

Overview

• 𝐝𝐋: Differential Dynamic Logic for hybrid programs !

Result: Plaidypvs "

• PVS: Interactive theorem prover #

• Formally verified soundness of 𝐝𝐋

• Fully opera;onal in PVS

• Leveraging features of PVS to extend 𝐝𝐋

[1] Differen+al Dynamic Logic website, André Platzer: h@ps://symbolaris.com/logic/dL.html
[2] PVS website, SRI Interna+onal: h@ps://pvs.csl.sri.com

[3] Plaidypvs in NASA PVS Library: https://github.com/nasa/pvslib/tree/master/dL

https://symbolaris.com/logic/dL.html
https://pvs.csl.sri.com/
https://github.com/nasa/pvslib/tree/master/dL

Hybrid Systems

• Hybrid system: dynamical
system that exhibits
• Continuous behavior
• Discrete behavior

Want

• Formal specifica<on
of hybrid systems

• Formal reasoning
of hybrid systems

Hybrid Programs

Hybrid programs allow formal specifica<on of hybrid systems:
• Discrete jump set:

(𝑥! ≔ 𝜃!, … , 𝑥$ ≔ 𝜃$)

• Differen;al equa;ons:
{𝑥!% ≔ 𝜃!, … , 𝑥$% ≔ 𝜃$ & 𝜒}

• 𝑥& &'!
$ variables

• 𝜃& &'!
$ assignments (e.g. – func;ons of exis;ng variable values)

• 𝜒 first order formula that describes domain

Example:
𝑥 ≔ 0 , 𝑦 ≔ 𝑐 ; 𝑥% = 𝑦, 𝑦% = −𝑥 & 𝑦 ≥ 0

Hybrid Programs

𝑥

𝑦
𝑐

Example:
𝑥 ≔ 0 , 𝑦 ≔ 𝑐 ; 𝑥% = 𝑦, 𝑦% = −𝑥 & 𝑦 ≥ 0

Hybrid Programs (con7nued)

For hybrid programs 𝐻𝑝!, 𝐻𝑝#, first-order formula 𝜒:
• Choice 𝐻𝑝! ∪ 𝐻𝑝#

• Sequence 𝐻𝑝!; 𝐻𝑝#

• Repeat 𝐻𝑝! ∗

• Test ? 𝜒

Example: ? 𝑦 > 0 ; 𝑥% = 𝑦, 𝑦% = −𝑥 & 𝑦 ≥ 0
⋃

? 𝑦 ≤ 0 ; 𝑦% = −𝑐

*

Hybrid Programs (con7nued)

Example: ? 𝑦 > 0 ; 𝑥% = 𝑦, 𝑦% = −𝑥 & 𝑦 ≥ 0
∪

? 𝑦 ≤ 0 ; 𝑦% = −𝑐

*

𝑥

𝑦
𝑐

Hybrid Programs (con7nued)

Example: ? 𝑦 > 0 ; 𝑥% = 𝑦, 𝑦% = −𝑥 & 𝑦 ≥ 0
∪

? 𝑦 ≤ 0 ; 𝑦% = −𝑐

*

𝑦
𝑐

𝑥

Hybrid Programs (continued)

Example: ? 𝑦 > 0 ; 𝑥% = 𝑦, 𝑦% = −𝑥 & 𝑦 ≥ 0
∪

? 𝑦 ≤ 0 ; 𝑦% = −𝑐

*

𝑦

This is a Dubins path!𝑐

𝑥

𝐝𝐋: Differential Dynamic Logic

𝐝𝐋 allows formal reasoning of hybrid programs:
• For hybrid program 𝐻𝑝 and predicate P
• All runs [𝐻𝑝]P

• Some runs ⟨𝐻𝑝⟩P

Example: Let
𝐻𝑝 ≡ ? 𝑦 > 0 ; 𝑥% = 𝑦, 𝑦% = −𝑥 & 𝑦 ≥ 0

P = 𝑥# + 𝑦# = 𝑐# ,
then
y = c#, x = 0 → 𝐻𝑝 𝑃 y = c , x = 0 → ⟨𝐻𝑝⟩(y = 0)

