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Abstract 
Machine learning (ML) models are increasingly being used in many engineering fields due to the 

advancements in ML algorithms and availability of high-speed computing power. One of the most 
popular ML class of models is artificial neural networks (ANN). ML is increasingly being used in the 
design and analysis of composite materials and structures, specifically in the constitutive modeling of 
composite materials with the focus on greatly accelerating multiscale analyses of composite materials and 
structures through development of surrogate models. Towards that end, both Python and MATLAB-based 
neural nets have been developed to predict initial stiffness and fatigue life of an eight-ply symmetric 
polymer matrix composite laminate. Two types of neural networks, a Multilayer Perceptron (MLP) and a 
Recurrent Neural Network (RNN), have been developed for both platforms. Results show that the both 
neural net types can provide an excellent estimate of initial stiffness as well as fatigue life of eight-ply 
symmetric polymer matrix composite laminate. RNNs are better able to capture the shape of the fatigue 
curve of a laminate. This tool can be very useful for system level studies to obtain an estimate of desired 
properties and life of PMC composite laminates. The associated surrogate models could also be used in 
composite multiscale analyses to replace the actual physics-based calculations at lower scales and thereby 
significantly increase the computational efficiency of such analyses and thus make multiscale analyses a 
viable industrial tool for large scale structural problems.  

Introduction 
In recent years, the phraseology, artificial intelligence (AI), machine learning (ML) and deep learning 

artificial neural network (ANN) appear in countless articles with a promise of achieving self-driving cars, 
intelligent chatbots, and virtual assistants, etc. (Ref. 1). ANN are a subset of ML, which itself is a subset 
of AI. AI can be thought of as a process that tries to automate intellectual tasks that are normally expected 
to be performed by humans. As mentioned, AI is much more than ML. Previously, research was done in 
symbolic AI, which does not involve any learning. Previously, researchers believed that by programming 
a sufficiently large number of explicit rules, human level intelligence could be achieved (Ref. 2). Such an 
approach seemed to work to solve logical problems such as playing chess, however, it proved insufficient 
in solving complex problems such as image classification, speech recognition, language translation etc. 
which resulted in developing new approaches now known as ML.  

ML started to flourish in the 1990s to become the most popular and most successful subfield of AI, 
driven by the availability of faster computers and larger datasets. ML gives computers the ability to learn 
without being explicitly programmed. It explores the study and construction of algorithms that can learn 
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from and make predictions on data by making data driven decisions and predictions without any specific 
static programming instructions. Today, machine learning is being employed in a wide range of 
computing tasks where designing and programming explicit algorithms is infeasible (Ref. 3). 

The term deep learning is also mentioned in relation to machine learning and neural networks. 
Broadly stating, in machine learning, the relationships between the data are formed by the learning 
system. Data is input along with the results related to that input which is often obtained from physical 
models. The machine learning system maps the data to the results and comes up with rules that become 
part of the system. When new data is introduced, it can predict new results that were not part of the 
training sets.  

Deep learning refers to systems with more than one layer of neurons between the input and output 
layers and associated weights applied to each neuron. It has been observed that multi-layer networks can 
learn and interpret relations that single layer networks cannot learn. The elements of a neural network are 
nodes or neurons, where weighted signals are combined, and biases added. In a single layer, the inputs are 
multiplied by weights and then added with a bias, before passing through a non-linear activation function. 
In a multi-layer or “deep learning” network, the inputs are combined in the second layer before being 
output (Ref. 4). It is highly linked to optimization techniques as it’s trying to find the most optimum 
weights for each node that will minimize the error between the prediction and the target result. Figure 1 
shows the anatomy of a deep learning neural network. It is also worth mentioning that previously 
developing deep learning neural networks required significant expertise in computer science that few 
people possessed. Nowadays, simple Python scripting knowledge is sufficient to develop deep learning 
artificial neural networks. So, in that sense, this process has been highly democratized.  

Another fast-growing discipline with emphasis on reducing the cost and time to market of new 
materials is Integrated Computational Materials Engineering (ICME). ICME is an integrated approach to 
the design of products and the materials which comprise them by linking multiple models at different time 
and length scales (Refs. 5 and 6). At present, such analyses that link atomistic scale models to structural 
scale models are extremely resource intensive, often requiring the use of high-performance computing 
platforms. If some of these analyses at some scales could be replaced by artificial neural nets, it has the 
potential to greatly enhance the computational efficiency without sacrificing the accuracy required. 
 
 

 
Figure 1.—Anatomy of a deep learning neural network. 
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ML is increasingly being used in the design and analysis of composite materials and structures, 
specifically in the constitutive modeling of composite materials with the focus on greatly accelerating 
multiscale analyses of composite materials and structures (Refs. 7, 8, and 9). Towards that end, our 
objective is to provide designers a Fatigue Life estimation tool, based on MATLAB or Python-based 
ANN, that can rapidly predict the initial stiffness (ABD matrices) and fatigue lives (S-N Curve) of 
polymer matrix composite (PMC) laminates. Since ML models typically require large amounts of data for 
training and validation and this quantity of measured data is not readily available, synthetic 
(virtual/simulated) data is generated using NASA’s MAC/GMC (Micromechanics Analysis Code using 
Generalized Method of Cells) computer code (Ref. 10). MAC/GMC is a comprehensive, physics-based, 
composite material and laminate analysis tool that utilizes the method of cells family (MOC, GMC and 
HFGMC) of micromechanics theories (Refs. 11 and 12). These theories provide access to not only the 
effective composite response but the local (in-situ constituent) stress and strain fields in the composite 
material that are crucial for assessing damage initiation and progression in composite structures. 
MAC/GMC provides a user-friendly framework, in which a user can access a library of local inelastic, 
damage, and failure models as well as various microstructures, idealized as repeating unit cells (RUCs). 
The current ANN model has focused on predicting initial laminate stiffnesses and fatigue life of 
thermoelastic eight-ply, symmetric, PMC laminates subjected to stiffness reduction progressive cyclic 
damage. Results show that the trained surrogate ML model provides reasonable estimates of the desired 
composite behavior for a fraction (10–4) of the computational cost of the corresponding physics-based 
model. Consequently, such an approach will lead to efficient, robust, and accurate data-driven design and 
analysis of composite materials and structures.  

