do the same, as designs are not just 
optimized for performance but also future mission analysis. Assuring the right data is generated 
will take collaboration and potentially the use of prognostic simulation tools, or digital twins. 
When NASA is successful in acquiring the right data and making it available, data analysts will 
have much more complete data sets for generating failure/PoF probabilities and other metrics. 
These massive new data sets will allow for analysis and correlation of performance parameters, 
well before reaching any predefined failure criterion. This can have a significant impact on the 
ability to make predictions about individual units, as opposed to the population of units.  
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• Run-to-Failure (Similarity Models)
• Known Failure Threshold (Degradation Models)
• Lifetime data w/ or w/o covariates (Survival Models)

These three approaches use different modeling (e.g., model-based, analytical/PoF-based, 
knowledge-based, and hybrid-based simulation/models) independently or in collaboration with 
ML and require unique statistical analysis and the existence of large data sets of historical system 
performance that are a function of reliability/physics stressors. RUL estimates can also be 
derived by combining these approaches. 

Similarity models calculate RUL for a given system based on the known behavior of similar 
systems under similar stress/physics conditions. This is an empirical approach in which time or 
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Data analytics is the discipline that applies logic and mathematics to data to provide insights. 
Currently, NASA generally relies on humans to both interpret computer-generated data and 
organize its contents for other humans to quickly comprehend. This can be seen in the mission-
control rooms that support NASA operations. However, NASA has not been taking full 
advantage of technologies/processes such as standardized machine-to-human reading protocols 
(e.g., Extensible Mark-up Language – XML) and AI/ML applications to gather information, 
interpret schema, discover relationships, and generate additional PoF/Reliability data. This will 
need to change to enable all the advantages of PoF/Reliability analyses, so this area is ripe for 
additional research and technology development (e.g., ultra-high-performance computational 
resources). 

For additional insights and guidance, see case studies digitally linked here. 

6.4 Methodology Innovation Infusion 

This handbook is focused on the creation of a likelihood estimate(s) based on physics 
(experimental/empirical or theoretical/deterministic) via existing methods. However, industry, 
researchers, and academia are constantly evolving and adapting reliability estimation methods 
based on new capabilities and alternate data. For PoF, this could take many forms, such as using 
Remaining Useful Life and the concept of digital twins.   

For additional insights and guidance, see case studies digitally linked here. 

6.4.1 Remaining Useful Life (RUL) 

Remaining Useful Life (RUL) is defined as the length of time a device or system is likely to 
operate from a defined event or time before it requires repair or replacement. RUL, after the start 
of deterioration, is graphically described as shown in figure 27 [Okoh, 2014] with the y-axis 
showing normalized health index (Healthy, Caution, Repair, and Failure) and the x-axis showing 
time.  

The three different approaches, as shown in figure 28, for determining the RUL with their 
relevant modeling approaches are:  



Page 73 of 92 

NASA/SP-20230004376 

time-frequency values of similar system components are used with Auto-Regressive Moving 
Average, exponential smoothing, or probabilistic hidden Markov statistics (see figure 29) to 
generate an RUL and the probability of achieving that life. This method is highly observational-
data dependent but may be assisted by AI/ML. 

Degradation-model estimates are based on precise mathematical models that integrate the 
concepts of physics and cumulative damage models to predict time until a failure inducing 
condition. These models would be that of wear (see section 3.2.2), corrosion (see chemical and 
electromigration sections 4.8 and 4.2), and deformation/fracture (see structural and creep 
sections 4.6 and 4.6.3). These models can be empirical or deterministic, depending on test and 
performance data available, and will give accumulation results. Therefore, a failure threshold 
must be known to generate an RUL using linear or exponential statistical methods. This RUL 
with appropriate statistical analysis can then be inferred as a new failure distribution for the 
RUL-period.  

Figure 27.  Conceptual Definition of RUL 
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Figure 28.  Remaining Useful Life (RUL) systems modeling approaches 

. 
Figure 29. Probabilistic parameters of a Hidden Markov 

X — states; y — possible observations; a — state transition probabilities; b — output probabilities [W] 

Survival models estimate RUL in terms of Mean Time to Failure (MTTF) to RUL-time from the 
integration of reliability (or the survival of a system beyond the current time (t) to the desired (T) 
(P(T>t) = 1- F(t)|P(t) = 1-F(t) = S(T>t)) and time-to-event analysis (life expiration with or 
without covariates). This may require the use of conditional probabilities to factor in the time a 
system has already been operating, Kaplan-Meier Estimator, proportional hazards regression 
models, and/or Cox Proportional Hazards model to generate a Survival-MTTF (S(T>t)). 
[Udrescu, 2023] If observed data (e.g., failures and survivals) is used, this may be an empirical 
analysis or data dependent, but if theoretical physics models are used, then this may be a 
deterministic analysis and less data dependent. Either way, this MTTF can then be used to infer 
an RUL failure rate assuming that a constant failure rate (i.e.,  λ = 1/MTTF). 

