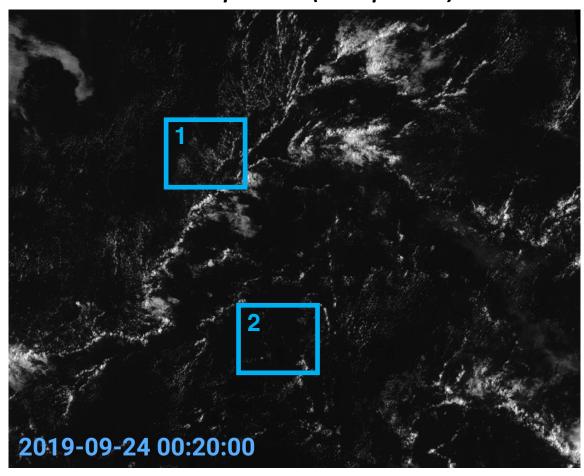
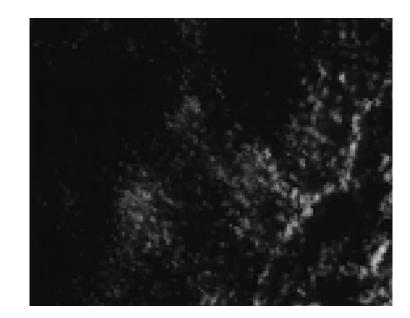
Automated Tracking of Shallow Maritime Clouds on Geostationary Imagery to Extract Lifecycle Characteristics

Roman Kowch¹, Chip Trepte², Jeffrey Reid³, Robert Holz⁴

¹Science Systems and Applications Inc (Hampton, VA) ²NASA Langley Research Center (Hampton, VA) ³Naval Research Laboratory (Monterey, CA) ⁴University of Wisconsin (Madison, WI)


tobac Cloud-tracking Workshop
University of Oxford
April 2023

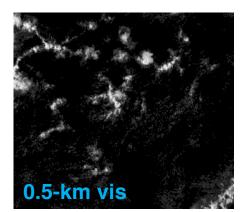
Outline

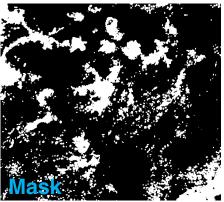

- Describe masking and tracking methods used to define cloud objects on hires geostationary imagery
- Apply the tool to a recent field campaign (NASA CAMP²EX) to investigate the character of shallow clouds sampled and their lifecycles
- Describe strategy to define environments by "cloud-track ensembles" and differentiate apparent lifecycle properties
- Assess which types of clouds were sampled more than others throughout the tracked ensembles
- Touch on efforts to relate sampled environment parameters to each ensemble's characteristics

Visual Example of Cloud Scales Involved

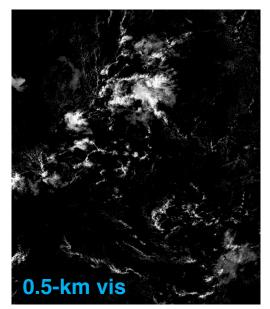
0.5-km Reflectance – Himawari-8 AHI Rapid-scan (24 Sept 2019)

How do we capture the time evolution of all these clouds?


Algorithm Approach – Segmentation


Cloud Identification and Masking

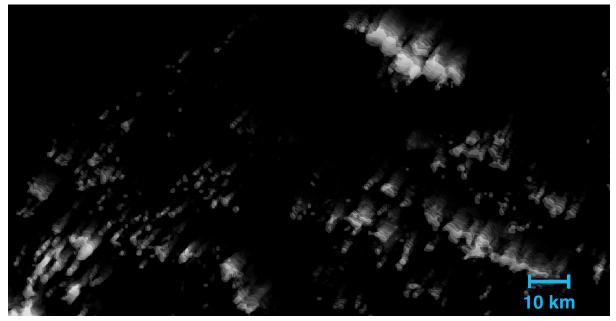
- A cloud mask is generated with a reflectance threshold at 0.5-km resolution and optimized for clouds of a general length scale:
 - i. Transient "popcorn" cumulus with area < 25 km²
 - ii. Sustained "organized" cumulus with areas up to ~100 km²
- The mask is binary, segmenting clouds from the background.
- A higher threshold detects organized cumulus better, particularly the reflectance extrema.
- One threshold isn't enough to create "trackable" frames:
 - i. Noise Reduction w/ blurring filters
 - ii. Cloud edge refinement


