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INTRODUCTION 

  

  Diffusion results from random motion of particles and entities. Diffusion in melts and 

magmas is due to thermally excited random motion of atoms, ions, and clusters, and plays a 

critical role in magmatic and volcanic processes. In melts and magmas, diffusion is one of the 

two mechanisms of mass transfer; the other being bulk flow (referred to as convection or 

advection). When both are present, diffusion refers to the dispersive motion relative to the mean 

bulk flow in a given reference frame (Richter et al. 1998). Diffusion plays critical roles in 

controlling magma mixing (Watson 1982; Koyaguchi 1985, 1989; Lesher 1994; Huber et al. 

2009; Guo and Zhang 2020), mineral growth and dissolution rates in magmas (e.g., Watson 

1982; Harrison and Watson 1983; Zhang et al. 1989; Newcombe et al. 2014; Macris et al. 2018), 

bubble growth and dissolution rate in magmas (Sparks 1978; Proussevitch and Sahagian 1998; 

Liu and Zhang 2000; Zhang 2013), and elemental and isotope fractionation during mineral 
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growth and dissolution (Jambon 1980; Richter et al. 1999, 2003; Watson and Muller 2009; 

Chopra et al. 2012; Watkins et al. 2014, 2017; Holycross et al. 2016, 2018). As a result, diffusion 

also plays an essential role in explosive volcanic eruptions and magma crystallization. 

Furthermore, diffusion has important applications in geospeedometry (Lasaga 1983, 1998; Zhang 

1994, 2008; Trail et al. 2016; Zhang and Xu 2016).  

  Experimental investigation of diffusion in geologically relevant silicate melts began to 

flourish in the 1970’s when micro-analytical measurements of diffusion profiles became 

available. In addition to the vast number of papers published since then, numerous books and 

reviews are available for diffusion in silicate melts. Hofmann et al. (1974) edited a book titled 

“Geochemical Transport and Kinetics” published by Carnegie Institution of Washington. This 

was the first landmark book summarizing the field. Lasaga and Kirkpatrick (1981) edited a book 

“Kinetics of Geochemical Processes” as volume 8 of the Reviews in Mineralogy (later becoming 

Reviews in Mineralogy and Geochemistry) series. Zhang and Cherniak (2010) edited “Diffusion 

in Minerals and Melts” as volume 72 of Reviews of Mineralogy and Geochemistry series, in 

which one chapter focused on diffusion theory, five chapters on diffusion in silicate melts 

(Behrens 2010; Lesher 2010; Liang 2010; Zhang and Ni 2010; Zhang et al. 2010), and other 

chapters were on experimental, analytical, and computational methods, and diffusion in minerals. 

Several textbooks covered the principles and applications of diffusion theories (Kirkaldy and 

Young 1987; Shewmon 1989; Cussler 1997; Lasaga 1998; Zhang 2008; Vrentas and Vrentas 

2016), and two classic books covered the mathematics of diffusion (Carslaw and Jaeger 1959; 

Crank 1975). In preparing for this review chapter, we thought carefully about what to cover for 

this vast field, and decided to briefly go through the fundamentals of diffusion (more complete 

review can be found in Chakraborty 1995; Zhang 2008, 2010) and solutions to often-encountered 
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diffusion problems, and then focus on post-2010 diffusion studies on silicate melts and magmas. 

Here, melts refer to (mostly natural) silicate liquid, and magmas refer to crystal-bearing and/or 

bubble-bearing melts in which the continuous phase is the melt. There is a large body of work on 

diffusion in glasses, especially in the materials science literature, which is not covered in this 

review.  

  

FUNDAMENTALS OF DIFFUSION 

 

Fick’s laws 

  In a compositionally homogeneous phase, diffusion (thermally activated random motion of 

atoms) would not result in measurable changes in the phase unless the phase is 

thermodynamically unstable. When there are concentration differences in the phase, diffusion 

tends to erase these differences and homogenize the composition. The rate at which diffusion 

proceeds to homogenize a phase is characterized by two Fick’s laws. By analogy to Fourier’s law 

that describes the heat flux to be proportional to the temperature gradient, the first Fick’s law 

describes diffusive flux to be proportional to the concentration gradient. In one-dimensional 

space, it takes the following form:   

  J = −D ∂C
∂x

, (1)  

where J is diffusive flux along x direction, D is the diffusion coefficient (or diffusivity) in m2/s, 

C is concentration in kg/m3 or mol/m3, and ∂C/∂x is the concentration gradient along x. Symbols 

are summarized in Table 1. In three dimensions, Fick’s first law takes the following form:  

  J = −D∇C , (2)  
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where ∇C  is the concentration gradient. Melts and magmas considered in this chapter are 

isotropic media, and hence D does not depend on directions. Therefore, D is a scalar in this 

chapter (in minerals, D is in general a second-order tensor; Zhang 2010). Values of D in silicate 

melts are typically of the order 10-12 m2/s, and hence µm2/s (=10-12 m2/s) is used as the unit of D 

in this chapter, where it is convenient.  

 Fick’s first law describes the mass flux due to diffusion, and cannot be directly used to 

calculate how concentrations in a phase would change with time. By incorporating mass 

conservation into Fick’s first law, it is possible to derive Fick’s second law. In one-dimensional 

diffusion, Fick’s second law takes the following form:  

  ∂C
∂t

= ∂
∂x
(D ∂C

∂x
) . (3a)  

If D is independent of concentration and distance, the above equation becomes: 

 
∂C
∂t

= D ∂2C
∂x2

. (3b)  

In three dimensions, Fick’s second law takes the following form:  

  
∂C
∂t

= ∇(D∇C) ≈ D∇2C .  (4)  

Equations (3) and (4) are often referred to as the diffusion equation. Given initial and boundary 

conditions, Equation (3) or (4) can be solved to determine changes of the concentration in space 

and time (Carslaw and Jaeger 1959; Crank 1975). Note that even though C in Equations (1) and 

(2) are in the unit of kg/m3 or mol/m3, C in Equations (3) and (4) can also be in other units such 

as mass fraction, or mass ppm as long as the mass density is roughly constant, or mole fraction if 

the molar density is roughly constant. To avoid confusion, w rather than C will be used when 

mass fraction of mass ppm is used as concentration (Table 1). 
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Table 1. Symbols 
A:  diagonal matrix in multicomponent diffusion solutions 
a:  radius, also a parameter for SiO2 or H2Om diffusivity 
Ci,j:  concentration (in kg/m3 or mol/m3) of component i in phase j   
Cave:  weighted average concentration in a multi-phase system; Ci,ave = φ1Ci,1 + φ2Ci,2 + ...  
D:  diffusivity, a scalar in melts, glasses, and magmas containing random crystals 
D0:  pre-exponential factor for diffusion in the Arrhenius relation 
Dw=0:  diffusivity of a component when its own concentration approaches zero 
DH:  diffusivity of the heavy isotope 
DL:  diffusivity of the light isotope 
Di,j: diffusivity of component i in phase j  
Dbulk:  bulk diffusivity in a multiphase media, defined by Ji,bulk = –Di,bulk∇Ci,ave 
Deff:  effective diffusivity in crystal-bearing and/or bubble-bearing magmas  
D:  diffusivity matrix 
E:  activation energy for diffusion in the Arrhenius relation 
J:  diffusion flux (a vector)  
K:  partition coefficient, K=C1/C2 = w1ρ1/(w2ρ2); also equilibrium constant  
L:  thickness; also dissolution distance 
mH:  atomic mass of a heavy isotope 
mL:  atomic mass of a light isotope 
MH:  molecular mass of a molecule containing the heavy isotope 
ML:  molecular mass of a molecule containing the light isotope 
Mi,j:  diffusion mobility coefficient of component i in phase j (in ideal systems, Mi,j = Di,jCi,j)  
N:  number of components in a system  
n:  used in multicomponent diffusion in which n = N–1 
P:  pressure  
P:  eigenvector matrix  
Q:  diagonal matrix in multicomponent diffusion solutions  
R:  universal gas constant (8.31447 J mol-1 K-1)  
r:  radial coordinate  
T:  temperature (in K)  
t:  time  
Wi:  atomic mass of component i (in kg/mol)  
wi,j:  mass fraction (concentration) of component i in phase j  
Xi:  mole fraction of component i in the gas phase, also cation mole fraction of i in a melt 
x, y, z:  spatial coordinate along x-direction, y-direction and z-direction  
xc:  characteristic diffusion distance 
 

α:  a dimensionless parameter for calculating dissolution distance L 
β:  an empirical fit parameter to relate diffusivity of heavy and light isotopes to their masses 
∆M:  mass gain or loss  
φj:  volume fraction of phase j  
Λ :  diagonal matrix made of eigenvalues  
λi:  the ith eigenvalue  
µi,j:  chemical potential (in J/mol) of component i in phase j 
ρj:  density of phase j  
σj:  electric conductivity of phase j. 
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Various kinds of diffusion and diffusivities 

  Numerous kinds of diffusion have been defined and discussed in the literature, and the 

definitions are not always consistent. Below is a summary of the many types of diffusion, often 

encountered in the geological literature.  

