
Simplifying Requirements Formalization for
Resource-Constrained Mission-Critical Software
Carlos Mão de Ferro

LASIGE, Faculdade de Ciências,
Universidade de Lisboa
carlos@maodeferro.pt

Anastasia Mavridou
KBR Inc.

NASA Ames Research Center
anastasia.mavridou@nasa.gov

Michael Dille
KBR Inc.

NASA Ames Research Center
michael.dille@nasa.gov

Francisco Martins
Universidade dos Açores

francisco.cc.martins@uac.pt

Abstract—Developing critical software requires adherence to
rigorous software development practices, such as formal require-
ment specification and verification. Despite their importance,
such practices are often considered as complex and challenging
tasks that require a strong formal methods background. In this
paper, we present our work on simplifying the formal require-
ments specification experience for resource-constrained mission
critical software through the use of structured natural language.
To this end, we connect NASA’s FRET, a formal requirement
elicitation and authoring tool with the Shelley model checking
framework for MicroPython code. We report our experience on
using these tools to specify requirements and analyze code from
the NASA Ames PHALANX exploration concept.

Index Terms—requirements, verification, mission-critical code

I. INTRODUCTION

For many decades, since the very introduction of software-
controlled complex systems, formal design and implementa-
tion methods have been widely and successfully applied in a
broad range of safety-critical and high-reliability applications,
from medicine to industrial control to aerospace [1], [2].
Also known as cyber-physical systems (CPS), these appli-
cations integrate computation with physical processes, pre-
senting many well-studied challenges [3]. Formalisms such
as rigorous software development methodologies, static code
analysis, dynamic simulation, and logic-based verification
have gained near-universal adoption in large or mission-critical
software projects. All of these introduce considerable burden
in software development, often accounting for a large portion
of project cost and schedule [4]. Aerospace applications in
particular, presenting extreme risks to human safety and costly
hardware, are among the most ardent adopters, with NASA
famously coining the phrase “failure is not an option” [5].

This philosophy, though highly successful at producing
reliable systems, has not been without criticism, with the
pace and cost of many large development efforts compared
harshly to silicon valley’s contemporary “agile” and “fail
fast” mentality. This has contributed to a recent shift within
NASA towards pursuing more commercial and experimental
work with shorter timelines and reduced mission-assurance

This work was supported by FCT through scholarships
SFRH/BD/131418/2017 and SFRH/BI/153747/2019, and the LASIGE
Research Unit ref. UIDB/00408/2020 and ref. UIDP/00408/2020. PHALANX
concept development was co-led by Uland Wong.

scrutiny. A significant recent example is the Commercial Lunar
Payload Services (CLPS) initiative [6], which has contracted
commercial sources for instruments, robots, and spacecraft for
the surface of the moon. In contrast to traditional missions,
these have minimal oversight from NASA, instead being fully
built and operated by their providers, many of whom are
young entrants lacking the extensive experience and resources
to apply complex and often-costly formal verification tools.
Despite this, these missions are still held to high expectations
of quality assurance and success.

Further complicating matters is a broadly growing trend
towards ever more miniaturized and distributed networked
systems, two examples of which are multi-robot systems
and “internet of things” ubiquitous sensor networks. Beyond
additional cost and complexity pressures, these more typically
rely on smaller “embedded” processors that lack established
toolchains and the computational headroom to apply many
popular verification techniques, motivating new approaches.
As one such illustrative example, we introduce a NASA plan-
etary surface mission concept called PHALANX [7] which
proposes multiple small expendable hardware nodes deployed
by a robotic rover or lander to form sensor and communication
relay networks, thereby expanding the reach and awareness
of the parent vehicle. These nodes must be inexpensive and
rapidly developed for different specific missions, yet may still
provide critical backbone functionality for key mission goals.

One approach to address this void in embedded systems
is to use higher level languages with accompanying devel-
opment and testing approaches, while avoiding many typical
pitfalls of lower level languages. For instance, MicroPython [8]
is an implementation of the Python programming language
designed for microcontrollers, providing a large subset of
standard Python features in a reduced memory footprint. For
demonstrative evaluation, we have ported PHALANX to it.