The use of RUL for failure estimation has great potential but is not a common practice and still 
needs additional research to establish best practices for its use. Therefore, RUL estimation and 
conversion to failure likelihood is full of fertile research opportunities. For example, State Space 
Modeling is being researched as way to assist with these efforts. This modeling uses probabilistic 
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graphical models to describe the dependence between the state variables and the observed 
measurements. However, great care and research is needed to establish the appropriateness of 
underlying parameter assumption-making within this approach. [Jianmin, 2011]  

For additional insights and guidance, see case studies digitally linked here. 

 

A digital twin is a digital representation of an intended or actual real-world physical product, 
system, or process that serves as the effectively indistinguishable digital counterpart of it for 
practical purposes, for such things as simulation, integration, monitoring, and maintenance. One 
of the key features of the digital twin is that it is often used in real time and regularly 
synchronized with the corresponding physical system [Wikipedia-DT, 2023]. Electrical, 
mechanical, and information systems are able to share and leverage each other’s data to 
constantly improve and understand the final product via AI and ML-assisted physics-based 
simulations.  

Recent literature and NASA studies suggest that creating predictive digital twins can be 
accomplished by leveraging model-based or interpretable machine learning methods to couple 
sensor data with physics-based models of the system [Kapteyn, 2020, GSFC, 2019]. These 
models can be used for senor optimization, failure analysis, safety risks, and more. A library of 
physics-based models can be used to provide more-representative predictive capabilities. In 
addition, digital twins can be infused with development-cycle data (e.g., CAD, finite element 
analysis, life test data, availability), so knowledge is shared across various discipline and mission 
teams uniformly. This encourages rapid iterations of virtual prototypes that promote common 
communication platforms across the organization. 

These digital twins can also be utilized to virtually simulate in-situ-system conditions by using 
real-time data ingestion from diagnostic system-level prognostics and on-board sensors. This will 
enable rapid health evaluation, anomaly investigation, and evolvable monitoring strategies. 
Alternatively, these same digital twins can be used with simulated data to analyze ‘what-if 
scenarios’ and to train operations teams. For example, SpaceX is a well-documented case study 
of the using digital twins [Carlos, 2021]. In 2022, SpaceX is launching Falcon 9s at the rate of 
one every 6.4 days. United Launch Alliance, on the other hand, has a launch rate of one every 64 
days over the past five years. SpaceX uses digital twins to assist flight controllers with 
monitoring telemetry, including trajectory, loads, and system-health indicators, and to enable 
more successful, reliable, and safe SpaceX vehicle operations and development.   

Digital twins can evolve, or be trained if AI/ML enabled, with monitoring data and new failure-
signatures knowledge to enable analyst-agnostic, accurate, and efficient reliability predictions 
and system-performance risk identification. Therefore, continued advancement of digital twin 
capabilities is needed. 

For additional insights and guidance, see case studies digitally linked here. 

6.4.2 Digital Twin Usage 
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Appendix A. Definitions 

Defect – A defect is a characteristic of an item that does not meet specifications. For example, a 
chip in a paint surface could be a product defect. Defects do not always render an item unusable 
for its intended purpose. 

Defective – A defective item has one or more defects that renders an item unsuitable for its 
intended use.  

Deterministic – Deterministic analysis involves the study of underlying physical processes to 
predict future behavior. 

Displacement Damage Dose (DDD) – the mean energy deposited in a device region by radiation 
that goes into atomic displacements divided by the mass of the region. One common unit is MeV/g. 

Empirical – Empirical analysis studies past data in order to make predictions about future 
behavior using statistical techniques. 

Failure – A failure is an event or condition where a component or system exhibits a fault that 
causes it to fail to perform its intended function. 

Fault – A fault is an event or condition where a component or system does not meet specified 
behavior. A fault may or may not be a failure. 

Linear Energy Transfer (LET) - a measure of the ionizing energy deposited per unit length as an 
energetic particle travels through a material. The common LET unit is MeV∙cm2/mg of material.  

Model – A model is an abstract representation of a component, subsystem, or system which 
allows the study of the item’s processes and responses. 

Non-Ionizing Energy Loss (NIEL) - a measure of the energy loss per unit path length due to atomic 
displacements as a particle traverses a material. The common NIEL unit is MeV∙cm2/g of material. 

Non-recoverable SEE –single event effects without mitigation or protection schemes. 

Physics of Failure – Physics of Failure is an approach to estimating component (and system) 
lifetime by analyzing the underlying physical mechanisms of failure.  

Recoverable SEE – non-destructive single event effects. 

Reliability – Reliability is the probability that a component or system will perform its intended 
function for a specified duration under stated usage and environmental conditions. 