Overview of MAC/GMC Computer Code 
GMC, first developed by Paley and Aboudi (Ref. 13) and HFGMC, first developed by Aboudi et al. 

(Ref. 14), are semi-analytical in nature, and their formulation involves application of several governing 
conditions (e.g., traction and displacement compatibility) in an average sense – within the RUC. They 
provide the local fields in composite materials, allowing incorporation of arbitrary inelastic constitutive 
models with various deformation and damage constitutive laws. The microstructure of a periodic 
multiphase material, within the context of GMC and HFGMC, is represented by a doubly periodic 
(continuously reinforced) or triply periodic (discontinuously reinforced) RUC consisting of an arbitrary 
number of subcells, each of which may be a distinct material (Figure 2). In the case of GMC, the 
displacement field is assumed linear, whereas in the case of HFGMC the displacement approximations 
are assumed quadratic, thus leading to a constant and linear subcell strain field, respectively. In fact, it is 
precisely this higher order assumption in the displacement field that enables HFGMC to retain its ability 
to compute nonzero transverse shear stress distributions within the composite (i.e., normal and shear 
coupling) when global tensile loading is applied. This shear coupling is very important when dealing with 
disordered microstructures (Refs. 15 and 16). However, it is also this high-order field assumption which 
makes HFGMC more computationally expensive and subject to subcell discretization dependence as 
compared to GMC. 
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(a)  (b)  
Figure 2.—Composite with repeating microstructure and arbitrary constituents. (a) Doubly 

periodic. (b) Triply periodic. 
 
Displacement and traction continuity are enforced in an average, or integral sense at each of the 

subcell interfaces and the periodic boundaries of the RUC. These continuity conditions are used to 
formulate a strain concentration matrix A, which gives all the local subcell strains (ϵS) in terms of the 
global, average, applied strains ϵapplied (i.e., ϵS = A ϵapplied). The local subcell stresses (σ) can then be 
calculated using the local constitutive law and the local subcell strains. Finally, the overall RUC stiffness 
is obtained utilizing the local constitutive law and the strain concentration matrix averaged over the RUC 
dimensions. The detailed methodology of GMC and HFGMC and the formulation to be embedded within 
classical laminate theory is described thoroughly in Aboudi et al. (Refs. 11 and 12). Also, in these 
references the superior accuracy of HFGMC over that of GMC is demonstrated, consequently in this 
study HFGMC will be assumed to provide the most accurate predictions. 

Constitutive Models 
The most well-known and widely used constitutive model, Hooke’s law, is written as  

 𝜎𝜎𝑖𝑖𝑖𝑖 = 𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝜀𝜀𝑘𝑘𝑘𝑘  (1) 

which describes time-independent, linear (proportional) reversible material behavior, where Cijkl is the 
classic stiffness tensor and εkl is the elastic component of the strain tensor. Extension into the irreversible 
regime has been accomplished by assuming an additive decomposition of the total strain tensor into three 
components, that is a reversible mechanical strain (i.e., elastic/viscoelastic) 𝜀𝜀𝑖𝑖𝑖𝑖; an irreversible (i.e., 
inelastic or viscoplastic) strain 𝜀𝜀𝑖𝑖𝑗𝑗𝐼𝐼 ; and a reversible thermal strain, 𝜀𝜀𝑖𝑖𝑗𝑗𝑡𝑡ℎ component. 

 𝜀𝜀𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 𝜀𝜀𝑖𝑖𝑖𝑖 + 𝜀𝜀𝑖𝑖𝑖𝑖𝐼𝐼 +  𝜀𝜀𝑖𝑖𝑖𝑖𝑡𝑡ℎ  (2) 

or 

 𝜀𝜀𝑖𝑖𝑖𝑖 = 𝜀𝜀𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 − 𝜀𝜀𝑖𝑖𝑖𝑖𝐼𝐼 − 𝜀𝜀𝑖𝑖𝑖𝑖𝑡𝑡ℎ  (3) 
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After substituting expression (3) into Equation (1) we arrive at a stress strain relation (generalized 
Hooke’s law) that incorporates irreversible strains as well as reversible ones, that is: 

 𝜎𝜎𝑖𝑖𝑖𝑖 = 𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(𝜀𝜀𝑘𝑘𝑘𝑘 − 𝜀𝜀𝑘𝑘𝑘𝑘𝐼𝐼 − 𝜀𝜀𝑘𝑘𝑘𝑘𝑡𝑡ℎ)  (4) 

where numerous models describing the evolution of the inelastic strain have been proposed in the 
literature (Refs. 17 to 19). Herein we will confine this initial study to elastic constituent materials only. 

Continuum Fatigue Damage Model 

The fatigue life of the composite will be predicted utilizing micromechanics and the multiaxial, 
isothermal, continuum damage mechanics model of Arnold and Kruch (Ref. 20) for the matrix 
constituent. When reduced to its isotropic form (parameters ωu, ωfl, ωm, ηu, ηfl, and ηm are set equal to 
one) this model reduces to the Non-Linear Cumulative Damage Rule (NLCDR) developed at ONERA 
(Ref. 21). This model assumes a single scalar internal damage variable, D, that has a value of zero for 
undamaged material and one for a completely damaged (failed) material. The implementation of the 
damage model within GMC and HFGMC has been performed on the local scale, thus damage evolves in 
each subcell based on its local stress state and number of cycles. For a given damage level, the stiffness of 
the subcell is degraded by (1 – D). Further, the implementation allows the application of a local damage 
increment ΔD, and then calculates the number of cycles, N, required to achieve this local increment of 
damage. This approach allows the model to determine the stress state in the composite, identify the 
controlling subcell that will reach the desired damage level in the fewest cycles, apply that number of 
cycles to all subcells, and calculate the damage that arises throughout the remainder of the composite. 
Then the composite can be reanalyzed, and a new stress state determined based on the new, spatially 
varying, damage level throughout the composite RUC. In this way, the local and global stress and damage 
analyses are coupled. As the damage in the composite evolves, the stress field in the composite is 
redistributed, which then affects the evolution of damage. 

