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A surrogate artificial neural network/machine learning model was developed to 

predict the acoustic interaction for a fixed-pitch rotor in proximity to a downstream 

cylindrical airframe typical of small Unmanned Aerial System (sUAS) platforms. The model 

was trained to predict the acoustic waveform under representative hover conditions as a 

function of rotational speed, airframe proximity, and observer angle. Training data were 

acquired in an anechoic chamber on both isolated rotors and rotor-airframe configurations.  

Acoustic amplitude and phase of the revolution-averaged interaction were predicted, which 

required up to 25 harmonics to capture the impulse event caused by the blade’s approach 

and departure from the airframe. Prediction performance showed, on average, that the 

models could estimate the acoustic amplitude and phase over the relevant harmonics for 

unseen conditions with 86% and 75% accuracy, respectively, enabling a time-domain 

reconstruction of the waveform for the range of geometric and flow parameters tested. 

 

I. Nomenclature 
A harmonic amplitude, [Pa] 

Ã amplitude prediction, [Pa] 

CT thrust coefficient 

d diameter of the cylinder, [m] 

f frequency, [Hz] 

k harmonic number 

Mtip tip Mach number 

M           number of reserved runs 

N number of discrete points in waveform 

PA amplitude prediction performance 

Pψ  phase prediction performance 

p' acoustic pressure, [Pa] 

R radius of the rotor, [m] 

Wd weight distribution 

Xr central difference 

y, y0 revolution-average and ideal waveform, [Pa] 

Δ rotor-airframe proximity, [m] 

θ azimuth location of the observer, [°] 

φ elevation location of the observer, [°] 

ψ phase, [radian] 

ψ̃ phase prediction, [radian] 

Ω rotor rotation rate [rev/min] 

Subscripts 

i, j index 
 

Acronyms 

ANN Artificial Neural Network 

BPF Blade Passing Frequency 

B&K Brüel and Kjær 

CFD Computational Fluid Dynamics 

DoF Degree of Freedom 

MA  Master Airscrew 

OASPL-A A-weighted Overall Sound Pressure Level 

RAI  Rotor-Airframe Interaction 

sUAS  small Unmanned Aerial System 

WMSE  Weighted Mean Square Error 

UIUC  University of Illinois at Urbana-Champaign 

 
II. Introduction 

 For small Unmanned Aerial Systems (sUASs), the Rotor-Airframe Interaction (RAI) phenomenon 

contributes to and, in some cases, dominates the acoustic emission. For example, Zawodny and Boyd [1] conducted 

a study in which cylindrical and conical rods were placed underneath the rotor disk to measure the RAI effect in an 

isolated environment. The results showed increased tonal content at harmonics of the Blade Passing Frequency 

(BPF), and the interaction was highly directional. In addition, a Computational Fluid Dynamics (CFD) analysis 

showed that an approaching and departing blade produced a strong potential field on the surface of the rod, resulting 

in the rod emitting a strong impulse noise. It was noted that the tonal noise dropped significantly when the rotor-

airframe separation increased, while the tonal content increased with larger cylindrical diameters. Wang et al. [2] 

investigated the RAI with Particle Image Velocimetry in an anechoic chamber. They compared experimental results 
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to a CFD simulation to understand the underlying behavior of the aerodynamic and acoustic interaction. They found 

that the airframe had minimal impact on the rotor’s aerodynamic load as the velocity fields were similar in 

magnitude with and without the airframe in place. Results also compared the acoustic output of a rod positioned 

above and below the rotor disk. After comparing the two rod positions, they found that a rod positioned above the 

rotor produced greater harmonic content because the airframe distorts the rotor inflow, which produces large 

periodic turbulent structures. In addition, smaller turbulence structures were prominent in the rod wake, creating 

additional broadband noise. Quinte et al. [3] compared rotors with various twist, taper, and pitch distributions 

operating near a cylindrical rod in hover to assess the aerodynamic and acoustic performance. They found that a 

rotor geometry with a higher twist and taper was beneficial for the performance metrics due to increased power 

loading while reducing the noise. Conversely, an increase in the pitch of the rotor from 4° to 12° resulted in a larger 

magnitude of pressure on the airframe. This resulted in a spectral excitation in the mid-frequency range and 

increased the A-weighted Overall Sound Pressure Level (OASPL-A) by 7 dBA for above-plane observers. In-plane 

observers saw a mild increase in OASPL-A, less than 1 dBA for the increased pitch. 

  

The RAI is also observed in outdoor environments as Whelchel et al. [4,5] conducted experiments in an anechoic 

chamber and an open environment. Their results reinforced findings in Zawodny and Boyd’s work, and they 

demonstrated that the acoustic pressure decreases in magnitude as the observer moves away from the surface 

normals of the cylindrical bar. Gojon et al. [6] performed an RAI experiment to validate a CFD simulation. Their 

results showed that harmonic levels at 2xBPF to 15xBPF increased by up to 30 dB, and the RAI directivity is similar 

to a dipole. Recently, Gallo et al. [7] created an analytical model to predict the aerodynamic sound generated by a 

rod placed downstream of a rotor and applied a potential flow model to estimate the lift force using Goldstein’s 

method [8] to predict the far-field acoustic pressure for the BPF and the four subsequent harmonics. Compared to 

experimental results, the analytical model underpredicted the harmonic content, but this approach captured sound 

pressure level trends in rotational speed, airframe diameter, and airframe proximity.  

