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What is Uncertainty Quantification (UQ)?
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So how wrong might our models be?
(When) are they useful from an engineering perspective?

And how confident are we in their predictions?

UQ provides a framework for answering these 
questions and making our models useful.

“All models are wrong, 

George E.P. Box

but some are useful”
Real world
Model
Model + UQ

Models Vs. Reality

Scenario 1 Scenario 2
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What is UQ?

“…the science of identifying, quantifying, and reducing uncertainties associated with 
models, numerical algorithms, experiments, and predicted outcomes…” Smith, R. C. Uncertainty 
Quantification Theory, Implementation, and Applications. 2013. 

Imbue our models with what we know, what we don’t know, and to what degree we don’t know it in 
order to get a more complete picture of what we’re modeling.
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• UQ:  the quantification of the effect of various sources of error (from model, simulation, experiment) on a 
predicted quantity of interest

• Model verification: the process of quantifying the accuracy of simulation codes used to implement 
mathematical models (i.e. are we solving the equations correctly?)

• Model validation: the process of determining the accuracy with which mathematical models represent the 
physical processes of interest (i.e. are we solving the correct equations?)

Experiments, Models, Simulations, and UQ
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Model Verification

Model calibration 
and validation

Model 
Formulation

Physical 

Experiment

Numerical 

Simulation

Mathematical 

Model

Input parameter 
uncertainty

Discretization 
error

Sensor 
error

Example sources of 
uncertainty

Quantity of 
interestPrediction

Probabilistic

Smith, R. C. Uncertainty Quantification Theory, Implementation, and Applications. 2013. 
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Model

Computational Models: Notation and Examples
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Inputs Outputs

Max 
contact 

force

• Atmosphere 
conditions

• Mass 
properties

Landing 
location

• Impact 
velocity

• Material 
properties

Spacesuit 
Impact Model

Trajectory 
Simulation

Transonic Aero 
Solver

• Wing 
geometry

• Mach 
number

Lift

• Ocean 
temps.

• Initial 
pressures 
wind speeds 

Storm 
path

Weather Model Disease Dynamics 
Model

• Infection 
rate

• Birth rate
• Death rate

Total  
infected

S

I

R

Often distinguish 
between inputs
and parameters

Often distinguish 
between outputs 
and quantities of 
interests (QoIs)



Today’s Goals and Points of Emphasis

• Provide enough information to know what to ask/search for if 
interested in applying UQ
• Broad overview of the main concepts; listing common references, software, 

methods for further study

• Understand “what/why/when", not necessarily “how”

• Provide parallels, results from practical NASA problems
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Quick Review of Terminology
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• Random Variable, 𝑿
• Variable with unknown true value

• Probability Density Function (PDF), 𝑝(𝑥)
• Function describing the relative likelihood that 𝑿

takes a specific value, 𝑥

• Cumulative Distribution Function (CDF), 𝐹(𝑥)
• Probability that 𝑿 takes a value less than or 

equal to 𝑥

• CDF = integral of the PDF from −∞ to 𝑥

• Can obtain other probabilities by integrating the 
PDF; e.g., 𝑃(𝑎 ≤ 𝑋 ≤ 𝑏)

𝑝(𝑥)

a b

PDF

𝐹(𝑥)

a b

1

0

𝐹(𝑎)

𝐹(𝑏)

CDF

𝑥

𝑥

More likely

Less Likely
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UQ Concepts
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(Computational)
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Model Prediction

Uncertainty 
Propagation

Optimal 
Experimental 

Design

Model 
Calibration

Sensitivity 
Analysis 

ExperimentData

• Uncertainty propagation feeds quantified input uncertainties through our model to 
produce probabilistic predictions

Uncertainty 
Propagation

UQ Concepts: Uncertainty Propagation
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Uncertainty Propagation
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Computational 
Model

Input 
Parameters

Quantity 
of Interest (QoI)