For an isotropic material, the damage parameters that must be selected reduce to M, β and a, while the 
pertinent equation relating the fatigue life of the isotropic material to the cyclic stress state is, 
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where σu is the material ultimate strength, σfl is the material fatigue limit (stress below which damage does 
not occur), σmax is the maximum stress during a loading cycle, σ  is the mean stress during a loading cycle, 
and NF is the number of cycles to failure. Note that, in the terminology of Arnold and Kruch (Ref. 20),  
𝑎𝑎� = 𝑎𝑎 𝜎𝜎𝑓𝑓𝑓𝑓

𝜎𝜎𝑢𝑢
. Utilizing Equation (5), the damage model parameters M, β, and a can be selected for an isotropic 

material based on the material’s S-N curve (stress level vs. cycles to failure). Both the fatigue limit and the 
scaling parameter M are general enough to account for the effect of mean stress. However, in this study this 
additional effect is ignored since only one R ratio (R = –1, fully reversed) is examined. A representative S-N 
curve for an epoxy matrix was obtained, and the corresponding fatigue damage model parameters were 
found to be M = 150 MPa, β = 9, and a = 0.05, with σu = 80 MPa, and σfl = 27.0 MPa. A plot showing the 
resulting matrix S-N curve is given in Figure 3.  
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Figure 3.—Stiffness reduction fatigue damage model representation for epoxy matrix. 

 
 
 
A second damage model within GMC and HFGMC is much simpler and involves degradation of a 

material’s strength due to cyclic loading. As shown by Wilt et al. (Ref. 22), this type of damage model 
can be used to simulate the fatigue behavior of fibers that occurs in-situ during fatigue of a composite. 
The model assumes a logarithmic relation between the material’s strength and the number of cycles 
within a certain range such that: 
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This strength degradation model (Eq. (6)) was employed in the present example to model the longitudinal 
fatigue behavior of the graphite fiber. The necessary parameters for the model are σu1, σu2, N1, and N2,  
see Example 5d in (Ref. 23). The values of these parameters chosen for a graphite fiber are shown in 
Figure 4. Note that these data were not correlated with experiment, but rather chosen based on the 
expected trend. Given these required parameters for the fatigue damage models for each phase in the 
PMC, macroscopic or composite fatigue life of both unidirectional and laminate composites can be 
simulated. Note although creep-fatigue interaction can be incorporated in the above theory, see  
Reference 24, it is not included in the present calculations. 
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Figure 4.—Strength reduction fatigue model parameters assumed for the graphite fiber. 

Neural Networks 
There are different types of deep learning neural networks that have applications in different areas 

(Ref. 25). In general, they work well with large amounts of data and have multiple layers to learn the 
input/output relationships accurately. Generally, the anatomy of a neural network can be described by the 
following objects – (a). Layers, which are combined into a network, each containing a distinct number of 
neurons, (b) Input data and the corresponding targets, which is divided into training, validation, and test 
sets, (c) the loss function, which defines the feedback signal used for training, most common being mean-
squared error (MSE), and (d) Optimizer, which really determines how learning proceeds and finds the 
most optimal weights for each neuron that will minimize the error. It is worth mentioning that picking the 
right network architecture is more an art than science. However, overall architectural choices and types of 
networks (CNN, RNN, MLP etc.) can be determined by what is being modeled. There are some best 
practices and principles that one can rely upon, but only by trying different architectures, can one find a 
proper neural net architecture.  

Although there are many types of neural nets, two types of deep learning neural nets have been 
investigated here – first is a Multi-Layer Neural Network, also referred to as Multi-Layer Perceptron 
(MLP) architecture and the second is a Recurrent Neural Network (RNN). MLP is the most common and 
basic deep learning neural network that consists of input neurons, multiple layers of hidden neurons, and 
output neurons. Although uncommon, different layers can have different activation functions or can even 
be different types of layers in functionality. They are fully connected feed-forward artificial neural 
network or sometimes loosely referred to as simply ANN. These are the most basic or “vanilla” type of 
deep learning neural networks. The other RNN is a type of recursive neural network which work on 
structured data (or data that has some functional relationship) and generally have time as the structuring 
element. RNN have a loop within that combines the previous time step’s data with the hidden or 
intermediate layer to represent the current time step. They can be useful in modeling sequences of data to 
predict things such as future earthquakes and stock market performance and are very useful in language 
translation, speech recognition and many other applications. In our case, for fatigue life prediction (S-N 
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curve) of polymer matrix composites, time is not the sequential element. Even though each stress-life pair 
are independent from each other yet are totally dependent upon the specific laminate defined, thus they 
exhibit a functional relationship between each point. Consequently, an RNN can potentially be useful in 
predicting the fatigue life curve (i.e., S-N curve) as it is a series of stress – life data, and thus it is a 
sequential series data. A brief description of various types of deep learning neural networks is provided in 
Reference 26. 

Description of PMC Laminates and Data Generation 
Neural nets inherently require a significant amount of training data depending upon the number of 