 

Previous efforts, such as those mentioned above, have shown several cases where the RAI has been successfully 

modeled with CFD simulations. This approach is useful for obtaining insights into the RAI; however, this is 

computationally expensive and challenging to incorporate into the early stages of sUAS design. One potential 

method of modeling the RAI is to use a surrogate model. After training, these models can make accurate predictions 

for highly complex systems. This work uses Artificial Neural Networks (ANNs) to model and predict the RAI while 

avoiding the extensive computational effort required for CFD. Several ANNs were trained to model a two-bladed 

rotor in hover with a cylindrical airframe downstream. The data were collected in an anechoic chamber while 

varying rotational speed and rotor-airframe proximity from run to run. The acoustic pressure time history was then 

segmented with a tachometer signal to estimate the tonal acoustic waveform for all microphones. Afterward, a 

Fourier transformation was applied to the waveform to extract the harmonic content. Then, the ANNs were trained 

to predict the amplitudes and phases of the waveform as a function of rotational speed,  rotor-airframe proximity, 

and observer location at each harmonic. The experimental setup section explains the process of collecting data and 

outlines the ANN architecture. The results explore trends in the experiment and the ANN’s ability to model and 

predict new waveforms. 

III. Experimental Setup  
A. Facility Layout  

An experiment was conducted in the Structural Acoustic Loads and Transmission (SALT) anechoic 

chamber at the NASA Langley Research Center [9]. A rotor stand was positioned in the center of the room, with the 

rotor hub centered between the floor and ceiling wedges at the height of 3.2 m above the floor, as shown in Fig. 1a. 

The rotor stand supported a Scorpion SII-4020-420KV motor and a JR-3 6-DoF load cell and the two were separated 

by a neoprene damper to reduce vibrations transmitted to the JR-3 load cell. In addition, reflective tape was applied 

to the motor, allowing the optical tachometer to estimate the period for each revolution. This motor was chosen 

because it could quickly reach and maintain the desired rotational speed. For example, at the lowest rotational speed 

of Ω = 4000 RPM (Mtip = 0.172), the motor had a standard deviation of 4 RPM, while the highest rotational speed of 

Ω = 9200 RPM (Mtip = 0.404) had a standard deviation of 16 RPM. A speed controller was used to maintain the 

steady supply of power for the motor.  

Figure 1 shows the placement of the microphones at three azimuthal locations around the test stand, marked with 

green, blue, and orange borders for 90°, 0°, and -90°, respectively. Each azimuthal location, θ, had a mount fixing 

microphones in an arc with a radial distance of 2.24 m from the rotor hub for three elevation angles; a total of nine 
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microphones were used in this study. Microphones M7, M8, and M9 were stationed in-plane (φ = 0°) of the rotor 

hub and used ¼” Type 4954-B free-field Brüel and Kjær (B&K) microphones. The out-of-plane microphones, M1 – 

M6, used the ¼” free-field GRAS 46BE. Table 1 lists the type of microphone used and its location in azimuth and 

elevation with respect to the rotor hub.  

 
Figure 1: Experimental setup in the SALT facility with (a) nine microphones viewed from a low angle [9] and (b) a 

top view drawing.  

 

Table 1: Microphone used and layout. 

Microphone M1 M2 M3 M4 M5 M6 M7 M8 M9 

Mic type GRAS GRAS GRAS GRAS GRAS GRAS B&K B&K B&K 

Azimuth, θ 90° 0° -90° 90° 0° -90° 90° 0° -90° 

Elevation, φ -45° -45° -45° -22.5° -22.5° -22.5° 0° 0° 0° 

 

The two-blade Master Airscrew (MA) 11x7 rotor has a radius of R  = 140 mm and was positioned in proximity to a 

cylindrical carbon fiber rod with a constant cross-section and a diameter of d = 25 mm. The bar was mounted as a 

cantilever to a sleeve-bearing carriage, allowing the rod to change its proximity to the rotor between runs. Figure 2 

shows a close-up of the stand with the cylindrical rod downstream of the rotor. The proximity between the bar and 

the rotor is Δ and is measured at the 0.75R blade span location.  

 
Figure 2: Rotor and airframe assembly.  
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B. Data Acquisition  
The JR-3 load cell measured thrust responses for each run. Thrust was averaged over a run, and the tare was 

subtracted from the measurement to return a response for the static thrust produced. Torque measurements were 

acquired with the load cell, but the outputs were unreliable and had to be discarded.  Taring was performed between 

runs to monitor for drift throughout the experiment. In addition, brief intermissions were taken between runs to 

prevent recirculating air from contaminating consecutive runs. This was paramount as recirculated airflow increases 

the tonal noise once ingested by the rotor and can occur in enclosed spaces after a small-time duration [10]. 

Individual runs were kept to a maximum of 10 seconds to minimize recirculation effects. Spectrograms were used to 

monitor for recirculation, and the proceeding data could be discarded, if necessary. Data were acquired using 24-bit 

National Instruments PXI-4472B modules installed within a PXI-1045 chassis, synchronizing the load cell, 

tachometer, and microphone output with a sampling rate of 48 kS/s. 