Meanwhile, tools for elicitation and formalism of require-
ments can simplify and expedite verification. One such tool
is the open-source Formal Requirements Elicitation Tool
(FRET) [9] which captures requirements using natural lan-
guage, explains these diagrammatically, automatically gener-
ates corresponding linear temporal logic (LTL) formulae for
verification, and provides interactive simulation. Another such
tool is Shelley [10], a model-checking framework applying
LTL on finite traces [11], [12] to validate formalizations

write code with
annotations

update the code

visualize
model

write
requirements

update requirements

update the code based on the counterexamples

model
check

Fig. 1: Toolchain architecture
against a MicroPython model and provide state-machine vi-
sualization to assist in correcting requirements.

In this paper, we evaluate the feasibility and benefits of
integrating these two tools to perform requirements elicitation,
formalization, and analysis directly on MicroPython code,
as illustrated in Figure 1. Once requirements are written
in FRET, we export their formalizations for digestion by
Shelley, via a dedicated parser that matches each requirement
label to the corresponding identifier on a MicroPython class.
Our contribution therefore is an end-to-end simplified process
that supports the specification, understanding and formaliza-
tion of requirements in the challenging context of resource-
constrained mission-critical systems.

II. MODELING IN SHELLEY

Shelley is a model checking framework and offers a simple,
yet expressive modeling language that can be used to verify
the order of function calls in a programming language. In this
paper, we use Shelley to model and verify code written in
MicroPython. The process of extracting a Shelley model from
a MicroPython class is out of the scope of this paper, and
we instead briefly provide an intuition for the process. For
each MicroPython class, we use annotations so that developers
can describe the expected ordering of calling methods. For
instance, a method that can be called at the beginning of the
object lifecycle should be annotated with @op initial. In
addition, for each method under analysis we use the return
statement to give information about the next methods that can
follow. This way, we enforce the behavior of an object and how
it can be used in such a way that we can model check temporal
requirements. We also capture if method invocations of objects
under analysis are defined by inferring the behavior of each
method in the class, described as a regular expression. We use
the MicroPython match statement to check for exhaustive tests
on matches that take the result of a method-invocation under
analysis. Finally, the Shelley framework includes a visualiza-
tion tool that automatically generates behavior diagrams based
on the code annotations and the methods’ bodies.

A. The Coordinator running example

Our running example is based on a simplification of a
piece of the PHALANX application. In this scenario, a mobile
surface rover deploys different sensor nodes in order to form
a Wireless Sensor Network (WSN). When the deployment is
finished, the rover can move away to complete other science
tasks. After some time, the rover returns to the deployment
area to wirelessly retrieve collected sensor data from the
network. While moving, the rover searches for new nodes that
are advertising. Every time it finds a new sensor, it will change
mode to synchronize with that device and exchange some data.

Listing II.1: Class Coordinator. To make the example concise,
we abbreviated sensor to the single letter s.

1 @reqs(["RQ1", "RQ2", "RQ3"])
2 @sys(["s"])
3 class Coordinator:
4 def __init__(self):
5 self.s = Sensor()
6

7 @op_initial
8 def search(self, max):
9 for _ in range(max):

10 match self.s.available():
11 case "connected":
12 self.s.connected()
13 match self.s.tick():
14 case "ready":
15 self.s.ready()
16 return "sync"
17 case "done":
18 self.s.done()
19 return "sleep"
20 case "failed":
21 self.s.failed()
22 case "failed":
23 self.s.failed()
24 return "sleep"

25 @op
26 def sync(self):
27 data = self.s.flush()
28 # ... handle data ...
29 match self.s.tick():
30 case "ready":
31 self.s.ready()
32 return "sync"
33 case "done":
34 self.s.done()
35 return "search"
36 case "failed":
37 self.s.failed()
38 return "sleep"
39

40 @op_final
41 def sleep(self):
42 # suspend execution

search
sleep

sync

search

sleepsync

Fig. 2: Coordinator diagram based on the class methods and
the return statements.