inputs and outputs. Typically, in material science the amount of experimental data available doesn’t exist in 
sufficient quantity due to the expense involved in generating this data. Consequently, in this study, the 
physics-based GMC micromechanics method was used to generate the large amount of synthetic training 
data. HFGMC micromechanics (a more accurate but significantly more computationally expensive, by 2 to 
3 orders of magnitude, compared with GMC) was also used to generate synthetic data as well. It was 
observed that for most laminates considered, there was no significant difference between GMC and 
HFGMC predictions particularly for fatigue lives. Stiffness matrices [A] and [D] ([B] =0 for symmetric 
laminates) and fatigue lives (S-N curve) were generated for eight-ply, symmetric, regular1 PMC laminates 
with varying fiber volume fractions as well as varying constituents (fiber and matrix) material properties. A 
7x7 RUC, which is available within the MAC/GMC’s internal library of repeating unit cells (Ref. 10), was 
used to represent the microstructure of the composite as shown in Figure 5. Fatigue lives were predicted 
under a fully reversible cyclic uniaxial load applied in the global X direction. Fiber volume fractions and 
constituent material properties were randomly generated between some pre-defined ranges and following all 
applicable laws of material behavior (see Table 1, first two columns for the limits used). Twelve input 
values consisting of ply angles, fiber volume ratio, fiber and matrix stiffness-related properties are needed to 
predict the [A] and [D] matrices for the resulting laminate. To predict fatigue life, 7 additional fiber and 
matrix fatigue parameters (see Table 1) are required as well as N1, N2, and “a” (which were held constant at 
1,000, 109, and 0.5, respectively) in running the MAC/GMC computer code. Note a reduction in the number 
of input parameters from 26 (5 for RUC/laminate, 5 for fiber elastic, 2 for matrix elastic, 8 for fiber fatigue, 
6 for matrix fatigue) to 19 was achieved by assuming that the fiber strength parameters are related to each 
other via a Von Mises relationship (i.e., √3), see Table 2. In the development of surrogate model(s), various 
neural net methods contained within two different toolsets were considered: 1) the neural net formulations 
available in Python scripting environment (Ref. 27) and 2) the Machine learning toolbox that is available 
within the MATLAB programming environment (Ref. 28). Note it is also essential that an informatics 
infrastructure be utilized to store not only the data (albeit virtual or real) but also more importantly the meta 
data for both data and ML model(s) to maximize traceability and minimize misuse, see Reference 29. 
Finally, the applied load is also required.  

The stress versus cycles fatigue curve (i.e., S-N curve) and [A] and [D] matrices of approximately 
10,000 different laminates were computed and stored as the synthetic data. They were divided into 
training (80 percent), validation (10 percent), and test data (10 percent). It was also noticed that when 
training either the conventional MLP neural net or the RNN, training is much better for fatigue prediction 
when the data covers the full range of the fatigue curve (life between 1,000 and 1×109 cycles). However, 
the MAC/GMC code is designed in such a way that the user is required to specify the fatigue load so that 
the code will predict the number of cycles to failure corresponding to that load. Therefore, it is difficult to 

 
1 Each ply of the laminate has the same thickness. 
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know a priori, the load range that will result in an S-N curve covering the entire fatigue life range 
(between 1,000 and 1×109 cycles). In practice, it becomes an iterative procedure to find that load range 
for a specific laminate. To overcome this issue, a MATLAB optimization script (see Appendix A) was 
written that can predict the fatigue loads (upper limit and lower limit) at lifetimes of 1,000 and 1×109 
cycles for a given laminate. Once those limits were computed that range (upper – lower) was divided into 
10 segments and the whole S-N curve was predicted for a given laminate. To facilitate the prediction of 
the ABD matrices and the full range of the S-N curve a Python GUI and MATLAB GUI was developed, 
see Appendix B and C respectively.  

 
 
 

TABLE 1.—DATA GENERATION: INPUT PARAMETER RANGES 
Property Upper Lower 

RUC/Laminate properties 

FVR 0.4 0.7 

Θ1 –90 90 

Θ2 –90 90 

Θ3 –90 90 

Θ4 –90 90 

Constituent deformation properties 

Fiber 

Efa, GPa 70 700 

Eft, GPa 70 200 

νfa 0.2 0.4 

νfa 0.2 0.4 

Gfa, GPa 25 200 

Matrix 

Em, GPa 2.5 4.5 

νm 0.2 0.45 

Constituent fatigue parameters 

Fiber 

SU11, MPa 2,500 9,500 

SU21, MPa 300 2,500 

Matrix 

Epsm1 0.015 0.03 

Epsm2 0.015 0.03 

β 4 12 

SFL, MPa 15 30 

XML, MPa 80 160 
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Figure 5.—7x7 RUC used for data generation. 

 
TABLE 2.—IMPLICIT RELATIONSHIP BETWEEN FIBER PROPERTIES AND MATRIX PROPERTIES 

 

 

Results 
Two types of neural nets MLP and RNN were developed to predict the laminate stiffness and fatigue 

curves. Both types of networks provided results with excellent accuracy and speed. Both the neural net 
formulations available in Python scripting environment and those available in the AI toolbox within the 
MATLAB programming environment where investigated. Both approaches gave very similar results but 
early in the development of neural nets surrogate models, having both results from both toolsets (Python 
and MATLAB) provided a good check. Following results are generally based on what was obtained using 
the Python scripting environment for neural net development.  

Stiffness Prediction 
A standard MLP neural net was trained to predict the stiffness (i.e., A and D matrices) for an eight-ply 

symmetric laminate (i.e., B = 0). There are 12 input parameters – four angles, five fiber elastic properties for 
a transversely isotropic fiber (axial and transvers modulus, axial and transverse Poisson’s ratios, axial shear 
modulus) and two matrix elastic properties for an isotropic matrix (modulus, Poisson’s ratio). There were  
12 output properties – six components associated with the A matrix (3×3 symmetric matrix) and six 
components of the D matrix (also a 3×3 symmetric matrix). The specific neural net for stiffness prediction 
had five hidden layers and 26 nodes in each layer. The mean square error (MSE) for stiffness prediction  
was 0.02. Figure 6 shows the comparison between the ANN stiffness prediction of a random laminate,  
[–17°/35°/–72°/5°]S, with that produced from MAC/GMC (labelled as actual in Figure 6). Results show 
excellent agreement between the predicted and actual values. It should be noted that when the target values 
are relatively small (e.g., very close to zero), somewhat amplified errors can occur.  
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Figure 6.—Comparison of NN (predicted) and GMC (actual) output for a random 

laminate, [–17°/35°/–72°/5°]S. 
 

Development of a neural net for stiffness prediction of an eight-ply symmetric polymer matrix 
composite laminate with random ply angles turned out to be a rather straight-forward process.  