Single Event Burnout (SEB) - An event in which a single energetic-particle strike through a high 
electric field induces a localized high-current state in the device, resulting in catastrophic device 
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failure or in permanent degradation that is usually characterized by a significant increase in leakage 
current that exceeds the manufacturer’s maximum specification.  

Single Event Functional Interrupt (SEFI) - a condition that causes loss of device functionality due 
to a change induced in a critical portion of a device, commonly a control structure, configuration 
file, or mode register. It generally requires a device reset or a re-initialization to resume normal 
device operations, but for many devices, a power cycle is necessary to initiate a full device reset 
to resume normal operations. A device undergoing a SEFI may simply be non-responsive or may 
have a sustained high-current state as it is no longer operating as designed. 

Single Event Gate Rupture (SEGR) - an event in which a single energetic-particle strike results in 
a breakdown and subsequent conducting path through the gate oxide of a MOSFET, MOS 
capacitor, or floating-gate memory. An SEGR is manifested by an increase in gate leakage current 
and can result in either the permanent degradation or the complete failure of the device.  

Single Event Latchup (SEL) - a condition that may cause device failure due to a single event 
induced high current state associated with the turn-on of a real or parasitic thyristor that creates a 
short circuit between two power supply rails. A SEL may or may not cause permanent device 
damage but requires power cycling of the device to resume normal device operations. In addition, 
SEL that appear recoverable may suffer hidden degradation and must be evaluated for latent 
damage (device does not fail from the immediate single particle event, but reliability is degraded, 
and premature failure may occur).  

Single Event Transient (SET) – a temporary glitch or deviation from expected operation caused 
by one particle, with a subsequent return to normal operating behavior. 

Single Event Upset (SEU) - a change of state induced by an energetic particle such as a cosmic 
ray or proton in a device, such as a bit flip in memory. These are “soft” errors in that a reset or 
rewriting of the device will usually return the device to normal behavior thereafter. 

Single Hard Error (SHE) - a SEU that causes a permanent change to the operation of a device. An 
example is a stuck bit in a memory device.  

Single-Bit Upset (SBU) and Multiple Bit Upset (MBU) – a distinction between events that upset 
a single circuit node (like a memory cell) and those that upset multiple nodes (or memory cells) at 
once.  

Threshold LET (LETth) - the maximum LET at which no SEE is observed. 

Total Ionizing Dose (TID) – the mean energy deposited by ionizing radiation in a device region 
divided by the mass of the region. This is often given in units of rad(Si), where 1 rad(Si) = 100 erg 
deposited per gram of silicon. 
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Appendix B: Case Study Chart 

Section of PoF Handbook Case Study Title Link 

3.0 Empirical Methods 
3.1 Empirical Reliability 
Approach 

TBS - Please 
consider submitting 
a case study for 
inclusion

3.2 Statistical Modeling 
Analysis 
3.2.1 Exponential TBS - Please 

consider submitting 
a case study for 
inclusion

3.2.2 Weibull - A General
Reliability Model for
Ni-BaTiO3-Based
Multilayer Ceramic
Capacitors

- Effect of High-
Temperature
Storage in Vacuum, 
Air, and Humid
Conditions on
Degradation of 
Gold/Aluminum 
Wire Bonds in PEMs

https://ntrs.nasa.gov/api/citations/20140008978/downloads/2014000
8978.pdf 

https://ntrs.nasa.gov/api/citations/20070016662/downloads/2007001
6662.pdf 

3.2.3 Normal - Reliability Analysis
of Aero-Equipment
Components Life
Based on Normal
Distribution Model

https://ieeexplore.ieee.org/document/8740448 

3.2.4 Lognormal - An Investigation of 
the Electrical Short
Circuit
Characteristics of 
Tin Whiskers 

- New Approach to
Total Dose
Specification for
Spacecraft
Electronics

https://ntrs.nasa.gov/api/citations/20130011768/downloads/2013001
1768.pdf 

https://ntrs.nasa.gov/api/citations/20170004853/downloads/2017000
4853.pdf 

3.2.5 Binomial TBS - Please 
consider submitting 
a case study for 
inclusion

3.2.6 Bayesian Statistical 
Interference 

- GOES-T GSFC
Magnetometer
Reliability Model 

https://meta.gsfc.nasa.gov/IntelexLogin/Intelex/Application/SCMSConfi
gMan/ModernProjLibInventory/DefaultView/SCMSConfigMan_Docume
ntsSCMSObject/View/a668a2c5-98a6-4d39-82a6-9cb4fa857c9f 