  Based on geometry, diffusion may be classified as one-dimensional, two-dimensional and 

three-dimensional diffusion. Based on the types of the diffusing material, there can be isotropic 

(melts, liquids, glasses and magmas and cubic symmetry minerals) or anisotropic diffusion 

(diffusion in lower-symmetry minerals). Based on the diffusing component or species, diffusion 

may be classified as follows:  

  Self diffusion. Strictly speaking, self diffusion means the diffusion of the exact same species 

in a homogeneous system, not even with isotopic differences. Such self diffusion can only be 

computationally studied (e.g., De Koker and Stixrude 2010), but cannot be measured 

analytically. In practice, measured self diffusivity means diffusion of different isotopes in an 

otherwise chemically homogeneous system (e.g., Liang et al. 1996a; Richter et al. 1999, 2003; 

Watkins et al. 2014). Self diffusion of a given isotope at constant temperature and pressure can 

always be well characterized by a constant diffusivity. Note that different isotopes of the same 

element diffuse at slightly different rate, leading to isotope fractionation (e.g., Richter et al. 1999, 

2003; Watkins et al. 2017) to be discussed in a later section. 

  Tracer diffusion. In mostly early (1970s and 1980s) experimental studies, a tracer (often a 

radioactive isotope such as 86Rb, Jambon and Carron 1976) is deposited on the surface of a glass 

of initially uniform composition. The sample is then heated to high temperature to allow the 
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tracer to diffuse into the sample. Such diffusion is termed tracer diffusion. Tracer diffusion can 

often be characterized by a constant diffusivity.  

  Trace element diffusion without major element concentration gradients. More recently 

(1990s and forward), trace element diffusion is often investigated using diffusion couple 

experiments (e.g., Mungall et al. 1999; Behrens and Hahn 2009; Holycross et al. 2016, 2018), 

with the two sides of the diffusion couple having roughly the same chemical composition except 

for a trace element or multiple trace elements (at < 1000 ppm level) whose diffusivities are 

probed. These trace element diffusivities are expected to be similar to radioactive tracer 

diffusivities. To distinguish from trace element diffusion in the presence of major element 

concentration gradients, this type of trace element diffusion will be referred to as TED1 (trace 

element diffusion 1).  

 Chemical diffusion. This category includes all other kinds of diffusion.  Chemical diffusion 

occurs when there are major concentration gradients (or more precisely chemical potential 

gradients). If there are only two components in the system, the chemical diffusion is binary 

diffusion (also referred to as mutual diffusion). Binary diffusivity usually depends on 

composition. Diffusion in a system of three or more components is referred to as multicomponent 

diffusion. (If there is only one component, then it is self diffusion and cannot be measured.) To 

quantify multicomponent diffusion, one single diffusion coefficient is not sufficient. Instead, a 

multicomponent diffusion matrix is necessary, in which the on-diagonal terms characterize the 

effect of a component on its own diffusion, and the off-diagonal terms characterize the effect of 

other components on its diffusion. In a multicomponent system, if concentration gradients of 

only two components exist initially, the diffusion of these two components is referred to as 

interdiffusion. The other components can also show diffusion profiles, which are effects of 
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multicomponent diffusion. Diffusion of isotopes in a compositionally heterogeneous system is 

referred to as isotope diffusion (it would be self diffusion if chemically homogeneous). For the 

diffusion of trace elements (at <1000 ppm concentration level) in a multicomponent system with 

or without major chemical concentration gradients, it is trace element diffusion, which is further 

distinguished as TED1 (in the absence of major chemical concentration gradients) and TED2 (in 

the presence of major chemical concentration gradients) in this work. TED1 is expected to be 

similar to tracer diffusion, whereas TED2 displays all the complexity of multicomponent 

diffusion including nonmonotonic profiles (Zhang et al. 1989). In a binary or multicomponent 

system, if one component can be present in multiple species and we consider the diffusion of 

different species, the diffusion of the component is termed multi-species diffusion. During 

multicomponent diffusion, if we consider the diffusion of only one component and treat all other 

components as one combined “component”, then the diffusion is called effective binary diffusion 

(EBD, which may mean either effective binary diffusion, or effective binary diffusivity). EBD 

has been further classified into first kind and second kind (Zhang et al. 2010). The first kind of 

effective binary diffusion (FEBD) is when all concentration gradients are due to one component, 

all other components being diluted by the component. FEBD is similar to tracer diffusion or 

TED1 except the concentration of the diffusing component can be higher in FEBD. The second 

kind of effective binary diffusion (SEBD) includes all other situations. In this work, we reclassify 

EBD into principally one-concentration-gradient diffusion (POCGD, same as FEBD), 

interdiffusion (ID), and other types of EBD (OEBD). EBD treatment can only handle 

concentration profiles that are monotonic. If a component displays mass motion from low 

concentration to high concentration leading to a nonmonotonic profile, it is called uphill 

diffusion, which cannot be treated by EBD.  
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Dependence of D on temperature, pressure, and melt composition 

  The value of D characterizes the diffusion rate. Hence, it is critical to know D under various 

conditions, and how it varies with other parameters. Based on experimental studies, it is known 

that D of a component in silicate melts depends strongly on temperature, weakly on pressure, in a 

complex manner on the melt composition, and sometimes on its own concentration.  

  The dependence of D on temperature is well characterized by the Arrhenius relation:  

  D = D0e–E/(RT),  (5) 

where R is the universal gas constant (8.31447 J mol-1 K-1), T is temperature in K, E is the 

activation energy (the energy difference between the activated state and normal state), and D0 is, 

for lack of a better term, the pre-exponential factor.  D0 is also the hypothetical diffusivity when 

T = ∞. Even though viscosity of melt-glass has often been found to be and successfully modeled 

as non-Arrhenian (e.g., Hess and Dingwell 1996; Zhang et al. 2003; Hui and Zhang 2007; 

Giordano et al. 2008), it is difficult to think of a case where D is unambiguously non-Arrhenian. 

  The dependence of D on pressure is weaker but also more complicated. A relation including 

both the temperature and pressure dependence is:  

 D = D0e–(E+P∆V)/(RT),  (6) 

where P is pressure and ∆V is the activation volume (the volume difference between the 

activated state and normal state). In this equation, P∆V is an energy term and plays a similar role 

as the activation every E. However, unlike the activation energy, which is always positive for 

diffusion, ∆V may be either positive (D decreasing with P) or negative (D increasing with P); it 

may also change signs as pressure varies. For example, Shimizu and Kushiro (1984) showed that 

oxygen self diffusivity decreases with pressure in diopside melt (positive ∆V) but increases with 
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pressure in jadeite melt (negative ∆V) at P ≤ 2 GPa, and Tinker and Lesher (2001) showed that 

Si and O self diffusivity in dacite melt increases with pressure from 1 to 4 GPa (negative ∆V), 

and then decreases with further increase of pressure to 5.7 GPa (positive ∆V). Experimental data 

by Chen and Zhang (2008) show that the effective binary diffusivity of MgO in basalt melt is 

roughly independent of pressure from 0.5 to 1.4 GPa.  

  Diffusivity in silicate melts depends on the major oxide composition of the melts. For 

example, diffusivity of an element in dry basalt melt is higher than in dry rhyolite melt at the 

same temperature and pressure, except for He, Li and Na (Behrens 2010; Henderson 1985, 

Zhang et al., 2010). The dependence of D on melt composition is complicated and there is no 

theoretical formulation. Many authors tried to develop empirical relations. Mungall (2002) made 

great effort to model tracer diffusivity of many elements in silicate melts as a function of 

viscosity and compositional parameters such as ionic radius r, Z2/r (where Z is valence), 

Al/(Na+K+H), and M/O ratio where M is the total number of divalent and univalent cations, and 

O is total number of oxygen. Later studies (e.g., Behrens and Hahn 2009; Zhang et al. 2010; Yu 

et al. 2019) evaluated the empirical model of Mungall (2002) and concluded the model may be 

used as an order of magnitude estimate for tracer diffusivities but not accurate enough for 

practical applications. Fanara et al. (2017) provided fits of diffusivities and obtained Dη0.7 =    

10-9.98 for trivalent cations, Dη0.59 = 10-9.42 for divalent cations, and Dη0.13/r3 = 10-1.76 for 

univalent cations, where η is viscosity in Pa·s, D is in m2/s, and r is ionic radius in angstrom. 

The equation for the univalent cations does not seem to be correct. These equations do not 

distinguishing diffusivities of different divalent cations (i.e., treating diffusivities of Mg, Ca, Sr 

and Ba to be the same) or different trivalent cations (treating diffusivities of REE, Al, Cr3+ and 

Ga3+ to be the same), and hence, they at the best would provide an order of magnitude estimate 
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of diffusivities. In addition to these general models, other authors have examined how diffusivity 

of a given component in a specific system depends on composition using simple and empirical 

composition parameters, often in the form of lnD being linear to some concentration (mass 

fraction or mole fraction), such as H2O (Behrens and Zhang 2001), or SiO2 (Watson 1982; 

Lesher and Walker 1986; Koyaguchi 1989; Macris et al. 2018), or Si+Al (Zhang et al. 2010; 

Zhang and Xu 2016; Yu et al. 2019), or ASI = Al/(Na+K+2Ca+2Mg) (Behrens 2010). 

Occasionally, a linear dependence of lnD on the square root of H2O concentration seems to fit 

data best (e.g., Zhang et al. 2010, REE diffusion). Nonetheless, the compositional dependence of 

diffusivity is still not well quantified due to the large number of components that may affect a 

given diffusivity in natural silicate melts.  