The rover carries a moving node, called the Coordinator. Since
the Coordinator is unique in the network it might represent
a single point of failure. Therefore it is critical that the
Coordinator’s software is correct.

We now describe the Coordinator class as seen in List-
ing II.1. Each method represents a different state and the return
statements correspond to state transitions. For simplicity, we
assume only three states (hence only three methods) for the
Coordinator class:

• search: The rover is searching for new sensor nodes;
• sync: The rover established a connection and synchro-

nizes until no more data is available;
• sleep: If communication with the sensor fails or if

synchronization has completed the rover can save battery
by sleeping the Coordinator node.

The Coordinator class issues calls to another object that we
model as well. For instance, the sensor attribute (abbreviated
s) corresponds to an instance of Sensor (not shown intention-
ally). The Coordinator periodically polls the Sensor device
for new commands by issuing the call sensor.tick(). Based
on the return of this call, a specific state transition will occur
also depending on the current state, i.e., which Coordinator’s
method. Figure 2 is the behavior diagram for the methods of
the class Coordinator automatically generated by Shelley.

To verify the correct order of objects’ calls, Shelley can be
used to model check temporal requirements on the automati-
cally extracted model from the Coordinator class.

III. REQUIREMENTS IN FRET

In this section, we elaborate on several requirement exam-
ples and show how we used FRET to express requirements and
clarify subtle semantic issues. As seen in Line 1 of Listing II.1
we use the annotation @reqs to list a set of identifiers
that correspond to requirements in the FRET framework. A
FRETish requirement is described using up to six sequential
fields (the * symbol designates mandatory fields): 1) scope
specifies the time intervals where the requirement is en-
forced, 2) condition is a Boolean expression that triggers the
response to occur at the time the expression’s value becomes
true from false, or is true at the beginning of the scope
interval, 3) component* is the system component that the
requirement is levied upon, 4) shall* is used to express that
the component’s behavior must conform to the requirement,
5) timing specifies when the response shall happen, subject
to the constraints defined in scope and condition and 6)
response* is the Boolean expression that the component’s
behavior must satisfy.

For each requirement example, we show their FRETish
version and the corresponding generated formalization. FRET
generates Future Time LTL formulas for infinite and finite
traces. Shelley reasons only about finite traces.

a) Requirement RQ1: This requirement characterizes
the usage of the sensor object modeled according to
the Sensor class (not shown), which requires issuing
sensor.tick() before sensor.ready(). When using sensor
in the Coordinator class, we want to additionally enforce that
we eventually issue sensor.tick() after sensor.ready()
again, meaning that it is not enough to poll the sensor only
once.
FRETish:
if sensor ready the COORDINATOR shall eventually satisfy sensor tick

Generated infinite trace LTL formula:
((G (((! sensor_ready) & (X sensor_ready)) ->
(X (F sensor_tick)))) & (sensor_ready -> (F sensor_tick)))

Generated finite trace LTL formula:
((LAST V (((! sensor_ready) & ((! LAST) & (X sensor_ready))) ->

(X ((! LAST) U sensor_tick))))
& (sensor_ready -> ((! LAST) U sensor_tick)))

LAST represents the last time point of a bounded execution
trace. For each requirement, FRET generates textual and
diagrammatic explanations (Figure 3). In the diagram, TC
stands for Triggering Condition. The gray rectangle represents
the scope interval of the requirement, which is global, i.e.,
the whole execution trace. The orange rectangle says that the
response must hold at least somewhere in this interval.

b) Requirement RQ2: The call sensor.flush() is not
issued until we have transitioned to the sync state first, i.e.,
by issuing method sync.
FRETish:
COORDINATOR shall until sync satisfy !sensor flush

Generated infinite trace LTL formula:
(sync V ((! sensor_flush) | sync))

Fig. 3: Semantic explanations for requirement RQ1

Fig. 4: Semantic explanations for requirement RQ2.