https://ntrs.nasa.gov/api/citations/20140008978/downloads/20140008978.pdf
https://ntrs.nasa.gov/api/citations/20140008978/downloads/20140008978.pdf
https://ntrs.nasa.gov/api/citations/20070016662/downloads/20070016662.pdf
https://ntrs.nasa.gov/api/citations/20070016662/downloads/20070016662.pdf
https://ieeexplore.ieee.org/document/8740448
https://ntrs.nasa.gov/api/citations/20130011768/downloads/20130011768.pdf
https://ntrs.nasa.gov/api/citations/20130011768/downloads/20130011768.pdf
https://ntrs.nasa.gov/api/citations/20170004853/downloads/20170004853.pdf
https://ntrs.nasa.gov/api/citations/20170004853/downloads/20170004853.pdf
https://meta.gsfc.nasa.gov/IntelexLogin/Intelex/Application/SCMSConfigMan/ModernProjLibInventory/DefaultView/SCMSConfigMan_DocumentsSCMSObject/View/a668a2c5-98a6-4d39-82a6-9cb4fa857c9f
https://meta.gsfc.nasa.gov/IntelexLogin/Intelex/Application/SCMSConfigMan/ModernProjLibInventory/DefaultView/SCMSConfigMan_DocumentsSCMSObject/View/a668a2c5-98a6-4d39-82a6-9cb4fa857c9f
https://meta.gsfc.nasa.gov/IntelexLogin/Intelex/Application/SCMSConfigMan/ModernProjLibInventory/DefaultView/SCMSConfigMan_DocumentsSCMSObject/View/a668a2c5-98a6-4d39-82a6-9cb4fa857c9f
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Section of Pof Handbook Case Study Title Link 
3.2.6 Bayesian Statistical 
Interference 

- EOS Aqua
Extended Mission
Reliability Study
Report Revision C 

-Bayesian Approach
for Reliability
Assessment of 
Sunshield
Deployment on
JWST

https://meta.gsfc.nasa.gov/IntelexLogin/Intelex/Application/SCMSConfi
gMan/ModernProjLibInventory/Forms/SCMS_DocDetail/View/0d22ecd
2-508a-42e7-911b-fb7956609eb5

https://ntrs.nasa.gov/api/citations/20130009067/downloads/2013000
9067.pdf 

3.3 Peck’s Temperature-
Humidity Relationship 
Prediction 

- An Evaluation of 
Effects of Molding
Compound
Properties on the
Reliability of Ag
Wire Bonded
Components

https://ieeexplore.ieee.org/abstract/document/7999992 

3.4 Accelerated 
Performance Analysis 

TBS - Please 
consider submitting 
a case study for 
inclusion

3.4.1 Arrhenius - Degradation of 
Leakage Currents
and Reliability
Prediction for 
Tantalum Capacitors

-Improving
Reliability of High
Power Quasi-CW
Laser Diode Arrays
Operating in Long
Pulse

- Damage
Propagation
Modeling for
Aircraft Engine
Prognostics 

- A Thermal
Runaway Failure
Model for Low-
Voltage BME
Ceramic Capacitors
with Defects 

https://ntrs.nasa.gov/citations/20160001192 

https://ntrs.nasa.gov/api/citations/20060048507/downloads/2006004
8507.pdf 

https://ntrs.nasa.gov/api/citations/20090029214/downloads/2009002
9214.pdf 

https://ntrs.nasa.gov/api/citations/20170003045/downloads/2017000
3045.pdf 

3.4.2 Inverse Power TBS - Please 
consider submitting 
a case study for 
inclusion 

https://meta.gsfc.nasa.gov/IntelexLogin/Intelex/Application/SCMSConfigMan/ModernProjLibInventory/Forms/SCMS_DocDetail/View/0d22ecd2-508a-42e7-911b-fb7956609eb5
https://meta.gsfc.nasa.gov/IntelexLogin/Intelex/Application/SCMSConfigMan/ModernProjLibInventory/Forms/SCMS_DocDetail/View/0d22ecd2-508a-42e7-911b-fb7956609eb5
https://meta.gsfc.nasa.gov/IntelexLogin/Intelex/Application/SCMSConfigMan/ModernProjLibInventory/Forms/SCMS_DocDetail/View/0d22ecd2-508a-42e7-911b-fb7956609eb5
https://ntrs.nasa.gov/api/citations/20130009067/downloads/20130009067.pdf
https://ntrs.nasa.gov/api/citations/20130009067/downloads/20130009067.pdf
https://ieeexplore.ieee.org/abstract/document/7999992
https://ntrs.nasa.gov/citations/20160001192
https://ntrs.nasa.gov/api/citations/20060048507/downloads/20060048507.pdf
https://ntrs.nasa.gov/api/citations/20060048507/downloads/20060048507.pdf
https://ntrs.nasa.gov/api/citations/20090029214/downloads/20090029214.pdf
https://ntrs.nasa.gov/api/citations/20090029214/downloads/20090029214.pdf
https://ntrs.nasa.gov/api/citations/20170003045/downloads/20170003045.pdf
https://ntrs.nasa.gov/api/citations/20170003045/downloads/20170003045.pdf
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Section of PoF Handbook Case Study Name Link 
3.4.3 Coffin-Manson - Damage