  The diffusivity of some components in silicate melts may depend on its own concentration, 

such as SiO2 (e.g., Watson 1982; Koyaguchi 1989; Macris et al. 2018), and H2O (Shaw 1974; 

Zhang et al. 1991a; Zhang and Behrens 2000; Ni and Zhang 2008, 2018). In the former case, 

SiO2 is a major component and controls the melt structure (e.g., degree of polymerization). 

Hence, the dependence of SiO2 diffusivity on its own concentration is not surprising, and in fact, 

Yu et al. (2019) showed that it is Si+Al rather than Si that controls Si diffusion. Hence, the 

dependence on its own concentration in this case is related to the compositional or structural 

effect. In the latter case, H2O diffusivity depends on H2O concentration due to two factors. One 

is that H2O dissolves in silicate melts as two species: molecular H2O (H2Om) and hydroxyl (OH) 

(Stolper 1982a,b). H2Om diffuses more rapidly than OH (Doremus 1969; Zhang et al. 1991a; Ni 

and Zhang, 2018), and the proportion of H2Om in total H2O (H2Ot) increases as H2Ot 

concentration increases (Stolper 1982a,b). This leads to a rough linearity between H2Ot 

diffusivity and H2Ot concentration at low H2Ot concentrations (< 2 wt%). The second factor is 
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that lnDH2Om (as well as lnD of many other elements) increases linearly with H2Ot leading to 

faster than linear increase between DH2Ot and H2Ot (Zhang and Behrens 2000; Ni and Zhang 

2008, 2018). Hence, part of the dependence of H2O diffusivity on its own concentration is due to 

the speciation of H2O, and part of it is due to compositional dependence. The diffusion of SiO2 

and H2O will be discussed further in this chapter.  

  The relation between self or tracer diffusivity and viscosity has been examined extensively 

and many famous equations (such as the Stokes-Einstein equation, Einstein 1905, and the Eyring 

equation, Eyring 1936) of inverse proportionality between diffusivity and viscosity have been 

developed. Some authors have taken these equations for granted. However, these equations 

cannot be applied to the diffusion of most components.  For example, self and tracer diffusivities 

may either increase with melt viscosity (for He, Li, and Na; Behrens 2010; Henderson et al. 

1985; Zhang et al. 2010), or decrease with melt viscosity (for most other elements). Even when 

self or tracer diffusivity decreases with viscosity, the Stokes-Einstein equation and the Eyring 

equation often do not work well (Zhang and Ni 2010; Zhang et al. 2010; Ni et al. 2015). For 

example, for O diffusion in hydrous silicate melts, the error by either of these equations may be 

many orders of magnitude (Zhang and Ni 2010). The best applications seem to be the Eyring 

equation for Si or O self diffusivity in anhydrous silicate melts to within a factor of 3 (e.g., 

Shimizu and Kushiro 1984; Reid et al. 2001; Tinker et al. 2004). Dingwell (1990) and Fanara et 

al. (2017) discussed the relations between diffusivity of different ions and viscosity. As 

discussed earlier, Mungall (2002) and Fanara et al. (2017) made effort to quantify relations 

between diffusivity of different groups of elements and viscosity. We will not examine 

diffusivity-viscosity relations further. 
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SOME USEFUL SOLUTIONS TO THE DIFFUSION EQUATION AND 

EXPERIMENTAL DESIGNS FOR OBTAINING DIFFUSIVITY 

   Analytical solutions for some often encountered and relatively simple diffusion problems 

(Fig. 1) are provided in this section without derivations. Readers interested in the associated 

derivations are referred to textbooks such as Carslaw and Jaeger (1959), Crank (1975), and 

Zhang (2008). These solutions are often used in experimental studies of diffusion and can 

sometimes be applied to treat natural diffusion problems by using approximations and 

simplifications. 

  

 

 

 
Figure 1. Four diffusion problems that 
are often encountered in experimental 
determination of diffusion coefficients 
and in geological applications. The left-
hand side shows the initial configuration 
and the initial concentration profile, and 
the right-hand side shows the effect of 
diffusion on the distribution of the 
diffusant and the concentration profile. 
For the case of diffusion couple setup, the 
black part means the initial high 
concentration at x < 0 (where x=0 is the 
interface). For the case of sorption, the 
black part means the ambient convecting 
and uniform gas phase. For the case of 
mineral dissolution, the black part means 
the dissolving mineral. For the case of 
instantaneous source, the initial 
concentration at the surface (an 
infinitesimally thin film) is very high as 
indicated by the arrow. Modified after 
Watson and Dohmen (2010). 

Diffusion
couple

Sorption
(constant 
surface)

Instantaneous
source
(thin film)

Ci

Ci

Ci

Ci

Ci

Ci

Ci

Ci

Initial (t=0) t=t

Mineral
dissolution



	 15	

 

Diffusion couples  

  When two melts of different compositions (each melt is uniform in composition) are brought 

into contact in the laboratory or in nature, the diffusion problem is referred to as a diffusion 

couple (Fig. 1). Define the contact plane to be x = 0. Then, one side is at x < 0, and the other side 

is at x > 0. Consider the situation when the diffusion distance is small compared to the thickness 

of the two melts (i.e., diffusion from the interface has not reached the far ends). For self 

diffusion, binary diffusion with a constant diffusivity, trace or minor element diffusion in a 

roughly uniform major oxide composition, or for a component in a multicomponent system that 

can be characterized by a constant effective binary diffusivity, the analytical solution is (Carslaw 

and Jaeger 1959; Crank 1975):  

  
 
w = wA +wB

2
+ wB −wA

2
erf x

4Dt
,  (7) 

where wA and wB are the initial mass fraction of the component in melt at x < 0 and at x > 0, w is 

the mass fraction of the component at any x and any t > 0, and erf is the error function (Carslaw 

and Jaeger 1959; Crank 1975; Zhang 2008). Equation (7) shows that at a given time t, the 

diffusion profile (meaning w versus x) is an error function. The diffusion profiles for diffusion 

couples at t = 0 and t = t are shown in Fig. 1. As t increases, the length of the diffusion profile 

increases. An example of actual experimental data and fit of the data by Equation (7) is shown in 

Fig. 2.  
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 Figure 2. TiO2 diffusion profile from a multicomponent 

diffusion couple experiment. It is treated as effective 

binary diffusion with a constant diffusivity. Points are 

measured data. The flat regions on each side show that 

diffusion has not reached the far ends. The solid curve is 

a nonlinear least-squares fit using Equation (7). The fit is 

excellent, and provides the effective binary diffusivity. 

From Guo and Zhang (2018). 

Sorption or desorption  

  A gas component may dissolve into or exsolve from a melt or glass that may contain some 

uniform initial concentration of the component winitial. Often the surface concentration of the gas 

component is fixed by the external gas pressure to be wsurface (Sorption in Fig. 1). Define the 

position of the surface to be x = 0. If the diffusivity is constant and diffusion has not reached the 

far end (if sorption from two parallel surfaces, then diffusion has not reached the center) of the 

melt or glass, the analytical solution is:  

  
 
w = wsurface + (winitial −wsurface )erf x

4Dt
.  (8) 

If the surface concentration is zero (desorption into vacuum), the above equation becomes:  

 
 
w = winitialerf x

4Dt
.  (8a) 

If the initial concentration is zero (sorption), then Equation (8) becomes:  

 
 
w = wsurface(1− erf x

4Dt
) = wsurfaceerfc x

4Dt
. (8b) 

These equations are often used to fit diffusion profiles resulting from sorption or desorption. An 

example of experimentally generated concentration data with a fit using Equation (8) is shown in 

Fig. 3. In addition to gas diffusion, isotope diffusion is sometimes accomplished by using an 
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isotopically enriched gas to maintain a constant isotope ratio at the mineral or glass surface and 

allowing the isotope to diffuse into the solid (e.g., Williams 1965; Ryerson et al. 1989).  

  

 

  

Figure 3. Experimental Ar diffusion profile from an Ar 

sorption experiment. Points are measured data. The 

solid curve is a nonlinear least-squares fit using 

Equation (8). The fit is excellent, and provides the 

effective binary diffusivity (POCGD). From Behrens 

and Zhang (2001).  

  

  In sorption or desorption experiments, sometimes the concentration profile at a given time is 

not measured due to, e.g., analytical difficulty, but the mass gain or loss of the sample is 

measured as a function of time. Consider a sample that is a thin plate with uniform thickness L 

with sorption or desorption from both surfaces. Define ∆Mt and ∆M∞ to be the amount of the gas 

component entering (or exiting) the plate at time t and time ∞. When ∆Mt/∆M∞ ≤ 0.6, the mass 

gain or loss can be described by the following equation: 

  ∆ Mt
∆ M∞

= 4 D
L π

t . (9) 

By plotting ∆Mt/∆M∞ versus t , one would get a straight line passing through the origin (0,0). 