Prediction of Fatigue (S-N) Curve 

Training of a neural net to predict the fatigue curve for a given laminate configuration turned out to 
be a much more complex process. The ANN for the fatigue life prediction has added complexity where 
the number of inputs increase from 12 to 19 as the inputs for fatigue related properties must be considered 
as well, see Table 1 and Table 2. The calculation of fatigue life is where the development of ANN 
estimator shows its true benefit as physics-based model prediction of fatigue life can take anywhere from 
minutes to hours to compute the entire S-N curve, depending upon the laminate specification. 
Consequently, all fatigue synthetic data (training data instances) were run on a Linux cluster. The number 
of data sets that were generated were close to 100,000 (requiring an equivalent of 15,000 h of 
computation on a window personal computer). That amounted to analysing 10,000 laminate IDs with 10 
load levels (points) per fatigue (S-N) curve. The results shown in the following sections were obtained 
from neural nets developed in the Python scripting environment. The neural nets developed in the 
MATLAB environment showed similar results. 

As mentioned before, two different types of neural nets were trained to predict the fatigue life of a 
given laminate as described below. 

Multi-Layer Perceptron (MLP) Network 

This is also sometimes loosely referred to as simply an artificial neural network (ANN). This is the 
most common and the simplest form of a deep learning neural network. An ensemble deep learning neural 
net was employed. An ensemble approach is used to reduce the variance of neural network models by 
training multiple models instead of a single model and to combine the predictions from these models. 
This is called ensemble learning and it not only reduces the variance of predictions but also can result in 
predictions that are better than any single model. A schematic of an ensemble model is shown in Figure 7. 
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Figure 7.—Deep learning ensemble neural net. 

 
Thirty submodels or neural nets were trained to predict the log of fatigue life (Log N) that is expected 

to be between 3 and 9 given all the inputs for the laminate including the fatigue load. Each individual 
neural net (submodel) consists of 6 hidden layers with 48 neurons in each layer. The mean square error 
(MSE) ranged from 0.25 to 0.32 for the 30 submodels. The output from these 30 submodels was then 
combined using a simple linear stacked model and the overall error (MSE) reduced to 0.104 with the 
mean absolute error (MAE) in Log N being 0.181.  

The fatigue (S-N) curve for a laminate is defined by 10 points (stress vs. number of cycles to failure 
pairs). About 5,000 laminates (50,000 rows of data) was used for training and validation while the test 
data consisted of approximately 600 laminates (6,000 rows of data each). These laminates consisted of 
angles that were purely random as well as those with custom angles such as [0°], [90°], cross-ply [0°/90°], 
quasi-isotropic [0°/±4°5/90°], etc. Each laminate had a full range of stress values which provided number 
of cycles to failure ranging from approximately 1×103 to 1×109. Also, the training set consisted of 40 
percent random and 60 percent custom laminates. When the trained neural net was tested on validation 
and test data, it showed that the  
  

• Probability that a prediction will lie within ±10 percent log of target was 84.4 percent 
• Probability that a prediction will lie within ±20 percent log of target was 94.6 percent 
• Probability that a prediction will lie within ±30 percent log of target was 97.4 percent 

 
Note that ±10 percent log (N) is approximately equivalent to ±300 percent of target N, which is within 
typical experimental error, which is in the range of 2 to 4 times. 

Figure 8 shows the comparison between the neural net prediction of the fatigue curve (blue line) vs. 
the simulated (red line) curves using the physics-based model MAC/GMC, for 16 laminates with a 
mixture of custom and random laminates. It shows that the ANN predictions are a good estimate of the 
actual fatigue curves, with an MSE range of 0.01 to 1.27 for these 16 laminates. However, these 
predictions are made at a fraction of the cost (CPU time and effort) compared to the actual physics-based 
model (i.e., MAC/GMC). Note the worst error occurs for the random angled laminates.  
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Figure 8.—Comparison of predicted and actual fatigue curves of random and custom laminates. 

 
Although, results are not shown here, analyses have shown that if we fix the angles in the laminates 

and vary other parameters – like volume fraction, material properties and fatigue parameters, the neural 
nets can be trained to predict very accurate results with only a small amount of data (e.g., generally just 
with a few hundred laminates in the training set). Introduction of random ply angles in the laminates, 
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increases the complexity of the problem significantly, thus requiring larger amounts of training data. With 
this in mind, and to assess the error between custom and random; two sets of laminate S-N curves were 
predicted using the neural net and compared with the results from the actual physical model MAC/GMC. 
Material properties, volume fraction and fatigue parameters in both sets were held fixed with only the ply 
angles of the laminate varying. The first set, shown in Figure 9, consists of custom angles that are 
commonly used. The second set, shown in Figure 10, consists of random angles. The comparison in the 
case of custom angles with the target curves appear to have excellent agreement, in that the MSE range 
for these 12 laminates is between 0.01 to 0.34. However, for the case of 12 random angled laminates the 
predictions appear to be quite poor compared to the physics-based simulations, with an MSE range of 
0.03 to 2.78.  

Note that the actual benefit of this fatigue estimation tool is its ability to predict the custom angle 
laminates specifically, because in actual applications, it is unlikely anyone would use one of the random 
angle cases. Rather, the random angles are used here to cover the full design space and show robustness 
of the tool itself. 

Recurrent Neural Network (RNN) 

As mentioned before, a RNN was also trained using the same virtual data set even though our model 
and data do not fit the traditional definition of RNN. However, given a specific laminate (volume fraction, 
ply angles, constituent material properties) MAC/GMC predicts the fatigue life (number of cycles to 
failure) for a given fatigue load, thus providing a series of implicitly related points (S vs. N) for a given 
laminate. Previous work (Ref. 30) has shown similar success. 

In this section, results obtained from Python based RNN are presented (MATLAB results were very 
similar). The RNN consisted of one dense and one LSTM (Long Short-Term Memory) layer with 20 
neurons each, which was a relatively simple architecture. The MSE for fatigue life prediction was 0.01 
and MAE was 0.06 (for log N) for validation cases, which is remarkably better than what was achieved 
using an MLP network. The training/validation data that was used to develop the MLP was also used 
here. The results on validation cases showed that the probability that the predicted life –  

 
• Probability that a prediction will lie within ±5 percent log of target was 92 percent  
• Probability that a prediction will lie within ±10 percent log of target was 98 percent 
• Probability that a prediction will lie within ±10 percent log of target was 100 percent 
• Probability that a prediction will lie within ±10 percent log of target was 100 percent 

 
Note that ±5 percent log (N) is approximately equivalent to ±200 percent of target N, which is well within 
the typical experimental error of 2 to 4 times. 