Propagation
Modeling for
Aircraft Engine
Prognostics 

- X-43A Rudder
Spindle Fatigue Life 
Estimate and
Testing

https://ntrs.nasa.gov/api/citations/20090029214/downloads/2009002
9214.pdf 

https://ntrs.nasa.gov/api/citations/20050136675/downloads/2005013
6675.pdf 

 3.4.4 Zhurkov Equation TBS - Please 
consider submitting 
a case study for 
inclusion

3.4.5 Palmgren - Analysis and Life
Testing for Design of 
Cryogenic Bearing
Assemblies on the
James Webb Space
Telescope Optical
Telescope Element 

https://www.researchgate.net/publication/267595987_Analysis_and_L
ife_Testing_for_Design_of_Cryogenic_Bearing_Assemblies_on_the_Ja
mes_Webb_Space_Telescope_Optical_Telescope_Element 

3.4.6 Eyring Modeling - Damage
Propagation
Modeling for
Aircraft Engine
Prognostics 

https://ntrs.nasa.gov/api/citations/20090029214/downloads/2009002
9214.pdf 

4.0 Deterministic Methods 
4.1 What Are Deterministic 
Methods? 

TBS - Please 
consider submitting 
a case study for 
inclusion 

4.2  Electromigration in 
Electrical and Electronic 
Components 

TBS - Please 
consider submitting 
a case study for 
inclusion 

4.2.1 Metals TBS - Please 
consider submitting 
a case study for 
inclusion 

4.2.2 Migration TBS - Please 
consider submitting 
a case study for 
inclusion 

4.2.3 The Fluctuation-
Dissipation Theorem 

TBS - Please 
consider submitting 
a case study for 
inclusion 

4.2.4 Viscous Drag and 
Brownian Motion 

TBS - Please 
consider submitting 
a case study for 
inclusion 

4.2.5 Electromigration in 
Interconnection Traces and 
Vias in Integrated Circuits 

TBS - Please 
consider submitting 
a case study for 
inclusion 

https://ntrs.nasa.gov/api/citations/20090029214/downloads/20090029214.pdf
https://ntrs.nasa.gov/api/citations/20090029214/downloads/20090029214.pdf
https://ntrs.nasa.gov/api/citations/20050136675/downloads/20050136675.pdf
https://ntrs.nasa.gov/api/citations/20050136675/downloads/20050136675.pdf
https://www.researchgate.net/publication/267595987_Analysis_and_Life_Testing_for_Design_of_Cryogenic_Bearing_Assemblies_on_the_James_Webb_Space_Telescope_Optical_Telescope_Element
https://www.researchgate.net/publication/267595987_Analysis_and_Life_Testing_for_Design_of_Cryogenic_Bearing_Assemblies_on_the_James_Webb_Space_Telescope_Optical_Telescope_Element
https://www.researchgate.net/publication/267595987_Analysis_and_Life_Testing_for_Design_of_Cryogenic_Bearing_Assemblies_on_the_James_Webb_Space_Telescope_Optical_Telescope_Element
https://ntrs.nasa.gov/api/citations/20090029214/downloads/20090029214.pdf
https://ntrs.nasa.gov/api/citations/20090029214/downloads/20090029214.pdf
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Section of PoF Handbook Case Study Name Link 

4.3 Thermal Physics of 
Failure 

TBS - Please 
consider submitting 
a case study for 
inclusion

4.3.1 Thermal Failure 
Mechanisms 

- Temperature
cycling and fatigue
in electronics 

https://www.researchgate.net/publication/306135282_Temperature_c
ycling_and_fatigue_in_electronics 

4.3.2 Thermally Induced 
Failure Likelihood 

- Thermal barrier
coating life
prediction model
development

- A Thermal
Runaway Failure
Model for Low-
Voltage BME
Ceramic Capacitors
with Defects 

-Analysis of 
thermomechanical
fatigue of 
unidirectional
titanium metal
matrix composites

-Comparison of 
experimental and
theoretical thermal 
fatigue lives for five
nickel-base alloys

https://ntrs.nasa.gov/api/citations/19890003549/downloads/1989000
3549.pdf 

https://ntrs.nasa.gov/api/citations/20170003045/downloads/2017000
3045.pdf 

https://ntrs.nasa.gov/api/citations/19910022363/downloads/1991002
2363.pdf 

https://ntrs.nasa.gov/api/citations/19720016935/downloads/1972001
6935.pdf 

4.3.3 Thermal Failure 
Uncertainties 

TBS - Please 
consider submitting 
a case study for 
inclusion 

4.4 Fluid (Pipe Flow) TBS - Please 
consider submitting 
a case study for 
inclusion 

4.5 Electromagnetics (Wave 
Optics, Ray Optics, AC/DC 

- Inferring the
Probability
Distribution of the
Electromagnetic
Susceptibility of 
Equipment from a
Limited Set of Data 