Fitting the straight line by a proportionality equation, D can be calculated from the slope.  
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  One method to experimentally investigate diffusion in melts is to use crystal dissolution to 

provide a source for some component (e.g., Harrison and Watson 1983). Often, interface 

equilibrium between the dissolving crystal and the melt is rapidly reached (Zhang et al. 1989; 

Zhang 2008; Chen and Zhang 2008; Yu et al. 2016), meaning that the interface melt composition 

is fixed, and the dissolving mineral recedes (Mineral dissolution in Fig. 1). Consider the case 

when convection in the melt can be ignored (e.g., the mineral does not sink in the melt). Assume 

that the diffusion of a component can be described as by a constant effective binary diffusivity. If 

the dissolution thickness of the crystal is negligible compared to the diffusion distance, and 

diffusion has not reached the far end, then the analytical solution for one-dimensional diffusion 

would be similar to that of the sorption problem Equation (8). If the dissolution thickness is not 

negligible, the analytical solution for one-dimensional diffusive dissolution is as follows:  

  

 

w = winitial + (winterface −winitial )
erfc (x − L)

4Dt
erfc (−L)

4Dt

,  (10) 

 where winitial and winterface are the initial and interface concentrations in the melt, and L is the 

growth thickness of the melt, which is related to the dissolution thickness of the crystal (Lc) by L 

= Lc(ρcrystal/ρmelt), and can be calculated as follows:  

  L = α 4Dt ,  (10a)  

with α solved from:  

  
 

(winterface −winitial )
(wcrystal −winterface )

= παeα
2
erfc(−α) , (10b)  

where wcrystal is the concentration in the crystal. An example of experimental data and a fit to the 

data is shown in Fig. 4.  
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Figure 4. Experimental ZrO2 diffusion profile 

from a zircon dissolution experiment. Points are 

measured data. The solid curve is a nonlinear 

least-squares fit using Equation (10) in which the 

melt growth thickness L = 0.9 µm as obtained 

from experimental data. The fit is excellent, and 

provides the effective binary diffusivity 

(POCGD) of Zr. From Zhang and Xu (2016).  

 

Thin-source diffusion  

  In this method, a fixed (and often undefined) amount of substance (often a radioactive tracer) 

is deposited on the surface as a thin layer with uniform thickness. Tracer diffusivity is typically 

constant. If the thin layer (the location is defined as x = 0) is sandwiched between two cylinders, 

then diffusion goes to both directions. Before diffusion reaches the far end, the analytical 

solution is:  

  
 
C = M0

4πDt
e−x

2 /(4Dt ) ,  (11) 

where C is concentration in kg/m3 or mol/m3, and M0 is deposited mass per unit area (kg/m2 or 

mol/m2). Often M0 is not known, and the concentration profile is measured at a given time. 

Hence, the concentration profile would be fit in the following form:  

  C =C0e
−x2 /(4Dt ) ,  (11a) 

where C0 is concentration at x = 0.  
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  If the thin layer is on the surface of a cylinder and diffusion goes to one direction only 

(Instantaneous source in Fig. 1), then, at a given x, the concentration is two times the 

concentration given by Equation (11): 

 
 
C = M0

πDt
e−x

2 /(4Dt ) = C0e
−x2 /(4Dt ) .  (12) 

Measured concentration profiles at a given time t also follows Equation (11a) but C0 in the case 

of one-sided diffusion is two times C0 in the case of two-sided diffusion for a given M0.  

 

Isotropic diffusion in spheres  

  Degassing or regassing of a spherical melt or glass belongs to this class of diffusion 

problems. Melt and glass are isotropic so that D does not vary with diffusion directions. Assume 

a constant initial concentration (winitial) in the sphere, a constant surface concentration (wsurface), 

and a constant diffusivity D. Then the analytical solution is:  

  
 

C −Csurface

Csurface −Cinitial
= 2a
πr

(−1)n

n
sin nπr

a
e−n

2π2Dt /a2

n=1

∞

∑ ,  (13a)  

where a is the radius of the sphere, and r is the radial coordinate. The concentration at the center 

(r=0) can be found by 

  
 

Ccenter −Csurface

Csurface −Cinitial
= 2 (−1)ne−n

2π2Dt /a2

n=1

∞

∑ .  (13b)  

The total amount of mass entering or leaving the sphere is:  

  
 

∆ Mt
∆ M∞

= 1− 6
π2

1
n2

e−n
2π2Dt /a2

n=1

∞

∑ ,  (13c)  

where ∆M∞ is the final mass gain or loss as t approaches ∞.  In other words, ∆M∞ is the mass 

gain or loss at equilibrium, and equals 4πa3(Csurface – Cinitial)/3. ∆Mt/∆M∞ is a measure of how 
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close the system is to equilibrium. If ∆Mt/∆M∞ = 0, then diffusion is just beginning. If ∆Mt/∆M∞ 

= 1, it means that equilibrium is reached.  

  Equations (13a)-(13c) converge rapidly for Dt/a2 > 0.1.  For smaller Dt/a2 values, the 

following three equations may be used for rapid convergence:  

  
 

C −Cinitial

Cinitial −Csurface
= a
r

erfc (2n +1)a − r
4Dt

− erfc (2n +1)a + r
4Dt

⎡
⎣⎢

⎤
⎦⎥n=0

∞

∑ , (14a)  

  
 

Ccenter −Cinitial

Cinitial −Csurface
= 2a

πDt
e−(2n+1)

2 a2 /(4Dt )

n=0

∞

∑ ,  (14b)  

  
 

∆ Mt
∆ M∞

= 6
π

Dt
a

1+ 2 π ierfc na
Dtn=1

∞

∑⎡

⎣
⎢

⎤

⎦
⎥ − 3

Dt
a2

, (14c)  

where ierfc is integrated complementary error function. An example of fitting can be found in 

Zhang (2008, Fig. 3-30a).  

 

Variable diffusivity along a profile  

  Solutions presented above are all for constant diffusivity along a diffusion profile, which 

typically happens when the variation in every major oxide concentration is small (e.g., ∆w < 4 

wt%). Sometimes, one-dimensional diffusion profiles deviate clearly from error functions and 

cannot be fit by constant-D solutions. In such cases, there is often no analytical solution. To fit 

the data, one may guess a relation between D and the composition (e.g., lnD is linear to 

concentration, meaning D is an exponential function of the concentration), numerically solve the 

diffusion problem, and use the numerical solution to fit the experimental diffusion profile (Zhang 

et al. 1991a; Zhang and Behrens 2000; Yang et al. 2016; Macris et al. 2018; Yu et al. 2019). For 

example, Fig. 5 shows an SiO2 diffusion profile during quartz dissolution. Total SiO2 

concentration variation is very large, 50 wt% to about 90 wt%. The effective binary diffusivity 
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DSiO2 across the profile is not constant due to such major composition variations. Fitting the 

concentration profile by a constant D using Equation (10) (blue dashed curve in Fig. 5) does not 

match the data points well. By assuming that DSiO2 depends exponentially on SiO2 wt% (D = 

Dw=0e–aw, where Dw=0 and a are two fit parameters and w is wt% of SiO2), the fit curve (red solid 

curve) matches the data very well.  

 

 

 
Figure 5. Experimental SiO2 diffusion profile 
from a quartz dissolution experiment. Points are 
measured data. The data indicate very steep slope 
near the interface (x = 0), which descends into a 
much shallower slope at larger x (e.g., x = 50 µm), 
implying much smaller diffusivity near the 
interface than in the far-field. The dashed blue 
curve is a nonlinear least-squares fit using constant 
D (Eqn. 10) in which L = 34.9 µm as obtained 
from experimental data. The fit does not match the 
data. The solid red curve is a nonlinear least 
squares fit by assuming DSiO2 decreases 
exponentially as SiO2 concentration increases. The 
fit is excellent, and verifies the chosen functional 
dependence of DSiO2. From Yu et al. (2019).  

 

    If one wishes to examine the relation between D and composition without any bias of a 

presumed functional form, then Boltzmann analysis may be applied to the diffusion couple 

problem (Matano 1933: Sauer and Freise 1962), sorption problem, or mineral dissolution 

problem (Watson 1982; Yu et al. 2019).  For a diffusion couple experiment, from the 

concentration profile w(x) at a given time t, one method to obtain D at a given position x0 or a 

given concentration wx0  (wx0  is w at x = x0) is the Boltzmann-Matano method (Matano 1933):  

  
 
Dx=x0 =

xdw
wx0

w∞∫
2t(dw /dx)|x=x0

, (15)  
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where x is distance from the Matano interface, x0 is the position at which D is calculated, and t is 

the experimental duration. In using the above equation, it is necessary to first smooth the 

concentration profile w(x), and also obtain the Matano interface position so that  

  
 

xdw
w−∞

w∞∫ = (w∞ −w)dx
0

∞
∫ − (w −w−∞ )dx−∞

0
∫ = 0 . (16)  

 An alternative Boltzmann method to calculate D at a given position or concentration based 

on a diffusion couple profile without finding the Matano interface is given by Sauer and Freise 

(1962):  

  
 
D = 1

2t(dy /dx)|x=x0
yx0 (1− y)dx + (1− yx0 ) ydx

−∞

x0∫x0

∞
∫⎡

⎣⎢
⎤
⎦⎥

,  (17a)  

where y = (w–wmin)/(wmax–wmin) so that y = 0 at x = -∞ and y = 1 at x = ∞ (that is, minimum 

concentration wmin is at x = -∞, and maximum concentration wmax is at x = ∞). If the side of x > 0 

has lower concentration so that y = 1 at x = -∞ and y = 0 at x = ∞, then the equation becomes:  

  
 
D = −1

2t(dy /dx)|x=x0
(1− yx0 ) ydx + yx0 (1− y)dx

−∞

x0∫x0

∞
∫⎡

⎣⎢
⎤
⎦⎥

. (17b)  

The advantage of the Sauer and Freise (1962) method is that there is no need to find the Matano 

interface.  