Generated finite trace LTL formula:
((sync V ((! sensor_flush) | sync)) | (LAST V (! sensor_flush)))

The textual and diagrammatic explanations for requirement
RQ2 are shown in Figure 4. SC stands for Stop Condition. The
green rectangle says that the response must hold everywhere
in this interval. It is interesting to note that originally we
attempted to write this requirement directly in LTL without
FRET. In this initial formalization attempt we specified a
stronger property by using the strong Until operator. Using
FRET helped us focus more on the intended semantics of the
requirement and formulate it with the Release (V) temporal
operator, which does not require the sync to happen. As
part of the process, we used the FRET simulator to check
how different variable valuations affect the valuation of the
complete requirement (Figure 5).

Fig. 5: Simulating requirement RQ2

c) Requirement RQ3: At the next time step after invoking
the method search, the call sensor.available() is issued to
check if any sensor node is available to interact (cf. Figure 6).
FRETish:
Upon search COORDINATOR shall at the next timepoint
satisfy sensor available

Fig. 6: Semantic explanations for requirement RQ3.
Generated infinite trace LTL Formula:
((G (((! search) & (X search)) ->
(X (X sensor_available)))) & (search -> (X sensor_available)))

Generated finite trace LTL Formula:
((LAST V (((! search) & ((! LAST) & (X search))) ->
(X (LAST | (X sensor_available)))))
& (search -> (LAST | (X sensor_available))))

IV. VERIFICATION

The last step in our approach is to use the Shelley model
checker to verify the temporal formulae against the extracted
model. We model checked the Coordinator class against the
aforementioned three requirements. Shelley only outputs a
message when there is a violation, i.e., a requirement is not
satisfied by the model. Through the model checking act, we
found that there is an error in the Coordinator code. Shelley
output the following counterexample for requirement RQ3:
Error in specification: FAIL TO MEET REQUIREMENT
Formula: (G (((! search) & (X search)) ->
(X (X sensor.available)))) & (search -> (X sensor.available))

Counter example: search, sensor.available, sensor.connected,
sensor.tick, sensor.ready, sync, sensor.flush,
sensor.tick, sensor.done, >search, sleep<

From the counterexample, we can observe that it is actually
possible to issue search immediately followed by sleep
(which is against the specification). This execution trace is
not obvious by just looking at the code. Note that since the
for loop in Line 9 of Listing II.1 might run zero times, it is
possible that the execution jumps straight to Line 24 meaning
that the method sleep shall be executed immediately after.
Shelley can generate behavior diagrams that show the calls
inside each method making it easier to understand the code
flow. A way to fix this erroneous behavior is to repeat Lines 10
to 23 thus ensuring that the code inside loop, which starts with
the call sensor.available(), runs at least once.

V. RELATED WORK

FRET has been used before in various industrial case stud-
ies [13]–[15]. However, none of these describe work on speci-
fying requirements for model checking MicroPython mission-
critical code. Java PathFinder [16] and the Bandera Tool
Set [17], for Java, and JKind [18], for Lustre, are examples of
model checkers targeting general-purpose programming lan-
guages and focus on concurrency rather than ensuring specific
requirements about the behavior of a program. JavaBIP [19]
is a framework that uses annotations directly on Java code in
order to coordinate existing concurrent software components.

VI. CONCLUSION AND FUTURE WORK

We described a process of integrating two tools in order to
specify requirements in an intuitive format, generate formal
specifications and model check these against MicroPython
code. Our use case illustrated how it is possible to apply formal
methods to analyze MicroPython code, even for users that do
not have a strong background on temporal logics. We believe
that our approach will help delivering high-quality software
that is correct without the high costs of training a team or
using expensive modeling and simulation tools.

In the future, we plan to extend Shelley to support require-
ments that express bounded time constraints thus leveraging
the full power of the FRET framework.

REFERENCES

[1] S. P. Nanda and E. S. Grant, “A survey of formal specification applica-
tion to safety critical systems,” in ICICT, 2019, pp. 296–302.

[2] M. Luckcuck, M. Farrell, L. A. Dennis, C. Dixon, and M. Fisher, “A
summary of formal specification and verification of autonomous robotic
systems,” in IFM, ser. LCNS, vol. 11918. Springer, 2019, pp. 538–541.