https://ieeexplore.ieee.org/document/8485108 

https://www.researchgate.net/publication/306135282_Temperature_cycling_and_fatigue_in_electronics
https://www.researchgate.net/publication/306135282_Temperature_cycling_and_fatigue_in_electronics
https://ntrs.nasa.gov/api/citations/19890003549/downloads/19890003549.pdf
https://ntrs.nasa.gov/api/citations/19890003549/downloads/19890003549.pdf
https://ntrs.nasa.gov/api/citations/20170003045/downloads/20170003045.pdf
https://ntrs.nasa.gov/api/citations/20170003045/downloads/20170003045.pdf
https://ntrs.nasa.gov/api/citations/19910022363/downloads/19910022363.pdf
https://ntrs.nasa.gov/api/citations/19910022363/downloads/19910022363.pdf
https://ntrs.nasa.gov/api/citations/19720016935/downloads/19720016935.pdf
https://ntrs.nasa.gov/api/citations/19720016935/downloads/19720016935.pdf
https://ieeexplore.ieee.org/document/8485108
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Section of PoF Handbook Case Study Name Link 
4.5 Electromagnetics (Wave 
Optics, Ray Optics, AC/DC 

- Probability of EMC
Failure and
Sensitivity Analysis
With Regard to
Uncertain Variables 
by Reliability
Methods

https://hal.archives-ouvertes.fr/hal-01116322/document 

4.6 Structural Analysis 
Modeling 

4.6.1 Fatigue Analysis 

- NESC Bellow 
Material
Compatibility 

- Model-Based
Failure Assessment
of Sounding Rocket
Mission PWAs

- X-43A Rudder
Spindle Fatigue Life 
Estimate and
Testing

- Micromechanics-
Based Progressive
Failure Analysis of 
Composite
Laminates Using
Different
Constituent Failure 
Theories

-Resolution of a
Reflector Shroud
Fatigue Failure 

https://rmakp.msfc.nasa.gov/download/attachments/100761794/B.3%
20Case%20Study%20Fatigue%20Analysis%20NESC%20Bellows%20Mat
erial%20Compatibility%20Assessment.pdf?api=v2 

https://rmakp.msfc.nasa.gov/download/attachments/100761794/B.1%
20Case%20Study%20MB-
Failure%20Assessment%20of%20Rocket%20Mission%20PWAs.pdf?api
=v2 

https://ntrs.nasa.gov/api/citations/20050136675/downloads/2005013
6675.pdf 

https://aims.asu.edu/wp-content/uploads/2019/07/Micromechanics-
based-progressive-failure-analysis-of-composite-laminates-using-
different-constituent-failure-theories.pdf  

https://ntrs.nasa.gov/api/citations/20180007283/downloads/2018000
7283.pdf 

4.6.2 Damage Tolerance 
(Fracture) Analysis 

- GEDI RTA Fracture
Analysis

- Analysis of Space
Shuttle Flight 
Hardware Crack or
Crack-Like Defect
Data 

https://ipdtdms.gsfc.nasa.gov/documentation/index.cfm?id=39474&ty
pe=1 

https://rmakp.msfc.nasa.gov/download/attachments/100761794/B.5%
20Case%20Study%20Space%20Shuttle%20Analysis.pdf?api=v2 