   For diffusive mineral dissolution experiments, D at a given position x0 can be calculated 

using the following equation (Yu et al. 2019):  

  
 
D = 1

2t(dw /dx)|x=x0
xdw

wx0

w∞∫ +
(w∞ −wx0 )
(wc −w∞ )

xdw
w0

w∞∫
⎡

⎣
⎢

⎤

⎦
⎥ ,  (18)  

where w0 = w|x=0 is the concentration at the interface melt (note that x = 0 is the mineral-melt 

interface, which is directly measured, rather than calculated as the Matano interface), and wc is 

the concentration of the component in the dissolving crystal.  
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Diffusion distance and square root of time relation  

  The analytical solutions (Eqns. 7, 8, 10, and 11) for one-dimensional diffusion typically 

indicate that concentration depends on x/(4Dt)1/2. That is, at a given x/(4Dt)1/2, or at x = 2a(Dt)1/2 

where a is a constant, the concentration is constant regardless any variations in x and t. Hence, 

diffusion distance is proportional to Dt . At a given D, the diffusion distance is proportional to 

square root of time. This is referred to as the square root of time relation, or sometimes the 

parabolic relation. Often a characteristic distance xc is roughly defined as  

  xc ≈ Dt . (19) 

To be more precise, Zhang (2008) defined the mid-concentration distance to be the distance from 

the interface at which the concentration is 0.5(winterface+wfarfield). For constant D, the mid-

concentration distance xmid for diffusion couple and sorption/desorption can be expressed as 

(Zhang, 2008):  

 xmid = 0.953872 Dt . (20) 

 Because diffusion distance is proportional to square root of time, diffusion-controlled 

processes (such as diffusion-controlled crystal growth, crystal dissolution, oxidation, 

dehydration, etc.) are often said to follow the parabolic law (t is linear to x2, e.g., Yu et al. 2016). 

Conversely, if a process follows the parabolic law, the process is often identified to be diffusion 

controlled.  

 

MULTICOMPONENT DIFFUSION 

   Natural silicate melts typically contain 5 to 10 major oxides (≥ 1 wt%) plus minor (0.1 to 1.0 

wt%) and trace components (<0.1 wt%). Therefore, diffusion in geological melts is always 
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multicomponent in nature even though usually treated by EBD. The general theory of 

multicomponent diffusion is well developed. Because the concentration gradient of any one 

component would affect the diffusive flux of not only itself, but also other components, 

multicomponent diffusion must be described by a diffusion matrix (De Groot and Mazur 1962; 

Zhang 2008, 2010; Liang 2010). There are at least two manifestations of multicomponent 

diffusion compared to binary diffusion. One is uphill diffusion in a stable phase, in which a 

component diffuses from low concentration to high concentration, resulting in a non-monotonic 

concentration profile, such as one maximum or minimum during mineral dissolution (Na2O 

profile in Fig. 6), or a pair of minimum and maximum in diffusion couples (e.g., see Al2O3, FeO, 

CaO and Na2O profiles in Fig. 7 later). Applying the effective binary diffusion treatment would 

fail because the extracted D values would vary from positive to negative, and negative D values 

are incorrect for stable phases. Another manifestation of multicomponent diffusion is the 

coordinated motion among many components, resulting in concentration profiles of similar 

lengths (Fig. 6) for components with widely different self or tracer diffusivities. Coordinated 

diffusion, with many components showing similar diffusion distances, is often observed when 

the major concentration gradient is in SiO2 (Fig. 6). One explanation for coordinated motion of 

many different components is that a few slowly diffusing major components (such as SiO2 and 

Al2O3 for aluminosilicate melts) control the chemical potential of other components. The 

components that diffuse more rapidly redistribute following the chemical potential gradients of 

the slowly diffusing components, which means more rapidly diffusing components follow the 

concentration gradients of SiO2 and Al2O3 (Watson 1976, 1982; Zhang 1993), with similar 

apparent diffusivity. The effect of SiO2 and Al2O3 on the chemical potential and diffusion of 

other components may be roughly modeled (Zhang 1993). The coordinated motion can still be 
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treated by the effective binary diffusion method even though the extracted EBD can only be 

applied to diffusion problems with similar concentration gradients and composition.  

  

 

 
Figure 6. Concentration profiles in the melt during 
quartz dissolution in basalt (Yu et al. 2019). For 
easier comparison, the concentration profiles are 
normalized so that the far-field concentration is 1, 
and the interface concentration is zero.  Na2O 
(black solid squares) displays obvious uphill 
diffusion. All other oxides show similar diffusion 
distance, even though their tracer diffusivity may 
differ by orders of magnitude. In terms of profile 
lengths, Ti > Al > Fe ≥ Si ≈ Mg ≥ Ca > K.  This 
sequence is different from the sequence for tracer 
diffusivities (see Eqn. 28 later). 

 

  Liang (2010) provided a thorough review of multicomponent diffusion work. Because the 

EBD approach is not disappearing anytime soon, especially for minor and trace elements, here 

we first briefly review and reclassify the effective binary diffusion approach. We then outline the 

theory of multicomponent diffusion following De Groot and Mazur (1962) and Zhang (2008). 

Finally, we discuss recent multicomponent diffusion work since the review by Liang (2010).  

 

Effective binary diffusion  

 Up to a few years ago, the only practical approach in treating diffusion in natural basalt to 

rhyolite melts, which are multicomponent in nature, is the effective binary diffusion treatment. 

Cooper (1968) discussed limitations and applications of the effective binary treatment. Although 

significant progress has been made and we are beginning to use multicomponent diffusion matrix 

to treat diffusion in basalt (e.g., Guo and Zhang 2018, 2020), our opinion is that we still have a 
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long way to go to treat multicomponent diffusion in numerous natural silicate melts using the 

diffusion matrix approach. Hence, effective binary diffusion treatment is here to stay in the near 

future (e.g., next 20 years) in dealing with major element diffusion in natural silicate melts. 

Furthermore, we are very far from using multicomponent diffusion matrix to treat minor and 

trace element diffusion. For all these reasons, effective binary diffusion still deserves attention. 

Rigorously speaking, even tracer diffusion is still in the presence of concentration gradients of 

other components and hence may be regarded as a kind of effective binary diffusion although the 

main concentration gradient is in one component (the tracer) only. 

  When using the effective binary approach, the diffusivity is termed effective binary 

diffusivity (EBD) or effective binary diffusion coefficient (EBDC). In this approach, the 

diffusant of interest is treated as one component, and all other components are treated as one 

combined “component”.  All solutions to the binary diffusion problems (Eqns. 5-20) are 

applicable to effective binary diffusion. This treatment can only treat monotonic profiles. For 

example, Figs. 2-5 are all effective binary diffusion profiles. Nonmonotonic profiles, such as 

Na2O profile in Fig. 6, and Al2O3, FeO, CaO, and Na2O profiles in Fig. 8 in a later section, 

cannot be treated using the effective binary approach. There is a modified effective binary 

diffusion model (Zhang 1993), which can treat nonmonotonic diffusion profiles, but it has not 

been much applied. 

  Because effective binary diffusion covers many different scenarios of diffusion, we suggest 

that when effective binary diffusivities are mentioned, the type of experiments is included, such 

as EBD of Zr during zircon dissolution, or EBD of SiO2 during cassiterite dissolution into a 

rhyolite melt, etc. Zhang (2010) divided effective binary diffusion into two categories: the first 

type of effective binary diffusion (abbreviated as FEBD) and the second type of effective binary 
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diffusion (SEBD). In this work, we aim to improve the classification rational, and classify the 

types of EBD based on how an EBD can be uniquely specified: (i) principally one-concentration-

gradient diffusion (POCGD) in multicomponent system, (ii) interdiffusion (ID) in 

multicomponent system, and (iii) other types of effective binary diffusion (OEBD) in 

multicomponent system. These are further elucidated below. 

  POCGD (same as FEBD in Zhang 2010) is the diffusion of a component A into or out of an 

initially uniform composition (such as sorption, desorption, and thin source diffusion). Other 

components diffuse mainly in response to the concentration gradient of this component A and 

their diffusion is typically not considered. POCGD also includes diffusion couples in which the 

initial concentration gradient is only in a single component A and all other components are the 

same except for the dilution by component A. When the concentration of the component in 

POCGD is below 1000 ppm, then it becomes TED1. For example, sorption of Ar into a glass or 

melt (Carroll 1991; Carroll and Stolper 1991; Behrens and Zhang 2001), hydration or 

dehydration of a glass or melt or H2O diffusion couples (Shaw 1974; Zhang et al. 1991a; Zhang 

and Stolper 1991; Zhang and Behrens 2000; Ni et al. 2013; Ni and Zhang 2018), Zr diffusion in a 

melt during zircon dissolution into the melt (Harrison and Watson 1983; Zhang and Xu 2016), 

SiO2 diffusion in a melt during quartz dissolution into the melt (Watson 1982; Yu et al. 2019), 

Sn diffusion in a melt during cassiterite dissolution into the melt (Yang et al. 2016), are all 

examples of POCGD. Diffusivities of POCGD depend only on the bulk composition including 

the concentration of the diffusing component, but not on other factors (other concentration 

gradients are all related to the diffusion of the component in consideration). Therefore, when 

specifying POCGD, one only needs to specify the bulk composition in addition to temperature 

and pressure. If one is interested in the diffusion of other components (such as Si diffusion in the 
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melt during cassiterite dissolution in a rhyolite), EBD of these other components would be other 

types of EBD and depend on the major concentration gradients.  