These are well within the scatter range that is observed in experimental data. The predicted and target 
S-N for 16 cases randomly selected from the validation set is shown in Figure 11. Results indicate that the 
RNN predictions are a very good estimate of the actual fatigue curves, with an MSE range of 0.0 to 0.08 
for these 16 laminates. Again, the worst error being associated with the random angle case. Clearly, the 
RNN model provides overall significantly better results than what was observed using the MLP network.  
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Figure 9.—Predicted and target fatigue curves of 12 selected laminates with custom angles. 
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Figure 10.—Predicted and target fatigue curves of 12 selected laminates with random angles. 
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Figure 11.—Comparison of the Actual and Predicted S-N curves of Few Random Laminates. 

 
 

Once again to assess the error between custom and random laminates; the same two sets of laminates 
examine for the MLP model are examined again. Figure 12 shows the comparison of the RNN prediction 
with the actual fatigue curves for the 12 custom angles previously shown in Figure 9. The accuracy for the 
custom angles appear to be in very good agreement, with an MSE range for these 12 laminates between 0.0 
and 0.64. Comparing the same 12 random angled laminates used in Figure 10 but now predicted with the 
RNN model and shown in Figure 10 we see that the predictions appear to be excellent compared to the 
physics-based simulations, with an MSE range of 0.01 to 0.3. Also it appears that the RNN model is able to 
capture the endpoints of the S-N curves better than the MLP (particularly in Figure 12).  
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Figure 12.—Predicted and target fatigue curves of select laminates with custom angles. 

 
Note this result is opposite to that observed in the case of MPL model where the random laminate 

predictions were substantially worst than the custom angled laminates. This prompted us to investigate 
the influence of the training data set mixture between custom and random angles. Table 3 and Table 4 
show the results of this study. Results show that overall accuracy improves when laminates with random 
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angles are increseasd in training set. As expected, the prediction of laminates with random angles 
improves significantly while laminates with custom angles degrades slightly. 

As can be seen, the RNN model fatigue life predictions are in general better. It is better able to 
capture the shape of the fatigue curve.  

 

 
Figure 13.—Predicted and target fatigue curves of select laminates with random angles. 
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TABLE 3.—MSE RESULTS GIVEN DIFFERENT MIXTURE OF DATA SETS FOR 
TOTAL VALIDATION SET (µ IS MEAN AND σ IS STANDARD DEVIATION) 

 Random (40 percent) and custom (60 percent) Random (60 percent) and custom (40 percent) 

MLP RNN MLP RNN 

Total µ = 0.26 
σ = 0.93 

µ = 0.04 
σ = 0.22 

µ = 0.07 
σ = 0.18 

µ = 0.003 
σ = 0.12 

Random µ = 0.59 
σ = 1.48 

µ = 0.05 
σ = 0.3 

µ = 0.03 
σ = 0.17 

µ = 0.001 
σ = 0.04 

Custom µ = 0.08 
σ = 0.19 

µ = 0.03 
σ = 0.13 

µ = 0.12 
σ = 0.19 

µ = 0.04 
σ = 0.18 

 
TABLE 4.—MSE RESULTS GIVEN DIFFERENT MIXTURE OF DATA SETS FOR SPECIFIC CASES 

 Random (40 percent) and custom (60 percent) Random (60 percent) and custom (40 percent) 

MLP RNN MLP RNN 

Random 0.03 to 2.78 0.01 to 0.3 0.03 to 3.22 0.0 to 0.3 

Custom 0.01 to 0.24 0.0 to 0.64 0.0 to 0.38 0.0 to 0.91 

Conclusions 
ANN models using both MLP and RNN were developed to predict micromechanics-based laminate 

stiffnesses (ABD) and fatigue life of eight-ply, symmetric, PMC laminates. Deep learning artificial neural 
nets require a large amount of data for training/validation to achieve a certain level of accuracy. 
Generally, that amount of experimentally measured data is not available because of the cost and time 
involved. Therefore, synthetic/virtual data was generated using the physics-based MAC/GMC 
micromechanics model. The 10,000 laminates simulated required approximately 15,000 h of 
computations. Results indicate that the ANN based model can indeed accurately predict the laminate 
stiffness (i.e., ABD matrix) and fatigue life of PMC laminates at a fraction of the cost (CPU time) 
compared to the actual physics-based model. Models based on both ANN (MLP) and RNN were able to 
predict the stiffness quite accurately, but in general the RNN model was better able to capture the form of 
the fatigue curve with generally better accuracy and less computational time. As such, an ML stiffness and 
fatigue life estimator tool was developed which designers can use for system level studies to obtain an 
estimate of desired properties and life of 8-ply symmetric PMC composite laminates with significantly 
less resources (CPU time, user effort and training). For example, given the generation of an entire typical 
S-N curve took approximately 1.5 h for MAC/GMC and the surrogate was approx. 1 s, this amounts to a 
speed up of 1.8×10–4. Similarly, the ply level Neural Net based surrogate models can be used in 
composite multiscale analyses to replace the actual physics-based calculations at lower scales and thereby 
significantly reduce the computational times of such analyses. These models thus enable multiscale 
analyses spanning several levels as viable industrial tools.  
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Appendix A.—Fatigue Load Estimator  
A separate MATLAB script along with a corresponding GUI was developed to compute the upper and 

lower fatigue load limits automatically by running the physics-based MAC/GMC code iteratively. To utilize 
either tool, a reference MAC/GMC input deck (see Table A.1) is required that defines the specific laminate 
(ply angles and thickness), along with the constituent materials, volume fraction, and RUC that comprise the 
various plies, see Reference 10 for the required format and keywords. Given this reference input deck (and 
associated upper and lower limit initial guesses) execution of the script will determine both the upper and 
lower limit and then provide as output 10 MAC/GMC input decks, equally spaced between the limit 
loads/stresses, that can be run separately to obtain the required training data for this laminate.  