ℳ 𝑥 = 𝑦

e.g.,
1. Loads/forces
2. Atmosphere conditions
3. Infection rates

e.g.,
1. Max. impact stress
2. Landing location
3. Total # infected

e.g., 
1. Spacesuit impact
2. Trajectory simulation
3. Disease dynamics

• Given PDFs for uncertain input parameters,  𝑝(𝑥), and a governing computational model,      
ℳ, of a system/structure, estimate the _______ of/for the QoI:

➢ PDF: 𝑝(𝑦)

➢ Expected value (i.e., the mean), standard deviation of the QoI: 𝔼 𝑌 , Std[𝑌]

➢ 95% credible intervals: 𝑦𝐿 , 𝑦𝑈 such that 𝑃 𝑦𝐿 ≤ 𝑌 ≤ 𝑦𝑈 = 0.95

➢ Probability of exceeding a critical value: 𝑃(𝑌 ≥ 𝑦𝑐𝑟𝑖𝑡)



Uncertainty Propagation
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Computational 
Model

Input 
Parameters

Quantity 
of Interest (QoI)

ℳ 𝑥 = 𝑦

• Given PDFs for uncertain input parameters,  𝑝(𝑥), and a governing computational model,      
ℳ, of a system/structure, estimate the _______ of/for the QoI:

➢ PDF: 𝑝(𝑦)

➢ Expected value (i.e., the mean), standard deviation of the QoI: 𝔼 𝑌 , Std[𝑌]

➢ 95% credible intervals: 𝑦𝐿 , 𝑦𝑈 such that 𝑃 𝑦𝐿 ≤ 𝑌 ≤ 𝑦𝑈 = 0.95

➢ Probability of exceeding a critical value: 𝑃(𝑌 ≥ 𝑦𝑐𝑟𝑖𝑡)



Uncertainty Propagation
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Computational 
Model

Input 
Parameters

Quantity 
of Interest (QoI)

ℳ 𝑥 = 𝑦

• Given PDFs for uncertain input parameters,  𝑝(𝑥), and a governing computational model,      
ℳ, of a system/structure, estimate the _______ of/for the QoI:

➢ PDF: 𝑝(𝑦)

➢ Expected value (i.e., the mean), standard deviation of the QoI: 𝔼 𝑌 , Std[𝑌]

➢ 95% credible intervals: 𝑦𝐿 , 𝑦𝑈 such that 𝑃 𝑦𝐿 ≤ 𝑌 ≤ 𝑦𝑈 = 0.95

➢ Probability of exceeding a critical value: 𝑃(𝑌 ≥ 𝑦𝑐𝑟𝑖𝑡)

𝔼 𝑌

Std[𝑌]



Uncertainty Propagation

14

Computational 
Model

Input 
Parameters

Quantity 
of Interest (QoI)

ℳ 𝑥 = 𝑦

• Given PDFs for uncertain input parameters,  𝑝(𝑥), and a governing computational model,      
ℳ, of a system/structure, estimate the _______ of/for the QoI:

➢ PDF: 𝑝(𝑦)

➢ Expected value (i.e., the mean), standard deviation of the QoI: 𝔼 𝑌 , Std[𝑌]

➢ 95% credible intervals: 𝑦𝐿 , 𝑦𝑈 such that 𝑃 𝑦𝐿 ≤ 𝑌 ≤ 𝑦𝑈 = 0.95

➢ Probability of exceeding a critical value: 𝑃(𝑌 ≥ 𝑦𝑐𝑟𝑖𝑡)

𝑦𝐿 𝑦𝑈



Uncertainty Propagation
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Computational 
Model

Input 
Parameters

Quantity 
of Interest (QoI)

ℳ 𝑥 = 𝑦

• Given PDFs for uncertain input parameters,  𝑝(𝑥), and a governing computational model,      
ℳ, of a system/structure, estimate the _______ of/for the QoI:

➢ PDF: 𝑝(𝑦)

➢ Expected value (i.e., the mean), standard deviation of the QoI: 𝔼 𝑌 , Std[𝑌]

➢ 95% credible intervals: 𝑦𝐿 , 𝑦𝑈 such that 𝑃 𝑦𝐿 ≤ 𝑌 ≤ 𝑦𝑈 = 0.95

➢ Probability of exceeding a critical value: 𝑃(𝑌 ≥ 𝑦𝑐𝑟𝑖𝑡)

𝑃(𝑌 ≥ 𝑦𝑐𝑟𝑖𝑡)

𝑦𝑐𝑟𝑖𝑡



Monte Carlo (MC) Simulation
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Computational 
Model

Input Parameters Quantity of Interest (QoI)

• Procedure – repeat following 𝑁 times:
• Generate random sample of input parameters: 𝑥(𝑖) ∼ 𝑝(𝑥)

• Evaluate model & store output: 𝑦(𝑖) = ℳ(𝑥(𝑖))

• Then – postprocess output samples 𝑦(𝑖)
𝑖=1

𝑁
to estimate PDF, statistics of QoI, etc.

➢ 𝑝 𝑦 (use histogram or kernel density estimate)

➢ 𝔼 𝑌 ≈
1

𝑁
σ𝑖=1
𝑁 𝑦(𝑖) (expected value ≈ sample average)

➢ 𝑃 𝑌 ≥ 𝑦𝑐𝑟𝑖𝑡 ≈
1

𝑁
σ𝑖=1
𝑁 𝟏(𝑦𝑖 ≥ 𝑦𝑐𝑟𝑖𝑡) (failure probability ≈ proportion of samples that failed)

Indicator function: = 1 if True, = 0 if False

ℳ 𝑥 = 𝑦



MC Example: Beam with Random Loading
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Computational 
Model

Input Parameters

• Uncertain load parameters (F, W)
• Fixed, deterministic inputs:

• Length (L), stiffness, area



MC Example: Beam with Random Loading
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Input Parameters

Computational 
Model

Quantity of Interest (QoI)

0.550
Model predictions for three randomly drawn inputs

• Uncertain load parameters (F, W)
• Fixed, deterministic inputs:

• Length (L), stiffness, area



MC Example: Beam with Random Loading
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Computational 
Model
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Monte Carlo simulation for N=10,000 random samples

Input Parameters Quantity of Interest (QoI)

in

𝑝(Δ𝑚𝑎𝑥)

• Uncertain load parameters (F, W)
• Fixed, deterministic inputs:

• Length (L), stiffness, area



Example: Beam with Random Loading
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#Specify inputs 

...

#Monte Carlo simulation loop:

deflection_samples = np.zeros(N)

for i in range(N):

F = random.normal(F_mean, F_std)

W = random.normal(W_mean, W_std)

deflection_samples[i] = F*L**3/(48.*E*I)+(5*W*L**4)/(384.*E*I)

#Postprocess to create histogram, estimate statistics:

plt.hist(deflection_samples)

mean = numpy.mean(deflection_samples)

failure_prob = numpy.sum(deflection_samples>=failure_threshold)/N

• Monte Carlo implementation (e.g., Python):

Draw random input samples

Evaluate model

Set N, L, F_mean, F_std, …

• Uncertain load parameters (F, W)
• Fixed, deterministic inputs:

• Length (L), stiffness, area



MC: Convergence
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• Convergence rate is on order of 
1

𝑁
(via Central Limit Theorem) and is independent of input dimension

• Rare event (e.g., probability of failure) estimators require significantly more samples for accuracy



MC: Effect of Correlated Inputs 

Marginal PDFs of loads

Joint PDF of loads

Monte 
Carlo 

simulation

No correlation:

Correlation = 0
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MC: Effect of Correlated Inputs 