C. Test Conditions 
The experiment is divided into two categories: an isolated rotor and a rotor with the airframe present. ANNs 

were trained to model the Fourier coefficient for each category. Table 2 provides a general overview of the number 

of runs conducted for each category and the range of operating conditions. The isolated rotor category only had one 

independent variable (tip Mach number) and could be incrementally increased as the experiment progressed, while 

the RAI had two independent variables under consideration, Mtip and Δ/R. An additional objective of this paper is to 

determine an effective means of sampling the domain of interest with the minimum number of runs. Previous efforts 

suggest that a sphere-packing scheme is an effective method of sampling the two-parameter domain. The JMP 

software package [11] generated a distribution of 35 sample points throughout the domain for Δ = 0  R – 0.5R and 

Mtip = 0.172 – 0.404, and this initially served as the training dataset for the ANNs with additional samples, known as 

the unseen dataset, collected to evaluate the predictive performance of the ANNs. However, for the two-blade RAI 

test, the only runs that were useful in the analysis had the rotor-airframe proximity at Δ/R < 0   , resulting in 26 

training and 25 unseen runs for building and evaluating the ANNs over the domain of interest represented in Table 

2. On this reduced dataset, the ANNs had difficulty predicting the noise on the 26 training runs, so the training 

dataset was increased to 35 runs reducing the unseen dataset to 16. This augmented distribution was used to train 

and evaluate the RAI ANNs, and this distribution can be seen in Fig. 3. The training runs are marked with blue 

squares, and the unseen runs are marked with red circles. A more thorough explanation as to why runs above Δ/R > 

0.37 were removed from the analysis is explained in Section IV.B.  

Table 2: Testing conditions used to train the two ANNs.  

Category Mtip Δ/R  Number of Runs 

Isolated 0.172 – 0.404  -- 30 

RAI 0.172 – 0.404 0.1 – 0.37 51  

 

 
Figure 3: Distribution of sampled points over the domain of interest for the two-blade RAI. 
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IV. Methods  
A. Postprocessing  

The measured data collected in the anechoic chamber resulted in an acoustic pressure time history for each of 

the nine microphones. Figure 4 shows an example of the process of converting the measured signal into the 

revolution-averaged  waveform. In order to collect the amplitude and phase data at the harmonics, the measured 

signal is run through a series of zero-phase filters to capture tonal content without distorting the phase. The 

MATLAB filtfilt function is applied at each harmonic with a second-order Butterworth filter using a bandpass 

window of  ±10 Hz up to the 30th harmonic. Afterward, the output from each filter is summed to construct a 

modified signal with the same time duration as the measured signal. Next, the filtered signal is segmented with pulse 

intervals measured by the tachometer, producing a series of single-revolution waveforms over the 10-second 

recording.  

Depending on the tip Mach number, this would produce 700 to 1600 waveforms per run. The waveforms are 

overlayed and averaged to produce a steady signal and are referred to as the revolution-averaged waveform 

throughout the paper. The revolution-averaged waveform was also estimated with the pulse intervals applied to the 

measured signal, without any filters. Whether the measured data were filtered or not, the revolution-averaged 

waveform was consistent between processes. The time delay between the tachometer signal and the microphone 

measurements is ignored because this work focused on the waveform response to input parameters. With the 

revolution-averaged waveform constructed for a full period, the signal is extended in the time domain to increase the 

frequency resolution. Finally, a Fast Fourier Transformation (FFT) is applied to the waveform to extract the 

amplitude and phase at each harmonic and store them in a database. Phase wrapping occurs between -π and π, and 

the ANN is unaware of the wrap. So, the phase dataset needs to be unwrapped before training. 

 
Figure 4: Postprocessing method used to estimate the revolution-averaged waveform.  

 

B. ANN Construction  

This experiment aims to build an ANN that can model and predict the acoustic waveform of the RAI for new 

rotational speeds and rotor-airframe proximities. A secondary goal of the ANN is to separate the steady tonal noise 

emitted by an isolated rotor from the interaction. Generally speaking, the acoustic waveform emitted from a rotor 

operating in hover is dominated by the tonal noise at the BPF and its harmonics  Fourier’s Theorem states that a 

periodic function can be represented with a summation of sine and cosine terms. The ANN is trained to model the 

Fourier coefficients: amplitude, A, and phase, ψ, for each harmonic, k. 

 

Previous work has considered modeling the waveform in the time domain [12]. This approach generates a waveform 

that closely matches training data. However, ANNs predicting time domain signals will introduce numerical artifacts 

at higher frequencies and this would contaminate the prediction because the RAI also influences the higher 

harmonics. Modeling the revolution-averaged waveform in the frequency domain prevents these artifacts from 
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occurring. It also reduces the training time and number of runs required to train a predictive model. With the Fourier 

coefficients known, the inverse Fourier transformation can be used to construct the time domain signal and avoid 

artifacts. A diagram of the frequency domain approach is presented in Fig. 5. For harmonic k, two trained ANNs 

predict the A and ψ as a function of Mtip, Δ/R, θ,  and φ  Each ANN architecture consists of two hidden layers using 

the tansig function, which is a nonlinear activation function that is fed into the linear output layer. Using the ANNs 

prediction at each harmonic, the waveform can be constructed using the inverse Fourier transformation. The 

MATLAB Neural Network toolbox is used to train all ANNs. 

 
Figure 5. The ANN prediction architecture and waveform reconstruction.  

 

V. Experimental Results 
A. Aerodynamics   

Figure 6 shows the coefficient of thrust trends for the MA 11x7 rotor in the hover configuration while 

incrementing the rotational speed. For the thrust measurements taken in the anechoic chamber, there is a negligible 

difference between the isolated and RAI runs. Due to a drift in the loadcell, no clear relationship between airframe 

proximity and thrust coefficient can be established; however, previous studies support the notion that the 

downstream cylinder has a marginal effect on thrust [1–3]. The coefficient of thrust is positively correlated with the 

rotational speed because of the Reynolds number effects. The effects are especially pronounced on the rotor 

performance below 100,000 [13]. For this experiment, the Reynolds number varied between 57,000 – 127,000, with 

chord length and airspeed properties taken at the 75% span location. Finally, a comparison is made to the University 

of Illinois at Urbana-Champaign (UIUC) propeller database for the same rotor operating in hover in the UIUC 

subsonic wind tunnel [14]. The CT levels deviated by approximately 0.01 between facilities.  