  Another type of diffusion in the category of effective binary diffusion that is worth special 

mention is interdiffusion (ID), in which the initial concentration gradients exist only for two 

compensating components A and B. Because of the motion of other components, effective binary 

diffusivity of component A may differ from that of B. Components other than A and B typically 

cannot be treated by effective binary diffusion due to uphill diffusion. To specify an 

interdiffusivity, it is necessary to include both the bulk composition and the counter-diffusion 

component, such as interdiffusivity of SiO2 during SiO2-K2O interdiffusion in a basalt, or that of 

SiO2 during  SiO2-Al2O3 interdiffusion in a basalt. The interdiffusivity of SiO2 during SiO2-K2O 

interdiffusion in basalt does not necessarily equal to the interdiffusivity of K2O during SiO2-K2O 

interdiffusion in basalt, or the interdiffusivity of SiO2 during SiO2-Al2O3 interdiffusion in basalt. 

For example, interdiffusivity (effective binary diffusivity) of SiO2 in a haplobasalt2 at 1773 K 

and 1.0 GPa is 15.7±1.5 µm2/s for SiO2-Al2O3 interdiffusion, and 103±20 µm2/s for SiO2-K2O 

interdiffusion (Guo and Zhang 2016), a variation by a factor of 6. The interdiffusivity of SiO2 in 

basalt11a at 1773 K and 1.0 GPa is 6.6±1.6 µm2/s for SiO2-TiO2 interdiffusion, and 88±11 µm2/s 

for SiO2-K2O interdiffusion, a variation by a factor of 13 (Guo and Zhang, 2020). The 

interdiffusivity of CaO in haplobasalt2 is 60±2 µm2/s for SiO2-CaO interdiffusion, and 116±7 

µm2/s for MgO-CaO interdiffusion (Guo and Zhang 2016). 

  All other types of effective binary diffusivities are more complicated, and are termed, lacking 

a better term, other types of effective binary diffusion (OEBD). Some examples include: SiO2 

diffusion during cassiterite dissolution into a rhyolite melt, Na2O diffusion during hydration of a 

melt, Al2O3 diffusion during quartz dissolution, diffusion of all components in a basalt-rhyolite 
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diffusion couple or during diopside dissolution into a basalt. Because EBD values depend on 

directions and relative magnitudes of concentration gradients, specification of the experiments 

may guide users in choosing the most appropriate EBDs. For example, to model olivine growth 

in a basalt (Newcombe et al. 2014, 2020), the most appropriate MgO EBD (an OEBD) is that 

during olivine dissolution in a similar basalt, rather than MgO EBD during diopside dissolution, 

or MgO EBD in a basalt-rhyolite diffusion couple, or Mg tracer diffusivity or self diffusivity. To 

model diffusion during mixing of two melts, the most appropriate EBDs are those extracted from 

diffusion couples made of these two melts. 

  In terms of applicability, POCGD has the widest applicability. It depends only on the bulk 

composition (in addition to temperature and pressure). Interdiffusivity depends on both the bulk 

composition and the counter-diffusion component. Once these are specified, then interdiffusivity 

is also specified. The other EBDs, or OEBDs, have limited applicability: one must specify the 

bulk composition as well as concentration gradients to apply. The concentration gradients can be 

specified in a number of ways, such as MORB-rhyolite diffusion couple, diopside 

dissolution/growth in a basalt, etc. 

  

Multicomponent diffusion theory 

 Fick’s first law (Eqn. 1) describes diffusive flux in a binary system. In an N-component 

system (N≥3), because the summation of concentrations of all components must be 100%, there 

are N-1 independent components. Define the Nth component to be the dependent component, and 

let n = N-1. Because the concentration gradient of any component would contribute to the 

diffusion of other components, the expanded Fick’s law for one-dimensional diffusion takes the 
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following form (the intricacy of the reference frame is not discussed here; interested readers are 

referred to Brady 1975; Chakraborty 1995; Zhang 2008):  

  
 
J1 = −D11

[N ] ∂C1
∂x

− D12
[N ] ∂C2

∂x
−!− D1n

[N ] ∂Cn
∂x

,  

  
 
J2 = −D21

[N ] ∂C1
∂x

− D22
[N ] ∂C2

∂x
−!− D2n

[N ] ∂Cn
∂x

, 

  ......  

  
 
Jn = −Dn1

[N ] ∂C1
∂x

− Dn2
[N ] ∂C2

∂x
−!− Dnn

[N ] ∂Cn
∂x

, 

where Dii
[N ]  characterizes the diffusive flux of component i due to its own concentration gradient 

∂Ci/∂x when the Nth component is used as the dependent component, and Dij
[N ]  (i≠j) 

characterizes the diffusive flux of component i due to concentration gradient of another 

component j, ∂Cj/∂x. In other words, Dij
[N ]  (i≠j) describes the cross effect of concentration 

gradient of component j on the diffusion of component i. In matrix notation, the above set of 

equations can be written as:  
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, (21)  

where D[N] is referred to as the diffusion matrix, and the superscript [N] means that the Nth 

component is taken as the dependent component.  

  Fick’s second law in a multicomponent system takes the following form:  
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If the D-matrix is independent of composition and x, then  
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Because melt density is roughly constant, the concentration above may be in either kg/m3, or 

mass fraction or wt% (w). If a different component k is used as the dependent component, then 

the concentration vector would be different, (C1,..., Ck-1, Ck+1,..., CN), and the D matrix would be 

different. Methods for obtaining D[k] from D[N] can be found in Guo and Zhang (2016).  

  The above diffusion equation can be solved by the diagonalization of D using eigenvalues 

and eigenvectors: 

  D = PΛP-1,  (23)  

where Λ  is a diagonal matrix with each diagonal element λi being the eigenvalues, and P is the 

eigenvector matrix, with column j corresponding to eigenvalue λj.  

  A number of analytical solutions have been obtained for the case of constant multicomponent 

diffusion matrix. For a diffusion couple, before diffusion reaches the far ends, the solution is 

(Liang, 2010):  

  
 
w = wA +wB

2
+ PQP−1 wB − wA

2
,  (24)  
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where w is a column vector of concentrations, wA and wB are the initial concentration vectors at 

x < 0 and x > 0, P is the eigenvector matrix, and Q is a diagonal matrix with each diagonal term 

Qii =  erf (x / 4λit )  and off-diagonal terms Qij = 0 for i≠j.  

  For one-dimensional diffusive mineral dissolution, the analytical solution is (Guo and Zhang 

2016):  

   w = winitial + PAP
−1(winterface −winitial ) ,  (25)  

where P is the eigenvector matrix, and A is a diagonal matrix with Aij = 0 if i≠j, and  

  

 

Aii =
erfc (x − L)

4λit

erfc (−L)
4λit

, (26)  

where L is the melt growth distance (see Eqn. 10). For a discussion of determining winterface and 

L, please refer to Guo and Zhang (2016).  

  Varshneya and Cooper (1972) used eigenvectors of diffusion matrices to infer exchange 

mechanisms and also hinted that the eigenvectors might be independent of temperature in ternary 

SiO2-SrO-K2O melts. Chakraborty et al. (1995b) found that diffusion eigenvectors are insensitive 

to composition in ternary SiO2-Al2O3-K2O melts and to temperature, and each eigenvalue 

depends on temperature following the Arrhenius relation and on melt composition. The 

constancy of eigenvectors and the Arrhenian behavior of eigenvalues significantly simplify the 

quantification of multicomponent diffusion. Claireaux et al. (2016, 2019) and Guo and Zhang 

(2016, 2018, 2020) applied and extended the concepts and approaches to multicomponent 

diffusion in a quaternary SiO2-Al2O3-CaO-Na2O melt (NCAS in Table 2), a seven-component 

haplobasalt (haplobasalt2 in Table 2) and an eight-component basalt (basalt11a in Table 2).   
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  The above summary highlights that the general multicomponent diffusion theory is well 

developed. The difficulty in applying the theory is in the unavailability of the diffusion matrix. 

Below we summarize recent efforts to determine the diffusion matrix in aluminosilicate melts.  

  

Recent studies of multicomponent diffusion 

  There has been major progress in multicomponent diffusion in silicate melts since the review 

of Liang (2010). Watkins et al. (2014) expanded multicomponent diffusion theory to treat 

simultaneous isotope diffusion and multicomponent diffusion. Claireaux et al. (2016, 2019) 

carried out diffusion couple experiments at 1473 to 1633 K to quantify multicomponent diffusion 

in a quaternary system SiO2-Al2O3-CaO-Na2O (NCAS). Guo and Zhang (2016) studied 

multicomponent diffusion in a seven component Fe-free haplobasalt SiO2-TiO2- Al2O3-MgO-

CaO-Na2O-K2O (haplobasalt2 in Table 2) at 1773 K. Pablo et al. (2017) examined 

multicomponent diffusion in a ternary sodium borosilicate melt (average composition 68SiO2-

18B2O3-14Na2O by mol%) at 973-1373 K. Guo and Zhang (2018, 2020) investigated 

multicomponent diffusion in an eight component basalt (basalt11a in Table 2) at 1533 to 1773 K, 

which has a similar composition to a MORB from Juan de Fuca Ridge except with increased 

K2O to resolve the effect of K2O. The compositions of these silicate melts except for the 

borosilicate melts are listed in Table 2, and the results from these studies are summarized below. 