Joint PDF of loads

Correlation = 0

Correlation = 0.95

Marginal PDFs of loads

Monte 
Carlo 

simulation

No correlation:
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MC: Effect of Correlated Inputs 

➢ Correlated load case is over 4X more likely to fail

No correlation:

With correlation:

Joint PDF of loads

Correlation = 0

Correlation = 0.95

Marginal PDFs of loads

Loads more 
likely to take 

extreme values 
together

MC 
simulation

24

➢ Important to quantify correlations; failure to do so can lead to undetected non-conservatism

Fa
ilu

re
 T

h
re

sh
o

ld



MC Takeaways

✓Non-intrusive, general-purpose, and relatively simple approach for propagating 
uncertainty through models
• But can be challenging/infeasible in practice when models are expensive

✓Exhibits provable convergence at a known rate, regardless of input dimension

✓Improperly specifying input uncertainty (e.g., parameter correlations) can have a 
significant impact on results
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So how do we quantify input uncertainties?
1. Make estimates based on expert judgement

2. Use available data to infer uncertainty directly



Model Prediction

Uncertainty 
Propagation

Optimal 
Experimental 

Design

Model 
Calibration

Sensitivity 
Analysis 

ExperimentData

Model 
Calibration

• Model calibration explicitly quantifies model input uncertainties using experimental 
data (can be used to improve or update initial assumptions)

UQ Concepts: Model Calibration
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Model Calibration with Component Scale Tests

• In practice, the experimental data available for calibration is often from a 
simpler, component scale test

• Examples from spacesuit reliability analyses:
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Brief

Soil

Rock

Model 
Calibration

Low Velocity 
Impact Test

Force vs Time Data
Composite Coupon 

Impact Model

Model 
Calibration

Rover with Cone 
Penetrometer

Lunar Regolith 
Resistance Data

Penetrometer Model

Progressive damage 
model parameters

Mohr Column soil 
model parameters

Modeling Progressive Impact Damage in Composites Modeling Suit Impact on Lunar Regolith



Deterministic vs. Probabilistic Calibration

• Assume:
• 𝐷 = ℰ(𝒙; 𝝐) is measurement data from experiment, ℰ, with measurement error/noise, 𝝐

• 𝑌ℰ = ℳℰ(𝒙) is a computational model that predicts the measured quantity from the experiment

28

• Deterministic calibration:
Find deterministic parameters that result in best 
agreement by minimizing some error metric; 

e.g., sum of squared error, 𝑆𝑆𝐸 = σ𝑖(𝑌ℰ,𝑖−𝐷𝑖)
2

• Probabilistic calibration:
Find a PDF, 𝑝(𝑥|𝐷), assigning probability density 
to all potential values of the parameters based on 
the observed data and accounting for noise 𝝐

𝑡

Y

𝑡

Y

𝑥

𝑥∗

𝑥



Probabilistic Calibration

• Formulated such that 𝑝(𝑥|𝐷) is high when error, 𝑌ℰ − 𝐷 , is low and vice versa 
• Typically implemented using Bayesian inference

• Starts with an initial guess for uncertainty (“prior distribution”) then updates it using the 
measurement data (with a “likelihood function”) 
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Prior
Likelihood
Posterior
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“Find a PDF, 𝑝(𝑥|𝐷), assigning probability density to all 
potential values of the parameters based on the 

observed data and accounting for noise 𝝐”

How does this work in practice?



Probabilistic Calibration Takeaways

✓Estimates input uncertainties based on data, accounting for noise

✓The calibrated PDF 𝑝 𝑥 𝐷 naturally includes estimates of correlations and noise level

✓Less data →more uncertainty; more data → less uncertainty

✓Variety of well-established methods exist for performing probabilistic calibration
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Some notable caveats:
1. Requires specific expertise/experience

2. Prior distribution specification more nuanced than you may expect
3. Computationally expensive relative to deterministic calibration



UQ Concepts: Surrogate Modeling (AKA response surfaces, reduced order models, …)
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Machine Learning
• Gaussian processes

• Neural networks

• Polynomial Chaos 

• ….