𝐝𝐋: Differential Dynamic Logic

Example: Let
𝐻𝑝 ≡ ? 𝑦 > 0 ; 𝑥% = 𝑦, 𝑦% = −𝑥 & 𝑦 ≥ 0

P = 𝑥# + 𝑦# = 𝑐# ,
then

𝑥

𝑦

𝑐#

y = c , x = 0 ⊢ 𝐻𝑝 𝑃 y = c , x = 0 ⊢ ⟨𝐻𝑝⟩(y = 0)

𝐝𝐋: Differen7al Dynamic Logic – Rule Schema

DLrules

The Author

June 7, 2022

� ` J J ` [↵]J J ` P

� ` [↵⇤]P

�, q(x) ` p(x) q(x) ` [x0 := f(x)](p(x))0

� ` [x0 = f(x)& q(x)]p(x)

[Hp1]P ^ [Hp2]P

[Hp1 [Hp2]P

1

DLrules

The Author

June 7, 2022

� ` J J ` [↵]J J ` P

� ` [↵⇤]P

�, q(x) ` p(x) q(x) ` [x0 := f(x)](p(x))0

� ` [x0 = f(x)& q(x)]p(x)

[Hp1]P ^ [Hp2]P

[Hp1 [Hp2]P

1

DLrules

The Author

June 7, 2022

� ` J J ` [↵]J J ` P

� ` [↵⇤]P

�, q(x) ` p(x) q(x) ` [x0 := f(x)](p(x))0

� ` [x0 = f(x)& q(x)]p(x)

[Hp1]P ^ [Hp2]P

[Hp1 [Hp2]P

1

Union axiom:

Loop rule:

Differen;al invariant
rule:

….and many more! ["]

[4] André Platzer. 2018. Logical Founda+ons of Cyber-Physical Systems. Springer, Cham. h@ps://doi.org/10.1007/978-3-319-63588-0

https://doi.org/10.1007/978-3-319-63588-0

𝐝𝐋: Proof

DLrules

The Author

June 7, 2022

� ` J J ` [↵]J J ` P

� ` [↵⇤]P

�, q(x) ` p(x) q(x) ` [x0 := f(x)](p(x))0

� ` [x0 = f(x)& q(x)]p(x)

[Hp1]P ^ [Hp2]P

[Hp1 [Hp2]P

1

Differen;al invariant
rule:

y = c , 𝑥 = 0 ⊢ [{𝑥"= 𝑦, 𝑦" = −𝑥}](x# + y# = c#)

[4] André Platzer. 2018. Logical Founda+ons of Cyber-Physical Systems. Springer, Cham. h@ps://doi.org/10.1007/978-3-319-63588-0

https://doi.org/10.1007/978-3-319-63588-0

𝐝𝐋: Proof

DLrules

The Author

June 7, 2022

� ` J J ` [↵]J J ` P

� ` [↵⇤]P

�, q(x) ` p(x) q(x) ` [x0 := f(x)](p(x))0

� ` [x0 = f(x)& q(x)]p(x)

[Hp1]P ^ [Hp2]P

[Hp1 [Hp2]P

1

Differen;al invariant
rule:

y = c , 𝑥 = 0 ⊢ [{𝑥"= 𝑦, 𝑦" = −𝑥}](x# + y# = c#)

[4] André Platzer. 2018. Logical Founda+ons of Cyber-Physical Systems. Springer, Cham. h@ps://doi.org/10.1007/978-3-319-63588-0

https://doi.org/10.1007/978-3-319-63588-0

𝐝𝐋: Proof

DLrules

The Author

June 7, 2022

� ` J J ` [↵]J J ` P

� ` [↵⇤]P

�, q(x) ` p(x) q(x) ` [x0 := f(x)](p(x))0

� ` [x0 = f(x)& q(x)]p(x)