Complexity of the Approach

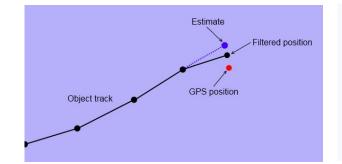

- Choosing the reflectance threshold:
 - i. Low enough to capture birth and decay stages
 - ii. High enough to remove background
 - iii. Only works during daytime
- Mask processing time ~5-15 min/frame, with ~250 frames/day

Segmentation optimized for popcorn cumulus

Segmentation optimized for organized cumulus


Algorithm Approach – Tracking

Components of a Cloud Track

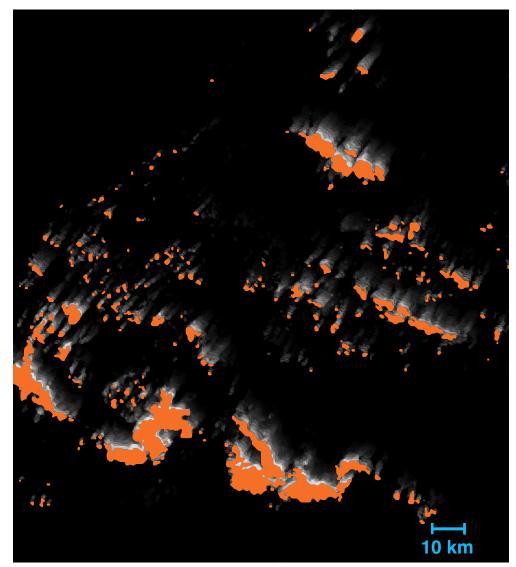

- Initial detection spawns a track
- Time-evolving centroid position and velocity
- Kalman filter
- Status of track on a frame: detected OR predicted
- Cloud boundary at ~ 0.5-km resolution
- Cloud area
- UTC time

Kalman Filter

- Serves as a motion model for predicting an object's location on a successive frame
- Initialized with parameters estimating uncertainty in initial and evolving centroid positions
- Assumes constant velocity
- Issues encountered:
 - i. Merging/splitting clouds shift centroid erratically from predicted position
 - ii. New cloud forms near a tracked cloud and is mistaken for being the predicted position

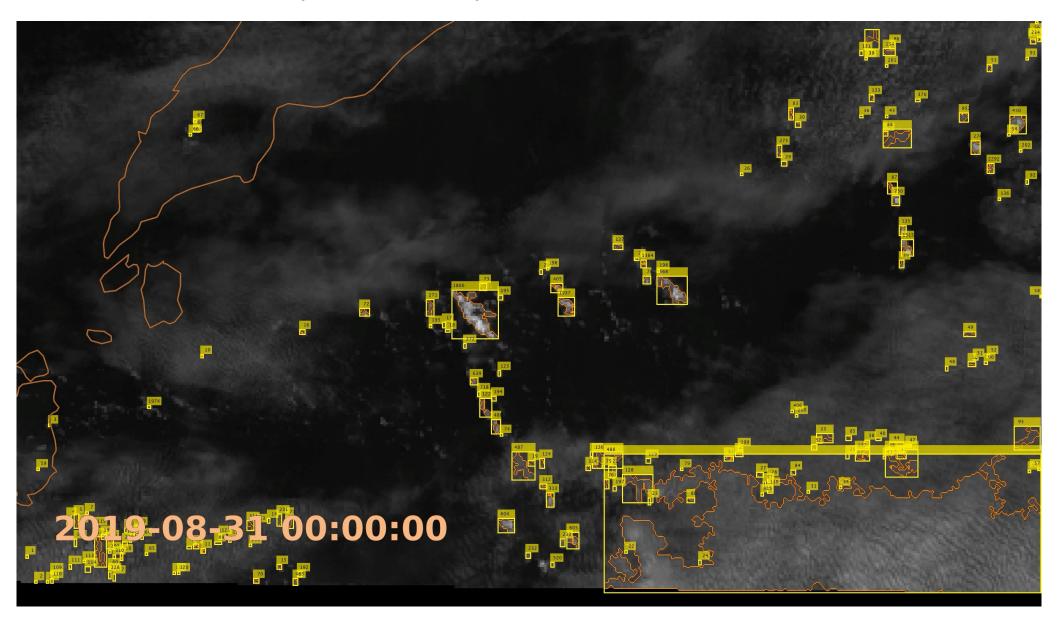
30-minute time lapse of cloud mask (brighter areas = later time)

The Kalman filter tries to predict the path of an object but gets refined with successive detections of that object.