High-Fidelity

SimulationInput 

Training Data

Output 

Training Data

…

Surrogate

Model

O
ff

lin
e 

O
n

lin
e

Overcoming computational burden when the model is expensive 

…

Orders of magnitude 
computational 

speedup possible



Surrogate Model Validation

• Regardless of the method used for surrogate modeling, the most important step is 
validating a trained model before using for UQ

• Always create a separate dataset for testing that is not used for training

• If surrogate model error is not negligible, it can be factored into total uncertainty 
when making probabilistic predictions

32

…… ……

Training Testing

(M < T)

Compare predictions on test 
data to the original model



UQ Concepts: Model Discrepancy

• “All models are wrong,” but our objective is to make them useful
• Physics never perfectly represented → capture the important parts!

• In some cases, missing physics can lead to significant model discrepancy
• Significant meaning model form errors are on the same order as other sources of uncertainty
• Can often be identified as a violation of assumptions about the noise in the measurements during 

calibration
• Often results from a model not matching the as-built system

33

𝑥

Y
Linear Model

“True” nonlinear 
function



UQ Concepts: Model Discrepancy

• “All models are wrong,” but our objective is to make them useful
• Physics never perfectly represented → capture the important parts!

• In some cases, missing physics can lead to significant model discrepancy
• Significant meaning model form errors are on the same order as other sources of uncertainty
• Can often be identified as a violation of assumptions about the noise in the measurements 

during calibration

34

• Potential consequences:
• Biased estimates of physical parameters
• Invalidated inverse problem formulation
• Inaccurate estimates of uncertainty, especially when extrapolating



UQ Concepts: Model Discrepancy

• “All models are wrong,” but our objective is to make them useful
• Physics never perfectly represented → capture the important parts!

• In some cases, missing physics can lead to significant model discrepancy
• Significant meaning model form errors are on the same order as other sources of uncertainty
• Can often be identified as a violation of assumptions about the noise in the measurements 

during calibration
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• Remedies:
• Implement an advanced calibration method to attempt to learn the discrepancy
• Build a better model (using insights from UQ analysis); Ensure the model matches the as-built 

hardware as close as possible

• Potential consequences:
• Biased estimates of physical parameters
• Invalidated inverse problem formulation
• Inaccurate estimates of uncertainty, especially when extrapolating
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Sensitivity 
Analysis

• Sensitivity analysis identifies the most influential system parameters to properly focus 
effort/resources in a probabilistic analysis

UQ Concepts: Sensitivity Analysis
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Sensitivity Analysis Overview

• Local sensitivity analysis – based on derivatives, 
𝜕𝑌

𝜕𝑋𝑖
|𝑋=𝑥∗

• Computationally efficient

• Does not consider input uncertainty, model non-linearity

• Global sensitivity analysis
• More computationally expensive

• Holistically assesses effect of uncertainty & model behavior

• Used to reduce dimensionality or inform additional experiments
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*Global sensitivity analysis. The primer. Andrea Saltelli. 2007.

Local sensitivity 
at x* is small

x* Xi

Y

Se
n

si
ti
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ty

Input 4 Input 3 Input 1 Input 2

How uncertainty in the output of a model can be apportioned to 
different sources of uncertainty in the model input*



Practical Example – Spacesuit Reliability
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➢ Note: this example is presented for purposes of demonstration; the reliability estimates 
provided here are not reflective of the true values for these projects

➢ Estimating the reliability of a spacesuit for impact events (e.g., astronaut 
falls on the lunar surface) using UQ

Probability of fall

Probability of 
impact location

Mission-related 
probabilities

Impact velocity 
uncertainty

Material 
Uncertainties

Probability of 
rock size

Impact Damage 
Simulation

Variability in 
lunar regolith
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Z-2 Spacesuit Reliability Analysis