 
Figure 6: Measured hover thrust values for the MA 11x7 rotor collected for the isolated and RAI runs compared to 

the UIUC database.  
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B. Rotor-Airframe Proximity 

The effects of the rotor-airframe proximity can be seen in Figs. 7a and 7b, where the revolution-averaged 

waveform for eight runs, operating at a tip Mach number of 0.215 (5000 RPM), have been overlayed for incremental 

variations in rotor-airframe proximity measured at microphone M1. Figure 7a shows the isolated case in comparison 

to the three largest rotor-airframe proximities evaluated at an equivalent rotational speed. For the isolated run, the 

revolution-averaged waveform is dominated by the first harmonic and does not feature any impulsive perturbations. 

An airframe positioned at a proximity of 0.415R does not deviate from the isolated run. Once the airframe is reduced 

to a proximity of 0.370R, a small pertur ation can  e seen at π/4 and  π/4, which corresponds to the blade passing 

over the airframe. A further reduction in proximity to 0.310R increases the strength of the perturbation. Figure 7b 

overlays the other four runs, which evaluated the effect of the rotor-airframe at proximities from 0.256R to 0.124R. 

These four revolution-averaged waveforms show that the perturbation grows in strength as the proximity is 

decreased and, as a result, creates an impulse event that can approach and exceed the steady loading amplitude of the 

isolated rotor.  

 
Figure 7: Revolution-averaged waveform at Mtip = 0.215 (5000 RPM) and observer location M1 (θ = 90°, φ = -45°) 

for (a) large and (b) small rotor-airframe proximities.  

 

Figure 7 shows how the rotor-airframe proximity alters the revolution-averaged waveform and suggests the airframe 

does not contribute to the noise until it reaches a proximity of 0.370R; however, the individual revolutions show that 

the RAI also has an unsteady impulse contributing to the noise that is not captured with the ensemble averaging of 

the signal. In Fig. 8a, the series of isolated runs are overlayed against the revolution-averaged waveform and are 

well-represented. Figure 8b plots the response measured at M1 (0.370R). An impulse is generated for each blade at 

each revolution; however, the impulse is not represented in the revolution-averaged waveform. Due to the disparity, 

there was a concern that the signal had been phase shifted or the motor was unsteady. To address the phase shift 

concerns, additional methods such as time synchronous averaging, without any filters, and phase averaging were 

applied to the measured signal. All three methods showed excellent agreement among their revolution-averaged 

waveforms, and each method retained the disparity between the individual waveforms and the revolution-averaged 

waveform. Over the 10-second duration of the run, the motor maintains a steady rotational speed of 5023 RPM with 

a standard deviation of 5.3 RPM. Finally, a spectrogram was used to monitor for recirculation. There were no signs 

of tonal amplitude variation during this run. Furthermore, the disparity between the individual and revolution-

averaged waveforms remained when the averaging was reduced to the first three seconds of the run. This suggests 

that the impulses generated do not synchronize between revolutions, and the RAI generates unsteady impulses at 

larger rotor-airframe proximities.  

 

Next, the airframe is repositioned to 0.222R, as shown in Fig. 8c, and the unsteady impulse grows in strength. In 

addition, the individual impulse events begin to synchronize, and a steady impulse emerges in the revolution-

averaged waveform. Once the airframe is brought to a proximity of 0.124R, as shown in Fig. 8d, a strong steady-
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state impulse emerges from the waveform. There is no significant disparity between the individual and revolution-

averaged waveform. 

 
Figure 8: Revolution-averaged waveform compared to the individual waveforms for the (a) isolated run and (b-d) 

three rotor-airframe proximity runs for M1 (θ = 90°, φ = -45°) at Mtip = 0.215 (5000 RPM).  

 

C. Emission Angle 

The impulse was found to be directional. Thus, a separate section has been devoted to the differences in 

waveform characteristics at various azimuthal and elevation angles. To exemplify this directivity, Fig. 9 shows a 

reconstruction of the rotor stands and six microphone locations, comparing an isolated run to an RAI run. The 

isolated run, operating at a Mtip of 0.215 (5000 RPM), is plotted in black for all six locations to act as a reference for 

the RAI run, which had an airframe positioned at a proximity of 0.124R. The revolution-averaged waveform is 

plotted in two different colors for this run to denote the azimuth location of the microphones. Microphones M1, M4, 

and M  are aligned at an azimuth of θ = 90° and experienced a negati e pressure impulse  hen the  lade, rotating 

CCW as viewed from above, passed over the airframe. In comparison to the isolated run, the impulse event also 

creates a slightly positive overshoot when the blade is approaching and departing from the airframe. For 

microphones M3, M6, and M9, aligned at an azimuth of θ = -90°, a positive pressure impulse event is observed 

when the blade rotates CCW. Regarding elevation, microphones in-plane of the rotor, φ = 0°, experience a  eaker 

impulse event than the observers below the plane of rotation. In addition, the microphones below the plane of 

rotation see the individual waveforms synchronize at larger proximities. These behaviors have strong implications 

for sUAS because a typical drone operates with clockwise and counterclockwise rotors. A compact sUAS would 

emit a series of positive and negative impulses in quick succession to an observer.  