4.6.3 Creep TBS - Please 
consider submitting 
a case study for 
inclusion 

4.7 Acoustics TBS - Please 
consider submitting 
a case study for 
inclusion 

https://hal.archives-ouvertes.fr/hal-01116322/document
https://rmakp.msfc.nasa.gov/download/attachments/100761794/B.3%20Case%20Study%20Fatigue%20Analysis%20NESC%20Bellows%20Material%20Compatibility%20Assessment.pdf?api=v2
https://rmakp.msfc.nasa.gov/download/attachments/100761794/B.3%20Case%20Study%20Fatigue%20Analysis%20NESC%20Bellows%20Material%20Compatibility%20Assessment.pdf?api=v2
https://rmakp.msfc.nasa.gov/download/attachments/100761794/B.3%20Case%20Study%20Fatigue%20Analysis%20NESC%20Bellows%20Material%20Compatibility%20Assessment.pdf?api=v2
https://rmakp.msfc.nasa.gov/download/attachments/100761794/B.1%20Case%20Study%20MB-Failure%20Assessment%20of%20Rocket%20Mission%20PWAs.pdf?api=v2
https://rmakp.msfc.nasa.gov/download/attachments/100761794/B.1%20Case%20Study%20MB-Failure%20Assessment%20of%20Rocket%20Mission%20PWAs.pdf?api=v2
https://rmakp.msfc.nasa.gov/download/attachments/100761794/B.1%20Case%20Study%20MB-Failure%20Assessment%20of%20Rocket%20Mission%20PWAs.pdf?api=v2
https://rmakp.msfc.nasa.gov/download/attachments/100761794/B.1%20Case%20Study%20MB-Failure%20Assessment%20of%20Rocket%20Mission%20PWAs.pdf?api=v2
https://ntrs.nasa.gov/api/citations/20050136675/downloads/20050136675.pdf
https://ntrs.nasa.gov/api/citations/20050136675/downloads/20050136675.pdf
https://aims.asu.edu/wp-content/uploads/2019/07/Micromechanics-based-progressive-failure-analysis-of-composite-laminates-using-different-constituent-failure-theories.pdf
https://aims.asu.edu/wp-content/uploads/2019/07/Micromechanics-based-progressive-failure-analysis-of-composite-laminates-using-different-constituent-failure-theories.pdf
https://aims.asu.edu/wp-content/uploads/2019/07/Micromechanics-based-progressive-failure-analysis-of-composite-laminates-using-different-constituent-failure-theories.pdf
https://ntrs.nasa.gov/api/citations/20180007283/downloads/20180007283.pdf
https://ntrs.nasa.gov/api/citations/20180007283/downloads/20180007283.pdf
https://ipdtdms.gsfc.nasa.gov/documentation/index.cfm?id=39474&type=1
https://ipdtdms.gsfc.nasa.gov/documentation/index.cfm?id=39474&type=1
https://rmakp.msfc.nasa.gov/download/attachments/100761794/B.5%20Case%20Study%20Space%20Shuttle%20Analysis.pdf?api=v2
https://rmakp.msfc.nasa.gov/download/attachments/100761794/B.5%20Case%20Study%20Space%20Shuttle%20Analysis.pdf?api=v2
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Section of PoF Handbook Case Study Name Link 
4.8 Chemical (Batteries and 
Fuel Cells, Electrodeposition, 
Chemical Reactions) 

- An Investigation of 
the Electrical Short
Circuit
Characteristics of 
Tin Whiskers 

-Reliability of 
Radioisotope Stirling
Convertor Linear
Alternator

https://ntrs.nasa.gov/api/citations/20130011768/downloads/2013001
1768.pdf 

https://ntrs.nasa.gov/api/citations/20060012337/downloads/2006001
2337.pdf 

4.9 Radiation Physics of 
Failure in Semiconductors 

4.9.1 Total Ionizing Dose -Statistical Methods
for Large Flight Lots
and Ultra-high
Reliability
Applications 

https://ntrs.nasa.gov/api/citations/20050210085/downloads/2005021
0085.pdf 

4.9.2 Total Non-Ionizing 
Dose/Displacement Damage 
Dose 

-New Approach to
Total Dose
Specification for
Spacecraft
Electronics 

https://ntrs.nasa.gov/api/citations/20170004853/downloads/2017000
4853.pdf 

4.9.3 Single Event Effects - Single-Event
Transient Case
Study for System
Level Radiation
Effects Analysis

https://ntrs.nasa.gov/citations/20210010826 

4.9.4 Analysing Radiation-
Induced Failure Modes 

TBS - Please 
consider submitting 
a case study for 
inclusion 

4.9.5 Instantaneous 
Radiation Failures (Single 
Event Effects) 

TBS - Please 
consider submitting 
a case study for 
inclusion 

4.9.6 Likelihood of Radiation 
Induced Failure Summary 

TBS - Please 
consider submitting 
a case study for 
inclusion 

5.0 Formulating 
Comprehensive Results 
From Individual PoF Findings 
5.1 Aggregation Approach TBS - Please 

consider submitting  
a case study for 
inclusion 

5.2. Inclusive Relationship 
Finding Aggregation 

TBS - Please 
consider submitting  
a case study for 
inclusion 

https://ntrs.nasa.gov/api/citations/20130011768/downloads/20130011768.pdf
https://ntrs.nasa.gov/api/citations/20130011768/downloads/20130011768.pdf
https://ntrs.nasa.gov/api/citations/20060012337/downloads/20060012337.pdf
https://ntrs.nasa.gov/api/citations/20060012337/downloads/20060012337.pdf
https://ntrs.nasa.gov/api/citations/20050210085/downloads/20050210085.pdf
https://ntrs.nasa.gov/api/citations/20050210085/downloads/20050210085.pdf
https://ntrs.nasa.gov/api/citations/20170004853/downloads/20170004853.pdf
https://ntrs.nasa.gov/api/citations/20170004853/downloads/20170004853.pdf
https://ntrs.nasa.gov/citations/20210010826


NASA/SP-20230004376 

Page 84 of 92 

Section of PoF Handbook Case Study Name Title 
5.3. Complementary 
Relationship Finding 
Aggregation 