Sensitivity 
Analysis 

Component Model

Z-2 
Design

Impact Model
Output

Max. 
Impact 
Force

Inputs

Impact 
Load

Material 
Model

Material Parameters

Impact Velocity
Probability 
of failure
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Reliability

Uncertainty Propagation

Model  
Calibration

Impact 
Test 
Data

Sensitivities

UQ Workflow Applied to Z-2 Spacesuit Reliability



Sensitivity 
Analysis 
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Component Model

Z-2 
Design

Impact Model
Output

Max. 
Impact 
Force

Inputs

Impact 
Load

Material 
Model

Material Parameters

Impact Velocity

Given: candidate design, component/impact models, 
test data, assumed impact load & failure criteria 

Estimate: Z-2 
impact reliability

Probability 
of failure
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Reliability

Uncertainty Propagation

Model  
Calibration

Impact 
Test 
Data

Sensitivities

UQ Workflow Applied to Z-2 Spacesuit Reliability

Z-2 fails if:
Max. impact force > 2800lbf

Z-2 Spacesuit Reliability Analysis



Sensitivity 
Analysis 
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Component Model
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Impact Model
Output

Max. 
Impact 
Force
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Impact 
Load

Material 
Model

Material Parameters

Impact Velocity

Given: candidate design, component/impact models, 
test data, assumed impact load & failure criteria 

Estimate: Z-2 
impact reliability

Probability 
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Sensitivities

UQ Workflow Applied to Z-2 Spacesuit Reliability

Z-2 Spacesuit Reliability Analysis



Sensitivity 
Analysis 

42

Component Model

Z-2 
Design

Impact Model
Output

Max. 
Impact 
Force

Inputs

Impact 
Load

Material 
Model

Material Parameters

Impact Velocity

Given: candidate design, component/impact models, 
test data, assumed impact load & failure criteria 

Estimate: Z-2 
impact reliability

Probability 
of failure
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Reliability

Uncertainty Propagation

Model  
Calibration

Impact 
Test 
Data

Sensitivities

UQ Workflow Applied to Z-2 Spacesuit Reliability

1) Applied sensitivity analysis to identify the most influential material model parameters to 
focus on for the remaining UQ analysis

Z-2 Spacesuit Reliability Analysis



Sensitivity 
Analysis 
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Component Model

Z-2 
Design

Impact Model
Output

Max. 
Impact 
Force

Inputs

Impact 
Load

Material 
Model

Material Parameters

Impact Velocity

Given: candidate design, component/impact models, 
test data, assumed impact load & failure criteria 

Estimate: Z-2 
impact reliability

Probability 
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Reliability

Uncertainty Propagation
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Calibration

Impact 
Test 
Data

Sensitivities

UQ Workflow Applied to Z-2 Spacesuit Reliability

2) Used model calibration to quantify uncertainty in material parameters from impact test data

Z-2 Spacesuit Reliability Analysis



Sensitivity 
Analysis 
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Component Model

Z-2 
Design

Impact Model
Output

Max. 
Impact 
Force

Inputs

Impact 
Load

Material 
Model

Material Parameters

Impact Velocity

Given: candidate design, component/impact models, 
test data, assumed impact load & failure criteria 

Estimate: Z-2 
impact reliability

Probability 
of failure

Fa
ilu

re
 T
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re

sh
o
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Reliability

Uncertainty Propagation

Model  
Calibration

Impact 
Test 
Data

Sensitivities

UQ Workflow Applied to Z-2 Spacesuit Reliability

3) Used uncertainty propagation to estimate reliability given material/impact load uncertainty
• Reliability ≈ 99.3% (demonstration purposes only)
• Quantified material uncertainty resulted in >10% variability in predicted max. contact force

Z-2 Spacesuit Reliability Analysis



• Lunar regolith properties
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Model Calibration – Lunar Regolith Uncertainty

Rover with Cone 
Penetrometer

Lunar Regolith 
Resistance Data*

*Heiken, Grant H., David T. Vaniman, and Bevan M. French. Lunar 
Sourcebook, a user's guide to the Moon. 1991.