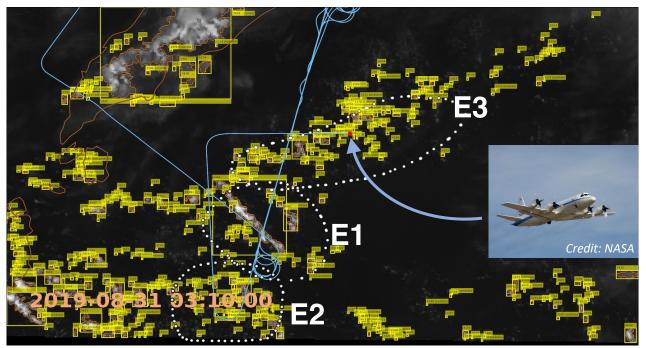

Algorithm Approach – Tracking

Assigning Detections to Tracks

- A successive frame starts with only cloud detections.
- Each detection is subject to a cost calculation, the likelihood it gets assigned to an active track.
- The cost depends on multiple factors:
 - Variances between the detection and predicted centroid locations
 - ii. Overlap of objects from previous frame
 - iii. Apparent heading and its deviation from the estimated heading
- Minimal cost is necessary for matching a detection to an active track by Hungarian assignment.


Complexity of the Approach

- Tracking on successive frames is a serial process, thus limiting options to parallelize code.
- Smaller spatial domain is one option but limits tracking to short-lived popcorn cumulus.


Cloud detections (orange) are matched with active tracks illustrated in the 30-minute time lapse

Example Output (SW Sulu Sea)

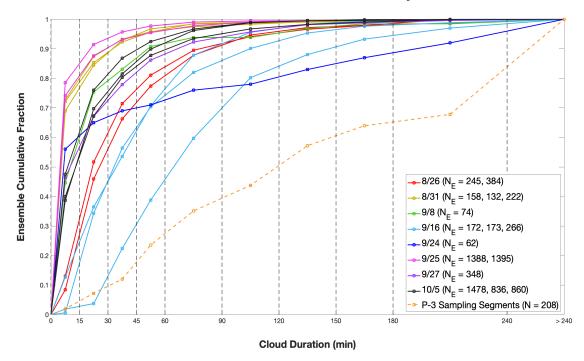
Partitioning Environments with Cloud-track Ensembles

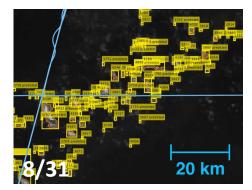
- Lots going on! Thus, we focus on specific areas more closely related to the airborne (P-3B) field sampling.
- Creating an ensemble:
 - 1. Run tracker with masking optimized for the targeted phenomena
 - 2. Find where tracker is performing well and field sampling is available
 - 3. Draw region to initialize ensemble any tracks passing through are included
 - 4. Search for cloud "systems" not captured well (i.e., multiple track IDs from splits/mergers) and manually link tracks. Up to 10 systems usually result.
- 16 ensembles were selected from 8 dates over CAMP²EX, with clouds classified by lifecycle parameters (duration, max area, max height)

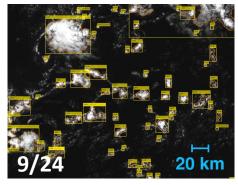
Cloud tracks from 31 Aug 2019 with 3 ensembles defined (E1-E3)

Date	Total Ensembles	Sample Sizes <i>N_E</i>	Date	Total Ensembles	Sample Sizes <i>N_E</i>
Aug 26	2	245, 384	Sep 24	1	62
Aug 31	3	158, 132, 222	Sep 25	2	1388, 1395
Sep 08	1	74	Sep 27	1	348
Sep 16	3	172, 173, 266	Oct 04	3	1478, 836, 860

Observed Cloud Lifetimes and Overall Sampling

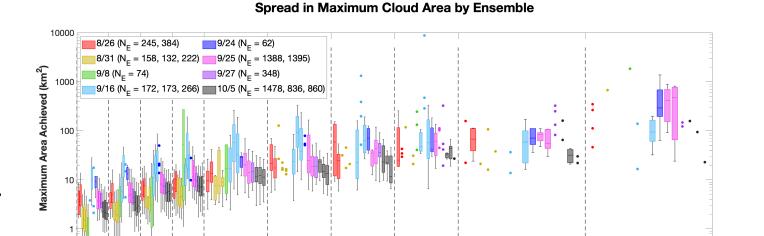

Cumulative Lifetime


- General exponential distributions describe the tracked lifetimes of cloud objects
- Majority of ensembles have roughly 2/3 of clouds lasting < 30 min
- Distributions with more long-lived clouds tend to have better environment dynamics (wind shear)


