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New concepts in aviation system safety thinking have emerged to consider not 
only what may go wrong, but also what can be learned when things go right. This 
approach forms a more comprehensive approach to system safety thinking. A 
need exists for methods to enable a better understanding of human contributions 
to aviation safety and how they may inform Safety Management Systems (SMS).  
A high-fidelity 737-800 simulation study was conducted to study how current 
type-rated commercial airline flight crews anticipate, monitor, respond to, and 
learn from expected and unexpected disturbances during line operations.  A 
number of dependent measures were collected that included traditional SMS data 
types, but also non-traditional safety data to include multiple psychophysiological 
metrics.  This paper describes the psychophysiological measures results that 
evinced the capability of measures to help identify resilient flight crews. 
Implications for future research and design of future In-time Aviation Safety 
Management Systems are discussed. 
 
The NASA System-Wide Safety (SWS) Project is focused on developing new 

technologies and operational concepts for the aviation industry to meet the increasing global 
demand while maintaining the current ultra-safe level of system safety. To achieve this, the 
project is studying safety producing behaviors (e.g., Hollnagel, 2016) and developing research 
priorities, including In-time System-wide Safety Assurance (ISSA) and In-time Aviation Safety 
Management System (IASMS; Ellis et al., 2019). Challenges currently being addressed include 
identifying data sources, analyzing data to detect and prioritize risks, and optimizing safety 
awareness and decision support. The project is focused on developing domain-specific safety 
monitoring and alerting tools, integrated predictive technologies, and adaptive in-time safety 
threat management to expand the knowledge base of resilience engineering and inform ISSA and 
IASMS for traditional and emerging operational concepts. One test case for this effort concerns 
non-adherence of area navigation standard terminal arrival route (RNAV STAR) procedures 
used at major airports. 
 Stewart, Matthews, Janakiraman, and Avrekh (2018) conducted a study on aircraft flight 
track data for over 10 million flights into 32 domestic airports and revealed that only 12.4% of 
flights fully complied with the published arrivals' vertical and lateral profiles. Based on that 
study, Holbrook et al. (2020) collected data from pilots, air traffic controllers, and airlines to 
examine safety behaviors during RNAV STAR arrivals at Charlotte Douglas International 



 

Airport (KCLT). The takeaway was that the majority of non-adherences were to sustain 
operations under dynamic real-world conditions. These findings suggest that traditional 
approaches to risk and safety management may not be sufficient to address the misalignment 
between published procedures and routine safe operations, and a complementary approach that 
includes ensuring that “things go right” is necessary. The study by Holbrook et al. highlights that 
to maintain safety, humans will likely need to continuously adjust their work to match their 
operating conditions (Hollnagel, 2014). 

Historically, resilience engineering research has centered on the theoretical aspects of 
productive safety. To address the gap in guidance on measuring resilient performance, we 
designed and conducted a human-in-the-loop (HITL) flight simulation study to gather empirical 
data to be used to understand productive safety (Stephens et al. 2021). Neuroergonomics 
research examining human operators in the context of safety-critical behavior has incorporated 
traditional human factors methods, including psychophysiological methods, to study human error 
(Dehais et al., 2020). We are extending this research by developing psychophysiological 
measures of resilient performance of pilots in simulated flight scenarios. Additionally, 
exploration of the data generated will determine how to analyze this data to prioritize risks and 
optimize decision-making support for safety awareness. 
 The main research objective for this study was to create a data testbed our team and the 
research community could explore to determine how commercial airline pilots manage routine 
contingencies and safety during RNAV arrivals. Studying actual operational events in airline 
operations is challenging because there is a limited amount of data that can be collected and 
analyzed for productive safety research due to pragmatic, logistical, procedural, or regulatory 
constraints. This research study involved gathering a comprehensive dataset of candidate 
measures to facilitate future data science efforts and to gain a better understanding of the 
phenomena of productive safety. To this end, traditional human factors data collection methods 
were employed including operator-generated data (e.g., self-report measures of workload, 
situation awareness, and resilient performance), observer-generated data (e.g., 
psychophysiological measures: electroencephalography, electrocardiography, galvanic skin 
response, and eye tracking) and system-generated data (e.g., simulated flight track data) were 
captured during the flight simulation. However, for the current analysis, we are focused 
specifically on the eye tracking data. 
 