Probabilistic
Model

Calibration
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Summary
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• UQ provides a framework to quantify what we know, what we don’t 
know, and to what degree we don’t know it, in the context of 
modeling & simulation 
• Monte Carlo simulation is a general-purpose, simple-to-implement method 

for uncertainty propagation, but:

• It can be difficult to know which input parameters should be treated as 
random variables  
➢Potential solution: sensitivity analysis

• It can be difficult to properly assign probability distributions to input 
parameters 
➢Potential solution: model calibration

• It can be intractable for expensive, high-fidelity models 
➢Potential solution: surrogate modeling



Summary - Common UQ Pitfalls

47

• Using solutions that are not converged (e.g., not enough samples for 
Monte Carlo)

• Assuming all input parameters are independent/uncorrelated to 
simplify an analysis

• Failing to validate a surrogate model (or validating using the same 
data it was trained on)

• Not accounting for significant model discrepancy / model form 
uncertainty 



Further Reading
• Uncertainty Quantification (general)

• Smith, R. C. Uncertainty Quantification Theory, Implementation, and Applications. 2013. [Textbook]

• Roy, C. J. and Oberkampf, W. L. A comprehensive framework for verification, validation, and uncertainty quantification in scientific computing. 2010.

• Warner, J. E. et al.: “Assessing Next-Gen Spacesuit Reliability: A Probabilistic Analysis Case Study”, NASA/TM–20210019495. 2021.

• Uncertainty Propagation
• Rubinstein, R. Y. and Kroese, D. P. Simulation and the Monte Carlo Method., 2016.

• Ditlevsen, O. and Madsen, H. O. Structural Reliability Methods. 2007. [Textbook] (Free PDF download available)

• Model Calibration
• Kennedy, M. C. and O’Hagan, A. Bayesian calibration of computer models. 2002.

• Haugh, M. B., A Tutorial on Markov Chain Monte-Carlo and Bayesian Modeling. 2021.

• Surrogate Modeling
• Alizadeh, R. et al. Managing computational complexity using surrogate models: a critical review. 2020.

• Gramacy, R. B. Surrogates: Gaussian Process Modeling, Design and  Optimization for the Applied Sciences. 2020.

• Sudret, B. et al. Surrogate models for uncertainty quantification: An overview. 2017.

• Model Discrepancy
• Brynjarsdóttir, J. and O’Hagan, A. Learning about physical parameters: The importance of model discrepancy. 2014.

• Soize, C. A nonparametric model of random uncertainties for reduced matrix models in structural dynamics. 2000.

• Sensitivity Analysis
• Saltelli, A. Global sensitivity analysis. The primer. [Textbook] (Free PDF download available)

• Plischke, E. et al. Global sensitivity measures from data. 2013.

• Software
• Dakota: uncertainty quantification software by Sandia: https://dakota.sandia.gov/

• SALib: open-source Python library for sensitivity analysis https://github.com/SALib/SALib

• Scikit-learn: open-source Python library for machine learning (surrogate modeling): https://scikit-learn.org/stable/
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Backup



Philosophical Points
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• Types of uncertainty:
• Aleatory uncertainty – uncertainty due to inherent variability or randomness of a 

physical phenomenon
• E.g., Variability of material properties in manufactured parts; variation in environmental load

• Epistemic uncertainty – uncertainty due to a fundamental lack of knowledge or 
simplifying model assumptions, missing physics, measurement bias, etc. that could 
theoretically be reduced with additional resources/effort 
• Ex: the geometry of a specific manufactured part; numerical error from a coarse mesh

• Two schools of thought:
1. Bayesian: probability represents degree of belief of the analyst and can be used to 

model both aleatory & epistemic uncertainties
2. Frequentist: probability represents the frequency of occurrence and therefore is not 

appropriate for epistemic uncertainties; instead intervals with no associated 
likelihood/PDF should be used. 