 

Figure  0 extends the directi ity analysis to the microphones aligned at θ = 0°   ith microphones M2, M , and M  

coplanar to the airframe, there are no airframe surface normals directly visible for these three observers. As a result, 

the revolution-averaged waveforms are nearly identical between runs. This is most apparent for the in-plane 

microphone, M8, where the waveforms overlap for the entire revolution. At lower elevations, an impulse can be 

seen in the waveform, but it is significantly weaker than the impulses measured normal to the airframe. The coplanar 

microphones also have the rotor stand visibly blocking the airframe; however, the stand is likely not reflecting or 

absorbing the emission for the low- to mid-range frequencies. Instead, the small impulse measured may be emitted 

from the secondary source of the RAI, the rotor itself [1]. Zawodny and Boyd found similar results for their coplanar 

microphones. In addition, they could increase the RAI noise for coplanar observers with a conical airframe. The 

azimuthal variation between the three microphone stands suggests the RAI has a directivity pattern that resembles a 

dipole, with sound most efficiently radiating normal to the airframe. The directivity pattern has also been observed 

and discussed in computational results [6]. 
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Figure 9: Revolution-averaged waveforms emitted for an RAI run positioned at Δ = 0  24R compared to an 

equivalent isolated run at Mtip = 0.215 (5000 RPM) for six microphones  M , M4, and M  are stationed at θ = 90° 

while M9, M6, and M3 are stationed at θ = -90°. 

 

 
Figure 10: Revolution-averaged waveforms emitted for an RAI run positioned at  Δ = 0  24R compared to an 

equivalent isolated run at Mtip = 0.215 (5000 RPM) for three microphones. Microphones M8, M5, and M2 are 

aligned at θ = 0°. 

 

D. Tip Mach Number 

To demonstrate the influence of tip Mach number on the RAI, three proximity runs operating at a tip Mach 

number of 0.215 (5000 RPM), and 0.404 (9400 RPM) are overlayed in Figs. 11a and 11b, respectively. Figure 11a 
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shows that the in-plane microphone M7 experiences a negative impulse event that grows in amplitude as the 

airframe proximity decreases. A weak impulse is generated at a proximity of 0.256R, and this revolution-averaged 

waveform is dominated by the loading noise emitted by the rotor. As the proximity of the airframe is shifted to 

0.124R, the impulse becomes a significant secondary noise source to the rotor noise. Figure 11b shows a similar set 

of proximities evaluated at the higher tip Mach number. At a proximity of 0.290R, the waveform has minimal 

impulse noise in the steady signal; however, at a proximity of 0.100R, the RAI impulse grows in amplitude and 

again the RAI becomes a significant secondary noise source to the rotor noise. The revolution-averaged impulse 

does not necessarily form due to the rotational speed of the rotor, but the rotational speed scales the impulse. 

 
Figure 11: RAI impulse at M7 (θ = 90°, φ = 0°) for three airframe proximities at (a) Mtip = 0.251 (5000 RPM) and 

(b) Mtip = 0.404 (9400 RPM). Note the y-axis scaling between figures.  

 

Figures 11a and 11b demonstrate the tip Mach number effect for multiple proximity settings. While insightful, it 

does not convey the complete interaction between rotational speed and the magnitude of the impulse. Figure 12 

demonstrates the coupling effect of the RAI between airframe proximity and tip Mach number for the third, fifth, 

and ninth harmonic measured at microphone M3. A linear mesh has been placed at each harmonic to provide a 

visual aid for the amplitude trends. Across all three harmonics, the airframe proximity and the tip Mach number 

have similar contributions to the RAI. A combination of high tip Mach number and low proximity creates the largest 

amplitude. While the exact amplitudes differ from microphone to microphone, the trends shown for these three 

harmonics are representative of the other microphones normal to the airframe (θ = -90° and θ = 90°)  Due to the 

directivity of the impulse event, an observer below the plane of rotation (φ < 0°) can perceive a greater number of 

harmonic excitations than an observer in-plane (φ = 0°). It should be noted that for the isolated rotor, BPF 

amplitudes above the third harmonic had a negligible contribution to the revolution-averaged waveform across the 

range of Mtip measured.  

 
Figure 12: Amplitude trends as a function of tip Mach number and rotor-airframe proximity for the (a) third, (b) 

fifth, and (c) ninth harmonics for microphone M3 (θ = -90°, φ = -45°). 
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VI. ANN Prediction 
A. Harmonic Selection and Error Criteria   

For these ANNs, the focus is on correlating the RAI impulse with rotor-airframe proximity, tip Mach 

number, and emission angle. Analysis in the frequency domain showed that the impulse increases the acoustic 

content at multiple integers of the BPF [1,2,4–6]. To model the RAI noise, an appropriate number of harmonics 

(amplitude and phase) must be stored in a database so the revolution-averaged waveform can be reconstructed with 

the inverse Fourier transformation. Runs in which the rotor-airframe proximity was small, tip Mach number was 

large, and the observer was normal to the airframe generate the strongest impulse and, as a result, require the most 

harmonics. For these operating conditions, as many as 25 harmonics are required to reconstruct the waveform, as 

shown in Fig. 13a, with the amplitudes of each harmonic used displayed in Fig. 13b.  

The inverse Fourier transform is applied and compared to the revolution-averaged waveform at several harmonic 

summations. As expected, the first harmonic generates a sine wave with a similar waveform to the isolated runs 

shown in previous results. After summing the first ten harmonics, a pulse emerges in the signal; however, the 

impulse event is underestimated. A summation of 20 harmonics brings the impulse closer to the revolution-averaged 

waveform. Still, the signal is not well approximated until a total of 25 harmonics are used in the summation. Due to 

the directive nature of the impulse event, for the same run, microphone M8 only required the first two harmonics. 

