

SAGEISS

Stratospheric Aerosol and Gas Experiment

An Earth Science Mission on the Internatinal Space Station

An assessment of the SAGE III/ISS temperature and pressure research products

Michael Pitts, Larry Thomason, David Flittner, and Robert Manion NASA Langley Research Center, Hampton, Virginia

Strategy for Temperature/Pressure Retrievals

- Iterative approach required due to nonlinear nature of problem
- Uses non-linear least squares fitting routine (Levenberg-Marquardt)
 - Simultaneously fits measured A-band spectra from all 14 channels and 90 tangent altitudes
 - Includes O₂ absorption, Rayleigh scattering, aerosol extinction, and O₃ absorption components
 - Solves for successive adjustments to trial T,p profiles by minimizing residuals between measured and modeled absorption

$$\chi^{2} = \sum_{i=1}^{M} \left[\frac{A_{i}^{m} - A_{i}^{c}(\mathbf{a})}{\sigma_{i}} \right]$$

Includes non-rigid hydrostatic constraint

A-band contains ~290 individual absorption lines with the distinctive R-branch and P-branch structure. Broad features are still visible at SAGE III resolution (red line)

- Forward model simulates SAGE III/ISS LOS transmission measurements in 14 O₂ A-band channels using LBL radiative transfer calculations
- > Inputs:
 - Initial guess T/p profiles
 - Pathlength matrix
 - O₂ Spectroscopic parameters (HITRAN 2016)
 - Initial guess aerosol (linear fit: slope + intercept)
 - Initial guess ozone (cross sections + ozone number density)
 - Channel wavelength map
 - Channel point spread function (PSF)
- Outputs
 - LOS transmission (O₂ + Rayleigh + aerosol + O₃)

A-band contains ~290 individual absorption lines with the distinctive R-branch and P-branch structure. Broad features are still visible at SAGE III resolution (red line)

Baseline Retrievals (Sunrise Events)

Mean SAGE III/ISS retrieved temperature and pressure profiles from 30 sunrise events during March 2018 with baseline wavelength map and PSF factor

Baseline Retrievals (Sunset Events)

Mean SAGE III/ISS retrieved temperature and pressure profiles from 30 sunset events during March 2018 with baseline wavelength map and PSF factor

Measured vs. Modeled O₂ + Rayleigh Components

Baseline wavelength registration and instrument response functions

Modeled spectra too broad and misregistered in wavelength

Wavelength and PSF Factor Adjustments

Retrievals Using Adjusted Wavelength & PSF

Mean SAGE III/ISS retrieved temperature and pressure profiles from 30 sunrise events during March 2018 with adjusted wavelength map (-0.018 nm) and PSF factor (0.95)

Retrievals Using Adjusted Wavelength & PSF

Mean SAGE III/ISS retrieved temperature and pressure profiles from 30 sunset events during March 2018 with adjusted wavelength map (-0.063 nm) and PSF factor (0.95)

Aerosol and Ozone Fitting

Retrieved aerosol and ozone components compared with measurements (aerosol interpolated from aerosol channels and AO3 ozone product)

O₂ + Rayleigh Fitting

- Mean measured vs. modeled O₂ absorption + Rayleigh scattering for 30 SS events
- Forward model parameters:
- Δλ = -0.063
- PSF Factor = 0.95
- Systematic shape of residuals may indicate that some component is not being properly fitted

MERRA-2 (left) and SAGE III/ISS (right) meridional temperature distributions compiled from sunrise events over the period 1 January -15 February 2018. The SAGE III/ISS temperature distribution captures the general temperature structure seen in MERRA-2, but is colder at the tropopause and stratopause, and somewhat noisier at higher altitudes.

- Forward Model Assessment:
 - Small wavelength shifts are apparent in A-band spectra relative to baseline registration (approximately -0.018 nm for sunset and -0.063 nm for sunrise events)
 - Baseline PSFs too broad- fits are improved using narrower (0.95 x baseline) widths
- Retrievals with adjusted forward model parameters look encouraging with *near science quality* temperature products, but some issues remain, especially in pressure product
- Future Work:
 - Continue examining sensitivity to forward model parameters
 - Bandpass (width, wings, etc.)
 - Spectroscopy (line intensities, line shape)
 - Potential altitude offset
 - Aerosol + O₃ components
 - Exclude weaker channels
 - Explore alternative retrieval approaches to L-M (e.g., Newton-Raphson)
 - Perform more detailed comparisons with correlative measurements (e.g.,radiosondes, lidar, MLS, and global analyses) to quantify precision and accuracy of T/p products