[Hp1]P ^ [Hp2]P

[Hp1 [Hp2]P

1

Differen;al invariant
rule:

y = c , 𝑥 = 0 ⊢ [{𝑥"= 𝑦, 𝑦" = −𝑥}](x# + y# = c#)

⊢ [𝑥": = 𝑦, 𝑦": = −𝑥](2 x x′ + 2 y y′ = 0)

Apply Di rule

𝑦 = 𝑐, 𝑥 = 0 ⊢ x# + y# = c#

[4] André Platzer. 2018. Logical Founda+ons of Cyber-Physical Systems. Springer, Cham. h@ps://doi.org/10.1007/978-3-319-63588-0

https://doi.org/10.1007/978-3-319-63588-0

𝐝𝐋: Proof

DLrules

The Author

June 7, 2022

� ` J J ` [↵]J J ` P

� ` [↵⇤]P

�, q(x) ` p(x) q(x) ` [x0 := f(x)](p(x))0

� ` [x0 = f(x)& q(x)]p(x)

[Hp1]P ^ [Hp2]P

[Hp1 [Hp2]P

1

Differential invariant
rule:

y = c , 𝑥 = 0 ⊢ [{𝑥"= 𝑦, 𝑦" = −𝑥}](x# + y# = c#)

⊢ [𝑥": = 𝑦, 𝑦": = −𝑥](2 x x′ + 2 y y′ = 0)

⊢ 2 x y + 2 y −x = 0

𝑦 = 𝑐, 𝑥 = 0 ⊢ x# + y# = c#

⊢ 0# + c# = c#

Apply Di rule

Apply
subs4tu4on

[4] André Platzer. 2018. Logical Founda+ons of Cyber-Physical Systems. Springer, Cham. h@ps://doi.org/10.1007/978-3-319-63588-0

https://doi.org/10.1007/978-3-319-63588-0

𝐝𝐋: Proof

DLrules

The Author

June 7, 2022

� ` J J ` [↵]J J ` P

� ` [↵⇤]P

�, q(x) ` p(x) q(x) ` [x0 := f(x)](p(x))0

� ` [x0 = f(x)& q(x)]p(x)

[Hp1]P ^ [Hp2]P

[Hp1 [Hp2]P

1

Differen;al invariant
rule:

y = c , 𝑥 = 0 ⊢ [{𝑥"= 𝑦, 𝑦" = −𝑥}](x# + y# = c#)

⊢ [𝑥": = 𝑦, 𝑦": = −𝑥](2 x x′ + 2 y y′ = 0)

⊢ 2 x y + 2 y −x = 0

⊢ 0 = 0

⊢ 0# + c# = c#

Apply Di rule

Apply
subs4tu4on

Arithme4c!

𝑦 = 𝑐, 𝑥 = 0 ⊢ x# + y# = c#

[4] André Platzer. 2018. Logical Founda+ons of Cyber-Physical Systems. Springer, Cham. h@ps://doi.org/10.1007/978-3-319-63588-0

https://doi.org/10.1007/978-3-319-63588-0

• Introduc;on
• Hybrid programs
• 𝐝𝐋

• Plaidypvs
• PVS
• Extensions of 𝐝𝐋

in PVS
• Examples

• Concluding remarks

L("!, $%!, $&!)