Methods 
 

 Data presented herein were collected during the SWS Operations and Technologies for 
Enabling Resilient In-Time Assurance (SOTERIA) flight simulation study conducted at NASA 
Langley Research Center in Hampton, VA USA during May-June 2022. Details of the full data 
collection plan and flight simulation scenarios are described in Stephens et al. (2021). Twenty-
four (24) healthy airline transport pilots (9 women, M = 49.2 years) from a major US airline 
volunteered for the study. Subjects provided informed verbal and written consent to participate. 
The experiment was conducted under approval from NASA’s Institutional Review Board. 
 After explaining the experiment and obtaining consent from each crew, each pilot was 
outfitted with a combined electroencephalography (EEG) and electrocardiography device (ABM 
X10, CA, USA), and a smart watch that measures galvanic skin response, skin temperature, and 
heart rate (Empatica, MA, USA). The impedance of each EEG electrode was verified to be less 
than 10 megaohms.   Following the checkout of the outfitted systems, each pilot proceeded to the 



 

simulator flight deck and performed an eye tracking (Smarteye, MA, USA) calibration 
procedure.  
 All psychophysiological devices were time synced and triggered for recording through 
eyesDX Multi-modal Analysis of Psychophysiological and Performance Signals (MAPPs; IA, 
USA). The data were exported from MAPPs for processing with custom python (Python3) 
scripts. At this time, eye tracking data analysis is ongoing; therefore only data processing details 
are discussed. Several metrics of interest were derived from the eye tracking data. These metrics 
were derived from different raw data generated by the eye tracking system, and had different 
methods of filtering, calculation, etc. For each variable, we averaged over time epochs of 10 
seconds. We use the following definitions for each eye tracking metric: 
 
- Head Heading Velocity: The rate (degrees/second) of the head turning left or right. We only 

retained indices where the reported % quality was greater than 60%. 
- Pupil Diameter: The diameter of the pupils (mm). Because this variable is the most difficult 

to acquire, in order to keep sufficient indices, we retained indices where the reported percent 
quality was greater than 40%. 

- Gaze Velocity: The velocity of the gaze vector (degrees/second). We retained indices where 
% quality was greater than 60%, and the gaze velocity of a particular frame did not exceed 
700 degrees/second (Wilson et al. 1992).  

- Gaze Variance: The variance (spread) score of the gaze vector. We converted the unit vector 
to a plane using standard stereographic mapping (Marcus, 1966). We retained indices where 
the % quality was greater than 60%, and the velocity of the raw gaze vector of respective 
indices did not exceed 700 degrees/second. 

 
 In addition to the psychophysiological sensors, we administered an array of traditional 
human factors measures including self-reported workload and situation awareness. We also 
created a custom resilience questionnaire, “Resilient Performance Self-Assessment” (RPSA). 
The RPSA consists of 16 questions that were modeled on American Airlines Learning 
Improvement Team (LIT) Proficiencies (American Airlines, 2020). The participants were 
required to specify whether they made use of a particular behavior, and if so, rate their perceived 
success of implementing that behavior. The choices consisted of a discrete scale from 1 (very 
unsuccessful) to 5 (very successful). Here, we are only focused on the RPSA scores, and not the 
other questionnaire data. 
 We investigated whether pilots exhibit behaviors that can be captured via eye tracking 
sensors (Smarteye system) that have a relation to their perceived resilience scores. We ran 
statistics for two questions. 1) Do resilience scores differ by crew? 2) Do the same crews that 
exhibit different resilience scores, exhibit differing psychophysiological behaviors, specifically 
in eye tracking measures? 
 To test our hypotheses, we used lme4 (Bates, 2015) within R (version 4.1.2; R2021) to 
perform linear mixed effects analyses. We fit multiple linear mixed models and ran a single 
model for each variable of interest, including RPSA, Head Heading Rate, Pupil Diameter, Gaze 
Velocity, and Gaze Variance. For RPSA, we treated each of the 16 questions as repeated 
measures, assuming equal weighting, used fixed effects of Crew and Seat (left vs right), and 
subject as a random effect. The psychophysiological data consisted of varying total repeated 
measures per crew and scenario since we used the average across the 10 second epochs for each 
dependent variable. The models contained the same factors as the model for RPSA. We 



 

performed post hoc pairwise analyses for each model by calculating the least squares means and 
estimating the 95% confidence intervals, using a Kenward-Roger approximation implemented in 
the R-package emmeans (Lenth, 2016). 
 