Recording and training on 25 harmonics for all microphones across all runs would introduce noise into the training 

database because the higher harmonics do not always exceed the noise floor. For the purposes of this study, an 

algorithm has been developed to determine the number of harmonics necessary to closely approximate the impulse 

within the waveform. The steps used to implement the methodology are explained in the remainder of this section.  

 
Figure 13: (a) Waveforms constructed with varying harmonic summations are compared to the revolution-averaged 

 a eform measured at M  (θ = -90°, φ = -45°) for the run at Mtip = 0     and Δ = 0    R  ( ) The amplitudes used 

in the summation. Note, this run had a relatively high number of harmonics.  

 

The first step is to extract the amplitude and phase from all harmonics up to the Nyquist frequency from the 

revolution-averaged waveform, y. Second, an ideal waveform, y0, is constructed with an increasing number of 

Fourier coefficients until the error between the two waveforms is sufficiently small. For this analysis, the error 

metric used to evaluate the similarities between the two waveforms, y and y0, is calculated with the weighted mean 

square error (WMSE), 
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N
2

0 d

i=1

N

d

i=1

(y(i) - y (i)) W (i)

WMSE =

W (i)




.            (1) 

Where N denotes the number of samples within the waveform and the weighted distribution, Wd, is used to 

emphasize that the error at the impulse event between y and y0 should be minimized rather than the error for the 

entire waveform. The steps taken to locate and construct the weight distribution are shown in Figs.14a and 14b. In 

Fig. 14a, a five-point central difference scheme, shown in equation 2, has been applied to the y signal, 

rX
y(i 2) 8y(i 1) 8y(i 1) y(i 2)

12

− + + + − − + −
= ,                            (2) 

enabling the steepest gradient to be easily located. A marker has been placed at the impulse locations in Fig. 14a. Wd 

can be any weight function that concentrates the largest weight values around the impulse location. The Gaussian 

distribution was chosen for this analysis. Figure 14b shows how the weight distribution is constructed with two 

Gaussian impulses centered at the two impulse locations found with Xr. Now, the WMSE metric can be used to 

compare y0 to y, as illustrated in Fig. 14c. Additional harmonics are superimposed onto y0 until the WMSE has an 

error less than 6.25e-4 Pa2. This error value was chosen after visually inspecting several runs across all parameters 

of interest. The small error criterion is due to the absolute values of the signal and the weight distribution driving the 

error toward zero.  

 
Figure 14: Determining the number of harmonics required to reconstruct the impulse by (a) finding the impulse 

location, (b) constructing the weight distribution, and (c) overlaying the y0 onto y that satisfies the error criterion.  

 

B. ANN Prediction of Isolated Rotor Waveforms  

For this experiment, thirty runs were conducted at tip Mach numbers ranging from 0.173 to 0.404 (4200 – 

9400 RPM). This is equivalent to increments of 200 RPM between each run and provides a large dataset to study the 

relationship between the number of training runs and the prediction performance. Four datasets composed of 7, 12, 

18, and 23 runs were chosen to train an ANN to predict the acoustic waveform for the nine observers. Only the first 

two harmonics were required to reconstruct the waveform emitted by an isolated rotor. Each dataset was given to an 

ANN to train on and to ensure equivalent comparisons; the eight remaining runs were reserved for calculating the 

prediction performance on unseen amplitudes, PA, and phases, Pψ, for all nine microphones. Equation 3 is used to 

calculate the amplitude prediction by evaluating the ANN output, Ãj, against the equivalent Aj unseen measurement, 
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while Eq. (4) evaluates the phase offset of the ANN output, ψ̃j , against the unseen phase measurements, ψj. M is the 

number of reserved runs, and the performance is measured and averaged across all microphone locations.   
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Two separate equations are used to evaluate the performance; otherwise, using equation 3 to calculate the phase 

performance would overestimate the error where the phase wrap occurs. For the four datasets, the prediction 

performance for the first and second amplitude, PA1 and PA2, and the prediction performance for the first and second 

phase, Pψ  and Pψ2, which are listed in Table 3. The smallest dataset trained an ANN to predict the main BPF 

amplitude and phase with 93.61% and 99.27% accuracy, respectively. The second harmonic had a lower prediction 

performance, with an accuracy of 80.21% and 82.79% for the amplitude and phase, respectively. ANNs that were 

trained on the 12, 18, and 23 runs had a higher prediction performance; however, this increase is modest.  

Table 3: Prediction results for the isolated ANNs trained on four different datasets.  

Isolated Study 7 Runs 12 Runs 18 Runs 23 Runs 

Pψ  99.27% 99.29% 99.31% 99.32% 

Pψ2 82.79% 86.13% 89.13% 90.53% 

PA1 93.61% 95.42% 96.17% 96.63% 

PA2 80.21% 84.85% 86.69% 88.75% 

 

To provide context for Table 3, the ANNs trained on seven runs are evaluated on their ability to predict the unseen 

conditions in Fig. 15. The amplitude trends for the first and second harmonic are shown in Fig. 15a alongside the 

seven training runs. Note that the second harmonic does not cover the entire range. Using the WMSE method, the 

isolated rotor only required the main BPF for low Mtip. This prevented the ANN from incorporating the second 

harmonic until it was deemed necessary to reconstruct the waveform. Figure 15b shows the phase trends for the two 

harmonics. With the first harmonic acting as a constant, the fit is trivial, and the second harmonic has a good fit for 

the prediction because the phase has a gradual slope. Once the Fourier coefficients are estimated, the acoustic 

waveform can be constructed and compared to the unseen revolution-averaged waveforms. Figure 15c shows that 

the waveforms are nearly identical for a training dataset composed of seven runs. Larger datasets refine the 

prediction but are ultimately not necessary to build a useful model. 