Alternatively, one can run the GUI, by providing a reference input deck, inputting the assumed upper 
and lower limit as well as the number of points desired for displaying the associated S-N curve predicted by 
MAC/GMC. A sample GUI output is shown in Figure A.1. Here a sample laminate denoted LaminateB.mac 
(Table A.1) is chosen for illustration purpose. For this laminate, starting values for the lower and upper 
limits (see Figure A.1) are chosen as 10 and 60, respectively. However, in the script default values of 2 for 
lower bound and 7,000 for upper bound are provided to cover almost all such laminates. Default values for 
the load limits will increase the computational effort. Note one should select limits that are below the 
expected lower bound and above the upper bound for the defined laminate to find the limits in the first 
attempt. Also, 10 load points are chosen for computation of the S-N curve. The GUI automatically, updates 
the loading values highlighted in blue in Table A.1, executes MAC/GMC iteratively, until either the 
provided upper and lower load levels are achieved or a load that provides the prescribed upper bound load 
that corresponds to 1×103 cycles and lower bound load that corresponds to 1×109 cycles. 

As seen in Figure A.1, the lower bound for fatigue is estimated to be 13 and the upper bound 35. In 
general, the lower bound calculations take a longer time to compute (minutes to hours) then the upper 
bound solutions (seconds). The SN curve is shown graphically between these two limits. 

This script/GUI was extremely useful for generating training data associated with each laminate of 
interest that extended over the defined full life cycle (N ≥ 1,000 and N ≤ 1×109 . 

 

 
Figure A.1.—Fatigue load limit computations for LaminateB.mac. 
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TABLE A.1.—INPUT TO FATIGUE LOADS LIMITS ESTIMATOR (GUI) 
LAMINATEB.MAC STIFFNESS ANALYSIS FOR GENERIC EIGHTPLY LAMINATE 

*CONSTITUENTS 
NMATS=2 
# -- Graphite fiber 
M=1 CMOD=6 MATID=U MATDB=1 & 
EL= 330000.0,90000.0,0.21,0.22,100000.0,-5e-07,4.6e-06 
# -- Epoxy matrix 
M=2 CMOD=6 MATID=U MATDB=1 & 
EL= 3800.0,3800.0,0.35,0.35,1407.4,5.2e-06,5.2e-06 
#-- Define Laminate 
*LAMINATE 
NLY=8 
LY=1 MOD=2 THK=0.125 ANG=45.0 ARCHID=6 VF=0.65 R=1 F=1 M=2 
LY=2 MOD=2 THK=0.125 ANG=-45.0 ARCHID=6 VF=0.65 R=1 F=1 M=2 
LY=3 MOD=2 THK=0.125 ANG=45.0 ARCHID=6 VF=0.65 R=1 F=1 M=2 
LY=4 MOD=2 THK=0.125 ANG=-45.0 ARCHID=6 VF=0.65 R=1 F=1 M=2 
LY=5 MOD=2 THK=0.125 ANG=-45.0 ARCHID=6 VF=0.65 R=1 F=1 M=2 
LY=6 MOD=2 THK=0.125 ANG=45.0 ARCHID=6 VF=0.65 R=1 F=1 M=2 
LY=7 MOD=2 THK=0.125 ANG=-45.0 ARCHID=6 VF=0.65 R=1 F=1 M=2 
LY=8 MOD=2 THK=0.125 ANG=45.0 ARCHID=6 VF=0.65 R=1 F=1 M=2 
*MECH 
LOP=1 
NPT=4 TI=0.,50.,150.,200. MAG=0.,835.0,-835.0,0. MODE=2,2,2 
*SOLVER 
METHOD=1 NPT=4 TI=0.,50.0,150.0,200.0 STP=10.0,10.0,10.0  
NLEG=1 NINTEG=1 
*DAMAGE 
MAXNB=500 DINC=0.1 DMAX=0.9999 BLOCK=0.,200. 
NDMAT=2 
MAT=1 MOD=2 SU1=3000.0 818.2 818.2 472.4 1732.1 1732.1 & 
SU2=1000.0 272.7 272.7 157.5 577.4 577.4 & 
N1=1000,1000,1000,1000,1000,1000 & 
N2=300000000,300000000,300000000,300000000,300000000,300000000 
MAT=2 MOD=1 ANG=0. BN=0. BP=0. OMU=1. OMFL=1. OMM=1. ETU=1. & 
ETFL=1. ETM=1. BE=7.0 A=0.05 SFL=20.0 XML=120.0 SU=95.0 
*FAILURE_SUBCELL 
NMAT=2 
MAT=1 NCRIT=1 
CRIT=1 X11=3000.0 X22=818.2 X33=818.2 X23=472.4 X13=1732.1 X12=1732.1 & 
COMPR=SAM ACTION=1  
MAT=2 NCRIT=1 
CRIT=2 X11=0.025 X22=0.025 X33=0.025 X23=0.026 X13=0.026 X12=0.026 & 
COMPR=SAM ACTION=1 
*FAILURE_CELL 
NCRIT=1 
CRIT=2 X11=0.05 X22=0.05 X33=0.05 X23=0.05 X13=0.05 X12=0.05 & 
COMPR=SAM ACTION=1 
*PRINT 
NPL=6 
*XYPLOT 
FREQ=1 
LAMINATE=0 
MACRO=0 
#-- NAME=STR-STN X=2 Y=8 
MICRO=0 
*END  
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Appendix B.—Python Fatigue Estimator Graphical User Interface (GUI) 
A python Graphical User Interface (GUI) was developed for the ABD prediction and Fatigue Life 

Curve prediction models for a given 8-ply, symmetric, PMC laminate. The GUI was written in Python 
using the tkinter module (Ref. 31) and exported to a Windows executable using the pyinstaller python 
function (Ref. 32), allowing users to run the GUI and machine learning models without installing Python 
or Tensorflow (Ref. 33) on their machines. The GUI features two pages that the user can navigate on the 
top left of the screen to 1) define laminate and its associated material input parameters and 2) view the 
results of the analysis. This Fatigue Life Estimator GUI represents the ultimate democratization toolset in 
that it enables a designer to obtain micromechanics-based fatigue life analysis results for an 8 ply, 
symmetric, PMC laminate with little or no training needed in mere seconds. The most difficult aspect of 
the process being the insertion of the correct life constituent properties for a given material. In a future 
version of this estimator the authors plan on including a library of potential material properties. 