 

Table 2. Nominal composition of melts (wt%) investigated for multicomponent diffusion 
Melt SiO2 TiO2 Al2O3 FeO MgO CaO Na2O K2O References 
NCAS 64.5  11.4   10.8 13.3  1,2 
haplobasalt2 50.0 1.50 15.0  10.0 19.0 3.00 1.50 3 
basalt11a 51.0 2.00 14.0 11.5 6.5 10.5 3.00 1.50 4,5 
References: 1. Claireaux et al. (2016); 2. Claireaux et al. (2019); 3. Guo and Zhang (2016); 4. Guo and Zhang (2018); 
5. Guo and Zhang (2020). Effort is made so that the name of each melt is the same or similar to those in Table 1 of 
Zhang et al. (2010) for easy cross reference. For example, the composition of basalt11a in this Table is similar to that 
of basalt11 in Table 1 of Zhang et al. (2010). 
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  Multicomponent diffusion in NCAS quaternary system. Claireaux et al. (2016, 2019) 

investigated multicomponent diffusion in the quaternary system SiO2-Al2O3-CaO-Na2O 

(composition NCAS in Table 2) at 1473, 1553 and 1633 K. They obtained the diffusion matrix at 

each of the three temperatures, and found that the eigenvectors of the three diffusion matrices are 

similar, and the eigenvalues depend on temperature following the Arrhenius relation, which are 

consistent with previous studies of multicomponent diffusion in silicate melts of the following 

compositions: 68SiO2-17SrO-21K2O (Varshneya and Cooper 1972), 40SiO2-20Al2O3-40CaO 

(Sugawara et al. 1977; Oishi et al. 1982), SiO2- Al2O3-K2O with ~75 wt% SiO2 (Chakraborty et 

al. 1995a,b), SiO2-NaAlSi3O8-KAlSi3O8-H2O (Mungall et al. 1998), 60SiO2-15Al2O3-25CaO and 

45SiO2-20Al2O3-35CaO (Liang and Davis 2002). Table 3 lists the three common eigenvectors 

using SiO2 as the dependent component, and the Arrhenius equation for calculating the 

eigenvalues. The eigenvector corresponding to the smallest eigenvalue (λ1 in Table 3) is mostly 

the exchange of Al2O3 with CaO plus some SiO2 (the eigenvector component for the Al2O3 

component is positive, those for CaO and SiO2 are negative; and 0.06 for Na2O is considered to 

be small and negligible here), that to the middle eigenvalue (λ2 in Table 3) is mostly the 

exchange of CaO with SiO2 plus some Al2O3, and that to the greatest eigenvalue (λ3 in Table 3) 

is mostly the exchange of Na2O with CaO plus a little SiO2. These eigenvectors and associated 

eigenvalues are consistent with expectation that exchange of higher-valence (or network 

forming) components is slow and that involving lower-valence components is rapid. To calculate 

the diffusion matrix at a given temperature, one uses Equation (23), in which P is the three-

component eigenvector matrix in Table 3 (by removing the SiO2 row) and Λ  is a diagonal matrix 

with diagonal elements being λ1, λ2 and λ3. 
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Table 3. Eigenvectors and eigenvalues for NCAS melt in Table 2 at 1473-1633 K  
Eigenvalues λ1 λ2 λ3 
  in m2/s  e–9.967–29267/T e–6.195–32624/T e–13.697–15541/T 
Eigenvectors v1 v2 v3 
SiO2  -0.33 -0.67 -0.10 
Al2O3  0.83 -0.32 -0.01 
CaO -0.56 0.95 -0.65 
Na2O 0.06 0.04 0.76 
Data are from Claireaux et al. (2019). Eigenvalues are arranged by increasing size. SiO2 is the dependent 
component. All-component eigenvectors are listed for convenience of examining diffusion exchange mechanisms. 
The SiO2 component of each eigenvector is calculated to be the negative sum of all the independent components. 
The all-component eigenvectors are not unitized. The unitized independent three-component eigenvectors (matrix P 
used in Eqns. 23-25) can be obtained by removing the SiO2 row. 
 

 Multicomponent diffusion in haplobasalt2. Guo and Zhang (2016) carried out this study to 

develop the best strategy for tackling multicomponent diffusion in natural basalt, one of the most 

common crustal rock types. An Fe-free haplobasalt (haplobasalt2 in Table 2) was chosen. Trial 

and Spera (1994) suggested that in an N-component system, at least N–1 “orthogonal” diffusion 

couples are required to extract the diffusion coefficient matrix. Hence, for this 7-component 

system, 6 orthogonal diffusion couples are a minimum. Guo and Zhang (2016) designed the 

experiments as follows. The haplobasalt2 composition in Table 2 is used as the base 

composition. Each diffusion couple is made of two halves, in which one half deviates from the 

base composition by +1.5 wt% in component i (often SiO2) and –1.5 wt% in another component 

j (i≠j), so that the total is 100 wt%, and the other half is opposite, containing 1.5 wt% less in 

component i, and 1.5 wt% more in component j compared to the base composition. Hence, the 

number of different glasses with specific compositions that must be prepared is two times the 

number of diffusion couple experiments. Guo and Zhang (2016) carried out 9 diffusion couple 

experiments. The first six of them have concentration gradients in SiO2 and another component, 

TiO2, Al2O3, MgO, CaO, Na2O, and K2O respectively. These six diffusion couples may be 
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regarded as the necessary 6 “orthogonal” couples. Three additional diffusion couple experiments 

were carried out, with opposing (or interdiffusing) components of TiO2-MgO, MgO-CaO, CaO-

Na2O. Furthermore, an anorthite dissolution experiment in the base melt composition was carried 

out. The diffusion matrix is a 6×6 matrix and has been obtained from the first six diffusion 

couple experiments (which are deemed a minimum) denoted as D1 matrix (Guo and Zhang 

2016), all nine diffusion couple experiments (D2 matrix; Guo and Zhang 2016), and combined 

fitting of nine diffusion couple experiments plus one anorthite dissolution experiments (D3 

matrix; Guo and Zhang 2018). With more experiments, the error on the D matrix is reduced 

slightly. The mean relative error (here the mean relative error on a matrix is defined to be 

∑σij/∑|Dij|, summed over all matrix elements) is 7.3% for D1, 6.3% for D2, and 5.7% for D3 (Guo 

and Zhang 2016, 2018, note that there are corrections; Guo and Zhang 2019a,b). The relative 

error decreases fairly slowly as the number of experiments increases. A linear extrapolation 

suggests that 23 experiments at a given temperature would be needed for this 7-component 

system to reach a mean relative error of ≤ 1%. Table 4 shows matrix D3 (based on 9 diffusion 

couple experiments and one dissolution experiment) as well as associated eigenvalues and 

eigenvectors. Fig. 7 shows fits to experimental concentration profiles in an experiment (Guo and 

Zhang 2018).  

  The diffusion eigenvectors listed in Table 4 are explained as follows. The eigenvector 

corresponding to the smallest eigenvalue is largely due to Si-Al exchange. That to the second 

smallest eigenvalue is largely due to Si-Ti exchange (more specifically, exchange of Ti and 

minor Ca+Mg with Si and minor amount of other components). That to the third smallest 

eigenvalue is due to divalent cations exchanging with all other components. That to the fourth 

smallest (also the third largest) eigenvalue is due to Ca exchanging with other components. That 
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to the second largest eigenvalue is due to Ca+K exchanging with all other components. And the 

eigenvector corresponding to the largest eigenvalue is due to the exchange of Na with all other 

components. Note that there is no simple Na-K exchange eigenvector. The exchange 

mechanisms and associated eigenvalues are also consistent with expectation.  

 
Table 4. Diffusion matrix D[Si] for haplobasalt2 melt at 1773 K 
D (µm2/s) TiO2 Al2O3 MgO CaO Na2O K2O 
TiO2  18.78±0.32 -0.81±0.23 -4.20±0.47 -11.10±1.16 -27.13±2.85 -15.54±3.27 
Al2O3  -4.72±0.96 8.96±0.43 -17.40±0.96 -36.01±1.95 -60.32±4.74 -80.65±5.33 
MgO -6.77±1.13 0.22±0.58 39.02±1.23 -39.62±2.38 -82.61±5.54 -45.38±7.01 
CaO -11.20±1.30 -4.56±0.62 -27.62±1.29 64.89±2.58 -31.03±5.49 30.37±7.40 
Na2O 27.40±1.25 11.66±0.64 48.66±1.28 59.90±1.83 341.56±3.92 98.05±6.13 
K2O 5.39±0.50 5.98±0.22 11.67±0.46 15.20±0.93 -0.37±1.88 114.29±2.43 
Eigenvalues λ1  λ2 λ3 λ4 λ5 λ6 
 in µm2/s 13.73±0.26 19.88±0.34 35.59±0.99 80.95±2.26 122.02±3.29 315.33±4.55 
Eigenvectors v1   v2   v3   v4   v5   v6   
SiO2 -0.88 -0.95 -0.45 0.07 -0.15 -0.34 
TiO2  -0.03±0.02 0.90±0.18 -0.15±0.03 -0.06±0.02 -0.05±0.02 -0.08±0.03 
Al2O3  0.99±0.13 -0.20±0.15 -0.35±0.05 -0.09±0.03 -0.37±0.04 -0.15±0.05 
MgO -0.07±0.02 0.18±0.05 0.69±0.06 -0.57±0.14 -0.27±0.10 -0.26±0.08 
CaO 0.07±0.01 0.30±0.03 0.58±0.04 0.80±0.20 0.63±0.15 -0.09±0.03 
Na2O -0.02±0.003 -0.12±0.01 -0.14±0.01 -0.01±0.01 -0.33±0.03 0.95±0.51 
K2O -0.06 -0.11 -0.18 -0.14 0.54 -0.03 
The composition of the haplobasalt2 melt (Guo and Zhang 2016) is listed in Table 2. Data in the table are mostly 
from Guo and Zhang (2018) but error estimation of eigenvalues and eigenvectors is from Guo and Zhang (2020). 
See footnote in Table 3 for all-component eigenvectors (i.e., the calculation of the SiO2 component in an 
eigenvector).  
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Figure 7.  Experimental diffusion profiles (3 traverses) 
during an anorthite dissolution experiment in a 
haplobasalt2 (Guo and Zhang 2016) fit by diffusion 
matrix given in Table 4 (Guo and Zhang 2018).  The 
solid blue curves are fit curves. The fits are excellent. 
From Guo and Zhang (2018). 
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 Multicomponent diffusion in a basalt. Following the study on haplobasalt2 discussed 

above, Guo and Zhang (2018) investigated an eight-component FeO-bearing basalt (basalt11a in 

