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Hi, my name is Susanah Kowalewski with the NASA Glenn Research Center and I’ll be presenting X-57 High Lift Motor Controller Design and Testing.



Distributed Electric Propulsion (DEP)

X-57 Maxwell uses a DEP architecture
 Benefits in aerodynamics, control, and reliability
 12 high-lift motors (HLM) and controller/converters (HLMC)
 Does not increase pilot workload substantially
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The X-57 Maxwell uses a Distributed Electric Propulsion architecture to complement a cruise-optimized wing, yielding significant benefits in aerodynamics, control, and reliability, and providing expanded low speed flight capability.
The “High-lift” system uses twelve independent motors and controller/converters, shown here in the green box, to dynamically augment aircraft lift and thrust.  It does not degrade aircraft performance as a result of credible failure modes; nor does it increase the pilots workload substantially more than traditional, passive high-lift devices.




High Lift Motor Controller (HLMC) Key Objectives

• 11kW Output

• 97% Efficiency

• Mass ≤ 1kg

• Passive, Outer Mold Line Cooling

• Fiber Optic Ethernet

• Rapid Software Development
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The key performance objectives of the High Lift Motor Controller are as follows:
To provide an 11kW, AC, 3-Phase output, at a nominal input DC Bus of 538V.
To achieve a minimum of 97% efficiency from the converter, utilizing a Silicon Carbide MOSFET based motor drive
To maintain an overall net weight of 1kg or less
To achieve sufficient converter cooling using passive air cooling and not interrupting the outer mold line of the aircraft nacelle  
To communicate via fiber optic ethernet lines to provide EMI resistant communication
To utilize Matlab and Simulink to rapidly develop software using code generation



HLMC Electrical Design

 DC bus filter
 Silicon Carbide (SiC) MOSFET switches
 Optically isolated gate drivers
 Fiber optic ethernet
 TI Delfino microprocessor
 Code generation
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Major electrical components in the HLMC include, input filtering to reduce DC bus ripple to the nominal lithium ion battery traction bus and a three phase inverter to drive the high lift motor.  For the inverter, Silicon-Carbide MOSFET switches were chosen for their high operating temperature, high voltage capability, and low parasitic capacitance which allows for the potential to maximize the efficiency of the inverter through the fast switching transitions. 
The MOSFETs are driven through optically isolated driver circuits. The driver circuits are the interface between the power train and the control circuits.
The link to the control circuits is established through a fiber optic Ethernet interface to the control computer in the laboratory, or the avionics computer on the X-57 vehicle. Input commands and control algorithms are processed through a Texas Instruments Delfino microprocessor. The Delfino was chosen because of its programming capability through Matlab and Simulink which enable rapid prototyping via code generation using visual and interpretable function blocks instead of hand writing and deciphering thousands of lines of code. 
The controller software and control parameter development strategy was optimized to boost efficiency over standard practices. A field oriented control (FOC) strategy is used to control the speed of the motor. The variant of FOC used in this controller is derived to demand the minimum current required for stable operation, as opposed to other FOC variations which use more current to accomplish other control objectives. In addition, discrete space vector, pulse width modulation is used, which eliminates some of the MOSFET switching losses.




HLMC Electrical and Mechanical Design

 3 circular printed circuit 
boards (PCBs)

 Minimal inductance 
between the MOSFET 
Driver and gate

 Low coupling capacitance 
between high power and 
low power electronics

5 T. D. Batzel and T. Leach, "Gate Drive and Efficiency Analysis for a Silicon Carbide MOSFET Based Electric Motor Drive", Proceedings of The 2016 IAJC-ISAM International Conference, 2016.
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These electronic components are divided between three circuit boards, the Controller Board, the Gate Driver Board, and the high power Traction Board.
The layout of the inverter system was an iterative process with mechanical and thermal teams to ensure closure of space, weight, and thermal requirements. The layout of the HLMC with circular printed circuit boards allowed the most surface area for components, while permitting mounting of the TO-247 MOSFETs to the interior of the aluminum high lift nacelle.  In addition, the MOSFET driver circuit board layout strategy included minimizing the inductance between the MOSFET driver and MOSFET gate, because inductance between the gate and the driver can contribute to resonances which can damage the MOSFETs.  One thing learned through testing of this unit was that capacitive coupling between the high power and low power gate drive electronics plays a large part in noise transmission.  For this reason, specialty parts were sought out which featured an extremely low coupling capacitance across their isolation gap, and copper was removed from all layers of the PCB in this gap to maintain isolation.