("", $%", $&")

("#, $%#, $&#)

$%" $&"

Outline

PVS

• “Prototype Verifica/on System” developed by SRI Interna/onal
• Interac/ve theorem prover
• Higher order logic
• Completely typed, dependent types

• Automa/on
• Customizable tac/cs and strategies

• PVSio anima/on and rapid prototyping
• NASA PVS library [%]

• 58 libraries
• Visual studio code extension [']

[5] NASAlib, maintained by NASA Langley Formal Methods Group: h@ps://github.com/nasa/pvslib
[6] VSCode-PVS, Paolo Masci: h@ps://github.com/nasa/vscode-pvs

https://github.com/nasa/pvslib
https://github.com/nasa/vscode-pvs

Specifica;on (.pvs) Interac;ve theorem prover

PVS – Prototype Verifica7on System

Proof (.prf) Interac;ve theorem prover

PVS – Prototype Verifica7on System

Hybrid Programs in PVS

Values of variables Func;ons on environments

Assignments

Hybrid Programs in PVS

Syntax of hybrid programs Seman;cs of hybrid programs

Seman;cs of

Hybrid Programs in PVS

𝑥 ≥ 1 ∧ 𝑣 ≥ 0 ∧ 𝑎 ≥ 0 ⊢

𝑎 ≔ 𝑎 + 1 ; 𝑥% = 𝑣, 𝑣% = 𝑎 ∗ 𝑥 ≥ 1

In PVS:

Recall:

Plaidypvs

• Formal verifica<on of soundness of 𝐝𝐋)

• Fully opera<onal embedding 𝐝𝐋

• Extensions of 𝐝𝐋 in PVS

[7] Previous Formal Verifica+on of soundness of 𝐝𝐋 in Coq and Isabelle/Hol:
Brandon Bohrer, Vincent Rahli, Ivana Vuko+c, Marcus Völp, and André Platzer. 2017. Formally verified differen+al dynamic logic.
In Proceedings of the 6th ACM SIGPLAN Conference on Cer+fied Programs and Proofs.208–221. h@ps://doi.org/10.1145/3018610.3018616

https://doi.org/10.1145/3018610.3018616

Formal Verifica7on of Soundness of 𝐝𝐋

Loop rule:

Differen;al
invariant

rule:

81 proven rules/axioms of 𝐝𝐥 in PVS

Fully Opera&onal Embedding of 𝐝𝐋

• Proof rules implemented as strategies in PVS
• Fully opera;onal 𝐝𝐋 within interac;ve prover console

of PVS

• Proof rules implemented as strategies in PVS
• Fully opera;onal 𝐝𝐋 within interac;ve prover console

of PVS

Fully Opera&onal Embedding of 𝐝𝐋

• Proof rules implemented as strategies in PVS
• Fully opera;onal 𝐝𝐋 within interac;ve prover console

of PVS

Fully Opera&onal Embedding of 𝐝𝐋

• Proof rules implemented as strategies in PVS
• Fully opera;onal 𝐝𝐋 within interac;ve prover console

of PVS

Fully Opera&onal Embedding of 𝐝𝐋

• Proof rules implemented as strategies in PVS
• Fully opera;onal 𝐝𝐋 within interac;ve prover console

of PVS

Fully Opera&onal Embedding of 𝐝𝐋

• Proof rules implemented as strategies in PVS
• Fully opera;onal 𝐝𝐋 within interac;ve prover console

of PVS

Fully Opera&onal Embedding of 𝐝𝐋

• Proof rules implemented as strategies in PVS
• Fully opera;onal 𝐝𝐋 within interac;ve prover console

of PVS

Fully Opera&onal Embedding of 𝐝𝐋

Generalized Reasoning of Hybrid Programs

• Fully typed specifica;on of hybrid programs
• Reasoning at the type level (proper4es of groups of hybrid programs)
• Reasoning for arbitrary hybrid programs (e.g., arbitrarily many variables)

• A hybrid program of type slow is always of type behind

Summary

• 𝐝𝐋: Differen;al Dynamic Logic for hybrid programs

Result: Plaidypvs "

• PVS: Interac;ve theorem prover

• Formal verifica;on 𝐝𝐋

• Fully opera;onal in PVS

• Leveraging features of PVS to extend 𝐝𝐋

[3] Plaidypvs in NASA PVS Library: h@ps://github.com/nasa/pvslib/tree/master/dL

https://github.com/nasa/pvslib/tree/master/dL