 
Figure 15: The ANNs, trained on seven runs, predict the (a) amplitudes and (b) phases for unseen conditions for the 

first and second harmonic. The revolution-averaged waveforms for the unseen runs are compared in (c) to the ANN 

prediction for the isolated rotor noise measured at M  (θ = 90°, φ = 0°). 
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C. ANN Prediction for the RAI Waveforms  

The next step is to model the RAI, which is more involved because the number of harmonics required to 

model any given RAI case could be as little as two or as many as 25. A total of 51 runs were distributed between 35 

training and 16 reserved runs for establishing the predictive performance of each ANN. The prediction performance 

for the amplitudes was calculated with Equation 3, and the phases were calculated with Equation 4. The results are 

plotted in Fig. 16. Most of the ANNs can make accurate predictions for new amplitudes above 80%, and this is 

sufficient for modeling the waveform for all nine microphones. The ANN phase trends do not perform as well as the 

amplitudes in part due to the directivity of the rotor-airframe interaction, which results in a unique phase trend for 

each observer. Regardless, the ANNs can predict the amplitudes and phases to reconstruct the impulse within the 

waveform and provide a useful prediction for unseen conditions within the domain of interest. 

 
Figure 16: Prediction performance for the amplitude and phase ANNs for unseen conditions from the set 

seen in Fig. 3. 

 

The ANNs can be further analyzed by investigating their prediction performance on the nine microphones 

separately. Table 4 shows the performance at each of the nine microphones, and the amplitude and phase 

performance are averaged over the harmonics relevant to each microphone. This means microphone M8 is averaged 

over the first two harmonics while M3 is averaged over all 25. This makes it difficult to compare performance 

between microphones, but the table shows that the amplitude prediction performance was greater than 80% for 8 of 

the 9 microphones. In contrast, only 4 of the 9 Pψ exceed the 80% mark. M6 has a Pψ less than 60%. The rest of the 

analysis will focus on evaluating the capabilities and limitations of the ANNs. 

 

Table 4: Prediction performance for the RAI ANNs across all nine microphones.  

 M1 M2 M3 M4 M5 M6 M7 M8 M9 Ave. 

𝑃𝐴 88.2% 87.6% 88.7% 86.5% 71.7% 87.0% 88.0% 93.9% 82.8% 86% 

𝑃𝜓 70.8% 73.0% 70.9% 83.3% 64.3% 59.7% 82.3% 92.8% 81.4% 75% 

 

 

 Figure 17 provides an example in which the ANN is given a run when an impulse is expected to occur. For this run, 

all 25 amplitude and phase ANNs are called, and estimate the impulse for their respective harmonic. Figure 17a 

shows the amplitudes for the revolution-averaged waveform measured at microphone M3 alongside the predicted 

amplitudes made with the ANN. These results closely overlap and show that the amplitude is well modeled. Figure 

17b compares the revolution-averaged phase measured at M3 to the predicted phase estimated with the ANN. The 

inverse Fourier transform was applied to the measured run and the ANN prediction and plotted in Fig. 17c. These 

signals closely overlap, and the impulse is captured in the waveform. 
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While most ANNs estimate a phase that closely aligns with the measured value, several ANNs show small phase 

lags and phase leads in their estimation. For example, the second harmonic in Fig. 17b predicts a phase of 4.57 rad 

while the measured phase is 3.7 rad. This results in a phase lag of 0.87 rad or 50°. This is concerning because part of 

the interest in modeling the waveform is to provide a tool for auralization. Studies have found that small phase 

differences can result in artifacts while listening to reconstructed signals [15]. Additional work is required to 

quantitatively understand the acceptable error for phase offset in the higher harmonics.  

 
Figure 17: Comparing the experimental measurements and ANN prediction at microphone M3 (θ = -90°, φ = -45°) 

operating at Mtip = 0.325 with a proximity of Δ = 0.14R for (a) amplitude, (b) phase, and (c) the resultant waveform. 

 

Figure 18 evaluates the prediction made for microphone M1 for the same tip Mach number and blade proximity that 

was made for M3 to determine if the ANN can predict a negative impulse. Figures 18a and 18b show that only 

fifteen harmonics were required for this case. Impulses for both cases have a similar amplitude but excite the 

spectrum in different ways. The Fourier coefficients are well modeled for this observer and show that the ANN can 

predict positive and negative impulses. While the ANNs have some limitations in capturing the exact phase, the 

predictions are still useful in estimating the impulse for multiple observers. 

 
Figure 18: Comparing the experimental measurements and ANN prediction at microphone M1 (θ = 90°, φ = -45°) 

operating at Mtip = 0.325 with a proximity of Δ = 0.14R for (a) amplitude, (b) phase, and (c) the resultant waveform. 
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Figures 17 and 18 demonstrate that the system of ANNs can predict the impulse for two observers for one run. 

While insightful, an overview across the training domain would provide a better representation of the predictions 

made by the ANN. Figure 19 provides the ANN trends for the amplitude at M3 for the third, fifth, and ninth 

harmonics. For the three amplitude trends, the ANNs have constructed a good fit across the domain space and 

reliably estimated the amplitude for unseen conditions. Figure 19 also provides the ANN fit for the phase at these 

three harmonics and captures the overall trends, which has a more complex response to the independent variables. It 

should be noted that the higher harmonics are more sensitive to adjustments in tip Mach number and proximities. 

 
Figure 19: Amplitude trends for microphone M3 (θ = -90°, φ = -45°)  are provided for the (a) third, (b) fifth, and (c) 

ninth harmonics along with the phase at the (d) third, (e) fifth, and (d) ninth harmonics.  