[3] A. Müller, S. Mitsch, W. Retschitzegger, and W. Schwinger, “Towards
CPS verification engineering,” in iiWAS. ACM, 2020, p. 367–371.

[4] Hillel Wayne. Why don’t people use formal meth-
ods? [Online]. Available: https://www.hillelwayne.com/post/
why-dont-people-use-formal-methods/

[5] G. Kranz, Failure is not an option : mission control from Mercury to
Apollo 13 and beyond . New York, N.Y: Simon & Schuster, 2000.

[6] NASA. Commercial Lunar Payload Services. [Online]. Available:
https://www.nasa.gov/content/commercial-lunar-payload-services

[7] M. Dille, D. Nuch, S. Gupta, S. McCabe, N. Verzic, T. Fong, and
U. Wong, “PHALANX: Expendable projectile sensor networks for
planetary exploration,” in IEEE Aerospace Conference, March 2020.

[8] D. George. (2022) MicroPython. [Online]. Available: https:
//micropython.org

[9] D. Giannakopoulou, T. Pressburger, A. Mavridou, J. Rhein, J. Schumann,
and N. Shi, “Formal requirements elicitation with FRET,” in REFSQ-
2020, ser. Tools Track, vol. 2584. CEUR-WS.org, 2020.

[10] C. M. de Ferro, T. Cogumbreiro, and F. Martins, “Shelley, a framework
for model checking call ordering on hierarchical systems,” to appear in
COORDINATION, ser. LNCS. Springer, 2023.

[11] A. Bauer, M. Leucker, and C. Schallhart, “Comparing LTL semantics
for runtime verification,” Journal of Logic and Computation, vol. 20,
no. 3, pp. 651–674, 2010.

[12] G. De Giacomo, R. De Masellis, and M. Montali, “Reasoning on LTL
on finite traces: Insensitivity to infiniteness,” in AAAI. AAAI Press,
2014, p. 1027–1033.

[13] H. Bourbouh, M. Farrell, A. Mavridou, I. Sljivo, G. Brat, L. A. Dennis,
and M. Fisher, “Integrating formal verification and assurance: An
inspection rover case study,” in NFM. Springer International Publishing,
2021, pp. 53–71.

[14] M. Farrell, M. Luckcuck, O. Sheridan, and R. Monahan, “Fretting about
requirements: Formalised requirements for an aircraft engine controller,”
in REFSQ. Springer International Publishing, 2022, pp. 96–111.

[15] A. Mavridou, H. Bourbouh, D. Giannakopoulou, T. Pressburger, M. He-
jase, P.-L. Garoche, and J. Schumann, “The Ten Lockheed Martin Cyber-
Physical Challenges: Formalized, Analyzed, and Explained,” in RE,
2020, pp. 300–310.

[16] D. Giannakopoulou and C. S. Pasareanu, “Interface generation and
compositional verification in JavaPathfinder,” in FASE, ser. LNCS, vol.
5503. Springer, 2009, pp. 94–108.

[17] J. Hatcliff and M. B. Dwyer, “Using the Bandera tool set to model-check
properties of concurrent Java software,” in CONCUR, ser. LNCS, vol.
2154. Springer, 2001, pp. 39–58.

[18] A. Gacek, J. Backes, M. Whalen, L. Wagner, and E. Ghassabani, “The
JKind model checker,” in CAV. Springer, 2018, pp. 20–27.

[19] S. Bliudze, A. Mavridou, R. Szymanek, and A. Zolotukhina, “Exogenous
coordination of concurrent software components with JavaBIP,” Softw.
Pract. Exp., vol. 47, no. 11, pp. 1801–1836, 2017.

https://www.hillelwayne.com/post/why-dont-people-use-formal-methods/
https://www.hillelwayne.com/post/why-dont-people-use-formal-methods/
https://www.nasa.gov/content/commercial-lunar-payload-services
https://micropython.org
https://micropython.org

	Introduction
	Modeling in Shelley
	The Coordinator running example

	Requirements in FRET
	Verification
	Related work
	Conclusion and Future Work
	References