“The Bayesian perspective is… natural for model uncertainty quantification since it provides densities that can be 
propagated through models.” Smith, R. C. Uncertainty Quantification Theory, Implementation, and Applications. 2013. 



Model Discrepancy Details

• Model validation / model discrepancy / model form uncertainty

➢One approach: calculate validation error metric at series of points in validation domain & 
build regressor to estimate model form uncertainty in application domain [1]

• References
1. Roy, C. J. and Oberkampf, W. L. A comprehensive framework for verification, validation, and 

uncertainty quantification in scientific computing. 2010.
• Model-form uncertainty estimation + extrapolation (images above)

2. Kennedy, M. C. and O’Hagan, A. Bayesian calibration of computer models. 2002.
• Bayesian approach to treating model discrepancy

3. Sills, J. NESC-RP-16-01110, NASA/TM-2021-0009733. 2021. 
• Non-parametric variation approach for model form uncertainty for dynamics 51

Validation metric based on experiment/simulation CDFs [1] Validation vs. Application Domains [1]



Important Areas Not Covered

• Mixed and Imprecise Probability Methods

• Philosophy: aleatory (irreducible/stochastic) uncertainty is modeled with probability distributions, epistemic 
(reducible/ignorance) uncertainty is modeled with intervals with no associated probability

• Solution approach: double loop Monte Carlo simulation
• Repeat: select possible epistemic variable values from intervals, perform standard Monte Carlo simulation for aleatory 

variables; Then: identify min/max CDFs to create P-Box solution

• Provides estimates in the form of intervals:
• P(y < 5) = [0.2, 0.7]; Probability of failure = [0.97, 0.9999]

• Simple, efficient compromise: use worst case values for epistemic variables & use standard Monte Carlo 
• Can be challenging to identify “worst case” values for large numbers of epistemic uncertainties and complex failure criteria

• References
1. Roy, C. J. and Oberkampf, W. L. A comprehensive framework for verification, validation, and uncertainty quantification in scientific 

computing. 2010.
2. Ferson, S. and Ginzburg, L. R. Different methods are needed to propagate ignorance and variability. 1996
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Factor of Safety- vs. Reliability-Based Design
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Images adapted from Raju et al. White Paper on Factors of Safety. NASA/TM-2009-215723
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FoS Shortcomings
• Determined empirically, not necessarily based on physics/mathematics

• Inconsistencies observed from program to program; between NASA and other external organizations
• Difficult to specify for new vehicle types, materials, and environments

• May be sequentially applied by multiple teams
• Can be costly, conservative, inefficient

• Does not provide measures of reliability from the design process



Factor of Safety- vs. Reliability-Based Design
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Images adapted from Raju et al. White Paper on Factors of Safety. NASA/TM-2009-215723
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Reliability-Based Design
• Classical structural reliability assumes load & resistance are independent, Gaussian distributions 

and yields a simple analytical formula for probability of failure
• The resistance (strength) distribution can be determined directly from A/B-basis properties
• For practical problems, more general UQ methods are often needed to estimate the load (stress) 

distribution or the probability of failure (P[L > R]) directly – the focus of today’s slides



SimTools: In-House Software for Automating Simulations
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Example: Needed to run 200 suit simulations for different inputs; Ran 15 simulations at a time on 10 processors each

➢ Performed 1+ years of serial computation time in around 1 week of wall time

High Performance Computing 
Cluster Scheduling

Postprocessing &  
Data Management

Specify:
1) Number of input 

samples/combinations 
2) Number of simulations to 

run in parallel
3) Number of processors to 

run each simulation on
4) Output metrics to 

compute & store

Produces:
• Processed input/output 
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