 

The ANN prediction trends made for microphone M3 are repeated for microphone M9. The third harmonic 

amplitude trends for M9 are shown in Fig. 20a and are nearly identical to M3 (seen in Fig.19a). The significance of 

elevation angle becomes apparent at the higher harmonics, as seen in Figs. 20b and 20c, where only the proximities 

between 0.25R and 0.1R were necessary to reconstruct the waveform. Phase predictions for the third, fifth, and ninth 

harmonics are given in Figs. 20d, 20e, and 20f, respectively. Figure 20d shows that the third harmonic has a 

different scale and trend when compared to Fig. 19d, although both lie on the same azimuth with respect to the rotor 

stand. Contrast this with the third harmonic amplitudes found in Figs. 20a and 19a, which have similar trends and 

minor differences in amplitudes.  

 
Figure 20: Amplitude trends for microphone M9 (θ = -90°, φ = 0°)  are provided for the (a) third, (b) fifth, and (c) 

ninth harmonics along with the phase at the (d) third, (e) fifth, and (d) ninth harmonics.  

 

By analyzing the RAI in the frequency domain, the impulse noise in the revolution-averaged waveform can be 

modeled across the airframe-proximity and tip Mach number domain of interest for the nine microphone locations. 

As shown in Table 5, the average prediction performance for the amplitude and phase across all microphones was 

86% and 75%, respectively. This performance sufficiently approximates the revolution-averaged waveform for the 
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unseen condition at different emission angles. While the ANNs incorporate elevation and azimuth angle, the spatial 

domain had insufficient observers to model directivity. Due to the experimental setup, this analysis is only valid for 

the MA 11x7 rotor operating in hover upstream of a 25 mm carbon fiber rod. Despite the limitations, this system of 

ANNs provides a low-fidelity means of estimating the acoustic emission of the impulse noise. 

 

D. Isolating the Impulse 

Two systems of ANNs have been trained to model a two-bladed rotor in hover. The first system is 

comprised of four ANNs that model the first two Fourier coefficients emitted by an isolated rotor, and the second 

system is comprised of a total of fifty-one ANNs that model the first 25 Fourier coefficients for the two-bladed rotor 

operating upstream of a cylindrical airframe. Since the steady loading noise of the rotor has a negligible contribution 

at higher harmonics, the RAI contribution at these higher harmonics can be separated from the tonal noise emitted 

by the rotor. This process has been carried out in Figs. 21a and 21b for microphone M6. The isolated system predicts 

the Fourier coefficients for the first two tones at Mtip = 0.30 (7000 RPM), and the second system estimates the 

Fourier coefficients for the appropriate number of harmonics at six airframe proximities between 0.3 and 0.1. Once 

the predictions are made, the inverse Fourier transform is applied to each case, and the resulting waveforms are 

overlayed in Fig. 21a. Next, the tonal noise emitted by the isolated rotor was subtracted from the RAI waveforms. 

The separated impulses are plotted in Fig. 21b with their corresponding proximity. As the airframe proximity 

decreases, the observer will experience the steepest drop in acoustic pressure when the blade is parallel with the 

airframe, and the departing blade brings a sharp rise in acoustic pressure [1].  

 
Figure 21: (a) Isolated and RAI ANNs predict the waveform for microphone M6 (θ = -90°, φ = -22.5°) at Mtip = 0.30 

for six airframe proximities. (b) Deconstructive interference is used to separate the impulse noise from the total. 

 

The process was carried out for all microphones normal to the airframe in Fig. 22. Results for microphones M9, M6, 

and M3 are seen in Figs. 22a, 22b, and 22c, respectively. The microphones below the plane of rotation experience a 

greater impulse than the in-plane microphone. Similar observations can be made for the microphones on the 

opposite side of the rotor test stand as results for microphones M7, M4, and M1 are shown in Figs. 22d, 22e, and 

22f, respectively. The ANNs predict the impulse with similar amplitudes and opposite phases. The system of ANNs 

can predict and reconstruct the impulse within the waveform and acts as a low-fidelity tool that estimates the 

interaction noise over the domain of interest.  
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Figure 22: A prediction is made with the system of ANNs to estimate the impulse e ent at Δ = 0  4R and Mtip = 0.30 

for observers located at (a) M7, (b) M4, (c) M1, (d) M9,  (e) M6, and (f) M3. 

 

VII. Conclusion 
The rotor-airframe interaction is a category of installation noise that results in harmonic excitation. An 

acoustic impulse is produced as the rotor blade sweeps over the airframe component. The experiment shows that the 

strength of the impulse is dependent on the rotor-airframe proximity, tip Mach number, and emission angle. For 

configurations where the rotor-airframe proximity was small and tip Mach number was large, the observer normal to 

the airframe experienced the greatest increase in harmonic content relative to an isolated rotor. Results showed that 

the revolution-averaged impulse had a negligible contribution to the  a eform  hen stationed at a proximity of Δ = 

0.37R and above; however, an unsteady contribution from the interaction was observed at the largest proximities 

measured. In addition, tip Mach number positively correlated with harmonic amplitude, and the strength of the 

perceived impulse noise depended on azimuth and elevation angle. A system of artificial neural networks was 

trained to predict the rotor-airframe interaction noise and tonal noise by modeling up to the first 25 amplitudes and 

phases at the blade passing frequencies. The system of ANNs was able to predict the amplitudes and phases with an 

accuracy of 86% and 75%, respectively, across all microphones. Qualitative assessment of the reconstructed time 

domain waveforms displays good agreement with the measured revolution-averaged signals and provides 

confidence in the artificial neural network approach. 
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