P-3 Sampling Segments

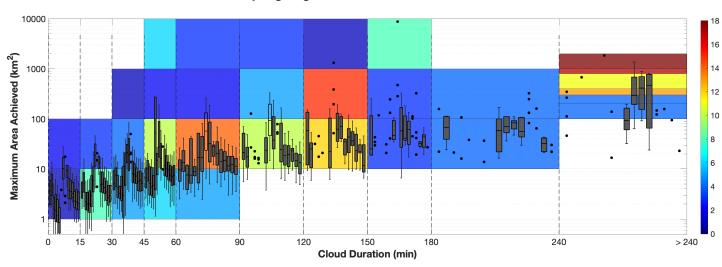
- P-3 sampling segments are flight legs that begin and end within a member cloud object
- More context on segments:
 - Represents any crossover of a tracked cloud
 - Doesn't account for P-3 altitude
 - Reduction of segments imposed when occurring near a cloud edge (e.g., spiral maneuver)
- Nearly half of segments cover clouds lasting more than 2 h, which only compose < 20% of any ensemble

Cumulative Occurrence of Cloud Duration by Ensemble

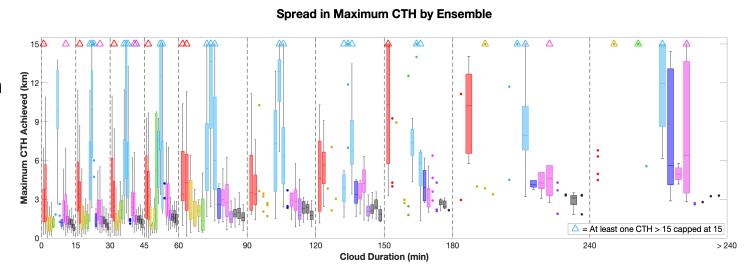


Ensembles with more short-lived clouds (e.g., 8/31 or 9/25) differ markedly in appearance from those with more long-lived clouds (e.g., 9/16 or 9/24).

Classifying Sampled Clouds with the Tracked Max Area

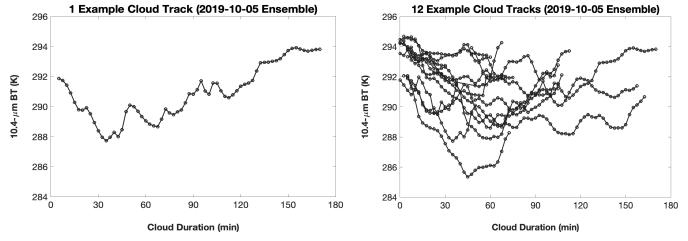

- Cloud area is logged at every time step, with max area analyzed as a "growth potential" for a given lifetime.
- The max area generally grows with increased lifetime but can plateau at > 2 h.
- Overlaying the sampling segments can estimate time spent on specific cloud classes.
- The cloud class "10's km² and 1-2.5 h" received significant sampling and matches well to the ensemble occurrences.
- The cloud class "~1000 km² and > 4 h" had much sampling but it doesn't occur often.

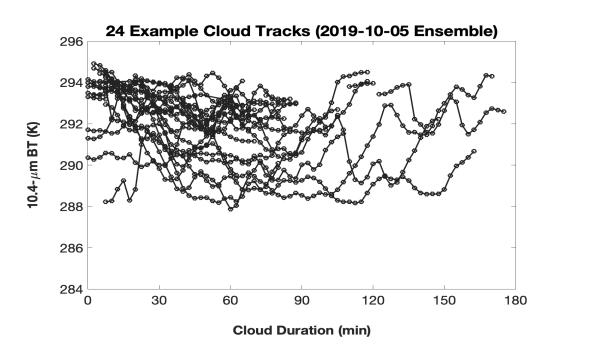
P-3 Sampling Segment Counts for Max Area Achieved


Cloud Duration (min)

> 240

Classifying Sampled Clouds with the Tracked Max CTH


- Cloud-top heights (CTH) are logged at every time step:
 - Difference b/w background and minimum brightness temp (BT) at 11-micron
 - Divided by lapse rates defined for the time of year and latitude, as shown in (Baum et al, 2012)
 - Only works well for shallow clouds, w/ complications from thin cirrus
- CTH > 6 km regarded as "reaching midtroposphere or above"
- Shallow clouds of < 3-km CTH and < 1.5 h received decent sampling
- Some ensembles (9/27 and 10/5) never reach > 3-km CTH despite long lifetime



Conclusions and Current Work

- Our tracking tool was built to study shallow clouds at the smallest resolvable scales – we welcome other methods that advance the bookkeeping.
- Cloud-track ensembles are useful to isolate environments and understand their influence on cloud evolution.
- The P-3 flights of CAMP²EX tended to target clouds with enhanced organization and lifetime, rather than a typical ensemble "spectrum."
- Disentangling of individual cloud behaviors, involving growth/decay at random intervals, is necessary when aggregating IR data and finding relationships.