TBS - Please 
consider submitting 
a case study for 
inclusion 

5.4 Interrelated Relationship 
Finding Aggregation 

TBS - Please 
consider submitting 
a case study for 
inclusion 

5.5 Aggregation Assistance TBS - Please 
consider submitting 
a case study for 
inclusion 

6.0 The Evolution of 
the Physics of 
Failure 
6.1 NASA Path Forward TBS - Please 

consider submitting 
a case study for 
inclusion

6.2 Technology Support TBS - Please 
consider submitting 
a case study for 
inclusion

6.3 Advanced Technology 
Infusion 
6.3.1 Artificial Intelligence 
(AI), Machine Learning (ML) 

TBS - Please 
consider submitting 
a case study for 
inclusion

6.3.2 Data Monitoring/ 
Analytics 

TBS - Please 
consider submitting 
a case study for 
inclusion

6.4 Methodology Innovation 
Infusion 
6.4.1 Remaining Useful Life 
(RUL) 

TBS - Please 
consider submitting 
a case study for 
inclusion 

6.4.2 Digital Twin Usage TBS - Please 
consider submitting 
a case study for 
inclusion 

https://ntrs.nasa.gov/api/citations/20170007965/downloads/2017000
7965.pdf 

https://ntrs.nasa.gov/api/citations/20170007965/downloads/20170007965.pdf
https://ntrs.nasa.gov/api/citations/20170007965/downloads/20170007965.pdf
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Appendix D. Acronyms 

AC critical crack size 
ADC Analog-Digital Converter 
AI Artificial Intelligence 
AND logical AND 
ASET analog single-event transient 
BARC Bhabha Atomic Research Centre 
BEOL Back End of Line 
BJT bipolar junction transistor 
CAD Computer Aided Design 
CCD Charge Coupled Device 
CDF cumulative density function 
C&DH command and data handling 
CIS CMOS image sensors 
CMOS complementary metal oxide semiconductor 
CPU central processing unit 
CRÈME96 Cosmic Ray Effects on Micro-Electronics (software) 
CTE charge transfer efficiency 
DC direct current 
DDD displacement damage dose 
DRAM dynamic random-access memory 
DSEE destructive single event effects 
DSET digital single-event transient 
EDAC error detection and correction  
EEE electrical, electronic, and electromechanical 
ELDRS enhanced low dose-rate sensitivity 
ESCC european space components coordination 
FDIR fault-detection-isolation-and-recovery 
FMECA Failure Modes, Effects, and Criticality Analysis 
FOM figure of merit 
FPGA Field Programmable Gate Array 
FS factor of safety 
GCR galactic cosmic rays 
GEDI Global Ecosystem Dynamics Investigation 
GEO geosynchronous 
GNC Guideance Navigation and Control 
GOES Geostationary Operational Environmental Satellite 
GSFC Goddard Space Flight Center 
HDBK handbook 
HNC hardness noncritical 
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HQ Headquarters 
IBM International Business Machines 
IC integrated circuit 
IEEE Institute of Electrical and Electronics Engineers 
ISS International Space Station 
JFET junction gate field effect transistor 
JPL Jet Propulsion Laboratory 
JSC Johnson Space Center 
LET linear energy transfer 
MATLAB MATrix LABoratory 
MBU multiple-bit upset 
MCU multiple-cell upset 
MEI Millennium Engineering and Integration 
MIL military 
ML machine learning 
MLCC multi-layer ceramic capacitor 
MMPDS Metallic Materials Properties Development and Standardization 
MODIS Moderate Resolution Imaging Spectroradiometer 
MOS metal oxide semiconductor 
MOSFET metal oxide semiconductor field effect transistor 
MTTF mean time to failure 
NDSEE non-destructive single event effects 
NEPAG NASA Electronic Parts Assurance Group  
NESC NASA Engineering Safety Center 
NIEL non-ionizing energy loss 
NMOS N-type metal oxide semiconductor
NPR NASA Procdural Requirements
NSREC Nuclear and Space Radiation Effects Conference
NTSP NASA Technical Standards Program
OR logical OR
OSMA Office of Safety and Mission Assurance
PDE partial differential equations
PDF probability density function
PIXL Planetary Instrument for X-ray Lithochemistry
PKA primary knock-on atom
PMAD Radiation-Hardened CubeSat Power Management & Distribution
PWA printed wiring assemblies
PWM pulse-width modulator
RDM radiation design margin
RH relative humidity
RHA radiation hardness assurance
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RPP rectangular parallelepiped  
RTA Receiver Telescope Assembly 
RUL remaining useful life 
SBU single-bit upset 
SEB single-event burnout 
SEDR single-event dielectric rupture 
SEE single-event effect 
SEECA single-event effect criticality analysis 
SEFI single-event functional interrupt 
SEGR single-event gate rupture 
SEL single-event latchup 
SEP solar energetic particles 
SET single-event transient 
SEU single-event upset 
SN stress life curve 
SRAM static random-access memory 
STD standard 
STS Space Transportation System 
TBD to be determined 
TID total ionizing dose 
TNID total non-ionizing dose 
TST transition state theory  
UAI use as is  
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