Results 
 

All participants volunteered for all aspects of the 
experimental protocol. In general, all participants 
completed every scenario successfully, without 
any mishaps. Figure 1 shows the results by crew 
for the reported resilience scores (combined across 
questions). Crews 6, 8, and 10 showed the lowest 
RPSA scores, and were significantly different from 
1, 2, 11, and 13 (95% confidence intervals did not 
overlap). Our primary goal here, is to identify 
psychophysiological measures that exhibit similar 
crew differences, and therefore indicate resilient or 
non-resilient behavior. 
 Here we are interested in identifying 
whether the same crews that had statistically 
significant RPSA scores, also showed differences 
in metrics we derived from the eye tracking data. 
Figure 2 shows the statistical results of the metrics 
derived from the eye tracking data. Crew 11 had a 
statistically significant difference in Gaze Variance. 
Crew 11 showed significantly higher variance scores 
compared to all other crews, which suggests that this 
crew was looking at more of the cockpit than the rest 
of the crews throughout the scenarios. The 
significant findings for Crew 11’s Variance score did 
not transfer to any other metric. Crew 8 exhibited the 
lowest Gaze Velocity out of all crews. Low gaze 
velocity indicates less shifting of attention over time. 
In addition, Crew 8 exhibited the largest Pupil Diameter out of all crews. Crew 8 was one of the 
crews that showed relatively lower resilient scores, therefore Gaze Velocity and Pupil Diameter 
appear to be likely candidates for predicting resilient behavior (or lack thereof). 
 

Discussion 
 

In the current preliminary analysis of a subset of the psychophysiological data captured during 
the study, we were interested in identifying metrics that can predict resilient (safe) behavior. In 
general, we showed significant differences between some crews in self-reported resilience scores 
and the psychophysiological measures. 
 

Figure 1: Mixed model results for 
RPSA scores. The bar graphs depict 
the estimated marginal mean (bar), 
and 95% confidence interval (error 
bar) for each crew’s self-reported 
resilience scores. Lack of overlap 
between any crews’ confidence 
interval indicates statistical 
significance between those crews. 
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 The self-reported resilience scores showed significant differences between crews, where 
Crews 6, 8, and 10 had the lowest scores. Despite these crews being significantly lower than the 
other crews, the average reported resilience score was well over 3, indicating a self-reported 
resilience of more than successful.  
 Psychophysiological measures also showed significant differences between crews, 
however, the same crews did not exhibit the same differences across all the psychophysiological 
measures. For example, Crew 11 showed the highest Gaze Variance, but was medial for all other 
metrics. Crew 8, which was one of the crews that reported lower resilient scores, showed the 
highest Pupil Diameter and the lowest Gaze Velocity. This finding might suggest that these two 
metrics could be used to predict resilient behavior. Future work will include direct analysis 
between resilience scores and the psychophysiological values. 
 There are several considerations that should be noted while interpreting this work. First, 
the psychophysiological analyses were performed without consideration of whether the data fell 
within a certain window or when an “event” occurred. Specifically, the reported results include 

Figure 2: Mixed model results for eye tracking metrics. The bar 
graphs indicate the estimated marginal mean (bar), and 95% confidence 
interval (error bar) for each crew’s self-reported resilience scores. Lack 
of overlap between any crews’ confidence interval indicates statistical 
significance between those crews. 
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data from the entirety of the scenarios, which may actually hide more significant effects if we 
focus the analyses on specific event timings. Second, we intentionally did not want to perform a 
direct analysis between the RPSA and psychophysiological measures. The RPSA was created for 
use in this study, but it is not a psychometrically validated measure. We assumed equal 
weighting of the individual questions towards the overall “resilience score”, but it is possible that 
some participants showed resilience in one category (i.e., adapt) and not another (i.e., learn). 
There were also several missing responses which is reasonable if the participant was not able to 
exhibit a specific resilient quality, they were not able to rate themselves on the scale. 
Furthermore, we are still experimenting with ways to analyze both the RPSA scores and the 
psychophysiological scores. A direct comparison did not seem fair given all these considerations.    
 Future work will address the issues discussed in the Considerations section, but also 
expand on the current work. There are several other psychophysiological sensors that were used 
to collect data including electroencephalography and electrocardiography that we plan to analyze 
in similar format. Furthermore, we also plan to extract more detailed resilience scores for each 
crew. Each scenario had video and audio recording that we plan to have observations completed 
by The LOSA Collaborative and American Airlines LIT that will provide resilience metrics for 
each scenario and crew. This will improve our resolution and expand the types of analyses we 
could perform with the dataset. 
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