HLMC Thermal and Mechanical Design

 Radially mounted MOSFETs
 Two isolated heatsinks –

conform to outer mold line 
and provide mechanical 
support

 COTS heat pipe on 
secondary heatsink
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The majority of the heat loss in the unit comes from the 6 silicon carbide MOSFETS.  For this reason the FETs were mounted radially to the heatsink; this provides a direct thermal conduction path to external air flow, and physically distributes the FETs around the circumference of the heat sink to minimize temperature gradient and maximize sink area per unit.   The aluminum external sink conforms to the outer mold line of the nacelle to eliminate additional parasitic drag.
The circuit boards are also equipped with internal copper thermal planes to distribute heat; these are linked through aluminum standoffs to the heat sink – which also provides mechanical support to the PCBs.  To prevent the MOSFETS from heating up the sensitive controller components, a secondary isolated small heat sink with a COTS sintered wick heat pipe conductor was attached to the Controller board.  This secondary heat sink also conforms to the outer mold line of the nacelle and receives passive air cooling like the main heat sink. Aggressive mechanical and thermal design efforts along with the electrical design choices described earlier yielded a net weight of 1 kg for the HLMC design that complied with X-57 electrical, mechanical and thermal requirements.



HLMC Power and Efficiency Testing
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To enable laboratory testing, the HLMC was assembled with a water-cooled cold plate for high power functional testing. The MOSFET switches were secured to the cold plate as they would be secured to the nacelle in the flight assembly. The focus of functional testing was to develop the software and motor control parameters required to operate a three phase motor at the required speed while maintaining HLMC electronics well below their operating temperatures. Thermocouples were placed on key parts in the HLMC assembly including the MOSFETS and the TI Delfino microprocessor to monitor temperatures with a data acquisition system.
A block diagram of the test setup is shown here. The power meter measured voltage and current on the input and output of the HLMC inverter to measure the efficiency. An EMRAX 228 motor replaced the inductors and three phase load bank for software development tests to determine the appropriate control parameters to reach stable 4750 RPM operation – the max speed of this motor. The passive load shown was used primarily for environmental testing which will be discussed on the next slide.
Through rigorous tuning of the control parameters, 98% efficiency was achieved. Efficiency data from testing with the EMRAX motor and NASA Hybrid Electric Integrated System Testbed (HEIST) propeller is shown here. Note that the thrust from the HEIST propeller was only sufficient to load the inverter to 7 kW at 4750 RPM. The X-57 motor and propeller were received later in the development and are currently undergoing testing – the initial results show agreement to the 98% efficiency value at full power of 11 kW and 5000 RPM, however this measurement is still being tuned to achieve a greater accuracy.



HLMC Qualification Testing
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With the key functional performance met, the HLMC design was qualified for flight through a series of environmental tests. The HLMC passed a 10.9 Grms random vibration test, a 6 g shock test, and a thermal cycling test from −40°C to +60°C. These tests were completed to the specifications summarized in the Table shown here at nominal power due to constraints of the test facilities. 



HLMC Wind Tunnel Testing
 Full Power Testing
 Passive Nacelle 

Heatsink
 20 to 50 m/s Free-

stream Air Velocity
 +60C Air Operation
 15,000ft altitude
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To verify the thermal design at full power, a nacelle heatsink was built and integrated with the HLMC. The nacelle integrated unit was then configured for altitude wind tunnel testing in the NASA Glenn Advanced Nozzle Test Facility.
The nacelle-integrated HLMC assembly operated within all of the electronics temperature ranges for altitude-wind tunnel testing. During the worst case condition of highest temperature, 60 °C, and lowest airflow, 20 m/s, all component temperatures were more than 12 °C below their derated temperatures. 
Efficiency was measured using the same set up from slide 7, and exceeded 97.5% efficiency from 3.4 kW to 11 kW.



Conclusions

 NASA GRC has developed a flight-weight highly 
configurable motor controller that can power 3 phase, 11 kW 
motors. 

 The knowledge gained through this integrated approach to 
electronic power train design has been used as a guide for 
ongoing new electric power train component development.
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