The Inputs tab, see Figure B.1, allows users to define a) the lamina stacking sequence and fiber 
volume fraction (see blue highlighted box) and the fiber properties (orange box) and matrix properties 
(green box) the composite laminate. For each category, the dark colored column can be edited by the user 
as input to the machine learning models. The upper and lower bounds are displayed for each input to the 
user in the lighter colored columns. Users are allowed to enter values outside of those bounds, but a 
message will appear warning that the ML models were trained within the specified limits and 
extrapolation beyond is not recommended. The input variables outlined in black below in Figure B.1 are 
required for the ABD model prediction, and all inputs are required for the Fatigue Life Curve model 
prediction. If values are missing for a required input, the GUI will display an error message when a user 
attempts to move to the Analysis page. 

 
 

 
Figure B.1.—Fatigue Life Estimator GUI Inputs Page. 
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To run the machine learning models, the user selects the Analysis page and presses the “Execute” 
button, see Figure B.2. If only the inputs required for ABD prediction are populated, as is the case in 
Figure B.1, a table will appear on the Analysis page displaying the ABD predictions for that laminate (see 
Figure B.2(a)). If all inputs are populated, both the ABD table and an S-N curve plot appear on the 
Analysis page (see Figure B.2(b)). The S-N curve plot defaults to plotting stress values versus the log of 
the number of life cycles (log (𝑛𝑛)). The X-axis parameter can be toggled between 𝑛𝑛 and log (𝑛𝑛) using the 
light blue buttons below the plot. The Analysis page also features a slider bar to extract an exact point 
from the S-N curve. 

 

 
(a) 

 
(b) 

Figure B.2.—Fatigue Life Estimator GUI Analysis Page (a) ABD Prediction Only and (b) ABD and S-N Prediction 
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The user can return to the Inputs page using the buttons in the top left of the window and add additional 
laminate simulations to the analysis results. If new inputs are detected when the user returns to the Analysis 
page, a new column will appear in the ABD Matrix table on the left side of the page. When the user presses 
the Execute button, the table will populate with the new ABD components and the S-N curve will be co-
plotted with all previous runs (Figure B.3). Note that the slider bar on the plot will only extract points for the 
last laminate case run (i.e., Run 2 in Figure B.3). Above the plot, the user has two options for saving results: 
Save to Image and/or save to Excel. The Save to Image button takes a screenshot of the analysis page and 
saves to a user-defined location as a Portable Networks Graphics (PNG) file. The Save to Excel buttons 
saves the inputs, ABD Matrix components, and S-N curve points predicted by the two ML models to a 
Microsoft Excel file, with each run saved on a new sheet (Figure B.4). Users can either clear the current job 
and erase all runs using the Clear button to start a new analysis or exit the program using the Exit button. 

Future versions of this Fatigue Life Estimation Tool will enable users to select different ML models 
that will be applicable to other composite laminates (e.g., 16 ply, 24.ply, etc., and/or CMC and MMC 
systems). 
 
 
 
 

 
Figure B.3.—Adding multiple analyses. 
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Figure B.4.—Save to Excel Generated Output. 
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Appendix C.—MATLAB Fatigue Life Estimator 
Graphical User Interface (GUI) 

A MATLAB Graphical User Interface (GUI) was developed with Neural Net surrogate models for the 
stiffness (A, B and D matrices) and the Fatigue Life (S-N Curve) for a given 8-ply, symmetric, PMC 
laminate. The GUI was developed with the aid of MATLAB’s app designer and was later compiled 
including the MATLAB runtime libraries so that one can run it stand alone on any Windows OS platform. 
The installation of MATLAB code is not required. The app platform is shown in Figure C.1, and it has 
several input blocks that a user is required to fill in. These include transversely isotropic fiber (5) and 
isotropic matrix (2) elastic properties; fiber fatigue (2) and matrix fatigue model (5) model parameters; ply 
layup details (4 angles and fiber volume fraction) and the load limits (upper and lower bounds) for the 
estimation of the S-N fatigue curve. The user is given a choice to either chose one of the nine predefined 
laminates or a custom laminate with any lay-up. To guide the user with reasonable inputs, the appropriate 
lower and upper limits for every property is shown in red, so that the user can edit values for all the 
properties. Furthermore, default values are already listed in blue so if one does not have a good idea 
regarding a specific property, they may simply choose the default value given. This Fatigue Life Estimator 
GUI represents the ultimate democratization toolset in that it enables a designer to obtain micromechanics-
based fatigue life analysis results for an 8 ply, symmetric, PMC laminate with little or no training needed in 
mere seconds. The most difficult aspect of the process being the insertion of the correct life constituent 
properties for a given material. A fully executed code output is shown in Figure C.1 for a ± 30 laminate, i.e., 
predicted S-N curve and the predicted A, D matrices along with the MAC/GMC outputs. 
 
 

 
Figure C.1.—MATLAB based PMC fatigue life estimator GUI output. 
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User executes the code optionally by either pushing the button “SN Curve” for the fatigue life or 
“Stiffnesses” for A and D matrix computations or both. The user can predict multiple S-N curves and plot 
them for several laminates. To show them clearly separated, an option of choosing log scale for the ‘y’ 
coordinate is also provided. This would be necessary for example if a user chose to compare a 
unidirectional [08] and angle ply (e.g., [±45°]S) laminates. The fatigue loads for the latter are more than an 
order of magnitude smaller compared to a unidirectional loaded in the fiber direction. In general, the 
stiffnesses are predicted within 1 percent error and the S-N curve predicted within 5 percent error. The 
surrogate model used for this GUI is trained with a MLP net for the randomly chosen lay-ups. The custom 
plies are all trained separately with different MLP nets. By choosing multiple surrogate models per 
laminate type, rather than training all laminates at once in one net, one can reduce the training data by at 
least an order of magnitude and improve the accuracy as well by an order of magnitude. The GUI also 
gives options to save the figure, as well as results to an Excel file if desired.  
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