Table 2) at 1623 K. The experimental strategy is similar to that in Guo and Zhang (2016). All 

diffusion couples have initial concentration gradients in only two components. That is, they were 

interdiffusion experiments. Seven diffusion couple experiments were carried out, with initial 

concentration gradients in SiO2 and one of the other seven components in turn.  Two other 

experiments are Al2O3-CaO and MgO-K2O interdiffusion couples. Diffusion matrix was 

obtained from nine diffusion couple experiments (D1), as well as nine diffusion couple 

experiments plus results of mineral dissolution experiments from literature (D2). The latter 

diffusion matrix, which is best constrained, is shown in Table 5, together with eigenvalues and 

eigenvectors. The diffusion profiles of all oxides in one of the experiments and the fits of the 

profiles are shown in Fig. 8. It can be seen that all major features are well fit, including the uphill 

diffusion profiles. Nonetheless, there are still small misfits, and future improvements are 

necessary.  
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Figure 8. Concentration profiles in a diffusion couple experiment on multicomponent diffusion in a basalt. Solid 
blue curves are fit curves using [D] matrix in Table 5. From Guo and Zhang (2018).  
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 The diffusion eigenvectors listed in Table 5 are explained as follows. The eigenvector 

corresponding to the smallest eigenvalue is largely due to Si-Al exchange. That to the second 

smallest eigenvalue is largely due to Si exchange with Al+Ti+Fe. That to the third smallest 

eigenvalue is due to divalent cations exchanging with all other components. That to the fourth 

smallest (also the fourth largest) eigenvalue is due to Fe+K exchanging with other components. 

That to the third largest eigenvalue is due to Fe+Ca exchanging with mostly Mg. That to the 

second largest eigenvalue is largely due to Ca exchanging with other components. And the 

eigenvector corresponding to the largest eigenvalue is due to exchange of Na with all other 

components. These eigenvectors are mostly similar to those in the seven-component haplobasalt2 

although the presence of three divalent cations introduces some complexity. Hence, studies of 

the haplobasalt2 and basalt systems are revealing similar diffusion mechanisms.  

  

Table 5. Diffusion matrix D[Si] for basalt melt at 1623 K 
D (µm2/s) TiO2 Al2O3 FeO MgO CaO Na2O K2O 
TiO2  7.81±0.32 -0.25±0.07 -1.53±0.23 -2.02±0.31 -2.76±0.46 -6.43±1.67 -3.17±0.72 
Al2O3  -0.81±0.70 5.69±0.14 -7.85±0.43 -6.77±0.55 -14.96±0.82 -29.73±2.90 -20.57±1.43 

FeO -21.66±1.30 -3.70±0.27 23.21±0.91 -31.24±1.08 -38.91±1.57 -72.85±5.73 -46.15±2.48 
MgO -5.52±0.73 1.11±0.16 -7.93±0.55 27.21±0.64 -21.46±0.90 -39.21±3.11 -7.33±1.54 

CaO 13.58±1.48 -4.62±0.21 -17.94±0.69 -8.93±0.80 37.88±1.16 -38.15±4.14 15.44±1.66 
Na2O 19.68±1.90 10.28±0.29 28.83±0.90 39.57±0.87 57.21±1.31 243.78±4.65 77.02±1.74 

K2O 5.54±0.33 1.42±0.07 3.24±0.19 4.47±0.28 8.47±0.44 21.37±1.51 39.83±0.73 

Eigenvalues λ1 λ2 λ3 λ4 λ5 λ6 λ7 
 in µm2/s  6.43±0.12 8.18±0.28 14.95±0.27 31.43±0.61 41.68±1.00 58.24±0.77 224.52±4.70 

Eigenvectors v1   v2   v3   v4   v5   v6   v7   
SiO2 -1.06 -1.44 -0.23 -0.45 0.04 0.05 -0.28 
TiO2  0.04±0.02 0.57±0.06 -0.16±0.03 -0.03±0.01 0.01±0.01 -0.01±.003 -0.02±0.01 
Al2O3  0.99±0.22 0.75±0.27 -0.64±0.14 -0.25±0.03 0.13±0.02 -0.08±0.01 -0.11±0.01 
FeO 0.07±0.01 0.30±0.04 0.55±0.10 0.83±0.09 -0.51±0.09 -0.42±0.05 -0.30±0.03 
MgO -0.04±0.01 0.02±0.03 0.37±0.06 -0.24±0.08 0.75±0.19 -0.30±0.04 -0.16±0.02 
CaO 0.10±0.02 -0.01±0.03 0.31±0.05 -0.09±0.04 -0.39±0.10 0.84±0.10 -0.14±0.03 
Na2O -0.06±0.01 -0.08±0.01 -0.15±0.03 -0.17±0.01 0.06±0.01 -0.15±0.01 0.92±0.12 
K2O -0.04 -0.11 -0.04 0.39 -0.08 0.06 0.09 
The composition of the basalt melt is listed in Table 2. Data are mostly from Guo and Zhang (2018) but error 
estimation of eigenvalues and eigenvectors is from Guo and Zhang (2020). See footnote in Table 3 for all-
component eigenvectors. 
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  Guo and Zhang (2020) continued the study of Guo and Zhang (2018) and examined the 

temperature dependence of diffusion in basalt11a (Table 2). They reported 18 new diffusion 

couple experiments, nine each at 1533 K and 1773 K. Diffusion matrices and at the two 

temperatures were determined from the experimental diffusion profiles. These results were 

combined with those at 1623 K in Guo and Zhang (2018) to examine the temperature 

dependence of the diffusion matrix, diffusion eigenvectors and eigenvalues. The hypothesis of 

constant eigenvectors (Varshneya and Cooper 1972; Chakraborty et al. 1995) is roughly but not 

rigorously verified: the eigenvectors at three different temperatures show similarity but are not 

identical within error. In addition, they found that some eigenvalues are nearly identical, and 

defined the phenomenon as near degeneracy of eigenvalues. In mathematical (strict) degeneracy 

of eigenvalues, eigenvectors are not uniquely defined because any linear combination of two 

eigenvectors is another eigenvector. In the case of near degeneracy of eigenvalues, eigenvectors 

are still uniquely defined but more constraints (e.g., more experimental data or higher quality 

data) are needed to resolve the eigenvectors. This difficulty to resolve the eigenvectors might 

explain that the extracted eigenvectors at three different temperatures are not identical within 

error. The occurrence of near degeneracy means that an increase of only one additional 

component from haplobasalt2 and basalt11a significantly increases the level of difficulty of 

obtaining accurate eigenvectors. Guo and Zhang (2020) nonetheless made effort to estimate 

average eigenvectors based on the data at the three temperatures, and redetermined eigenvalues 

at each temperature using the average eigenvectors. The eigenvalues are shown in Fig. 9 in an 

Arrhenius plot. The average eigenvectors and temperature-dependent eigenvalues are listed 

Table 6. Diffusion matrix in basalt at a given temperature between 1533 and 1773 K can be 
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estimated using Equation (23), where P is the temperature-invariant eigenvector matrix (Table 6) 

and each λi is calculated at the given temperature using expressions in Table 6.  Using the 

formulation, a diffusion matrix was calculated at 1673 K and was used to predict diffusion 

profiles during mineral dissolution with preliminary success except for the K2O diffusion profiles 

(Guo and Zhang 2020). Magma mixing in the Bushveld Complex at 1473 K is also calculated, 

revealing possible mixing-generated sulfide ore formation (Guo and Zhang 2020). 

   

 

 

Figure 9. Arrhenius plot of eigenvalues for diffusion in 

basalt11a. Data are from Guo and Zhang (2020). The 

lines are least-squares linear fits. The fit equations are 

provided in Table 6. Eigenvalues λ1 and λ2 are nearly 

degenerate (difference is ≤ 0.4 natural logarithm units). 

λ4, λ5 and λ6 are triply nearly degenerate. From Guo and 

Zhang (2020). 

 

 
Table 6. Temperature dependence of eigenvalues [λ(T)] and the invariant eigenvector matrix P 
for basalt11a in the temperature range from 1533 to 1773 K 

Eigenvalues (m2/s) 
 λ1 λ2 λ3 λ4 λ5 λ6 λ7  
 e-13.88-19636/T e-12.89-20912/T e-12.73-19987/T e-15.26-13880T e-12.57-18569/T e-12.55-18279/T e-15.45-10808/T 

Invariant eigenvectors 
 v1 v2 v3 v4 v5 v6 v7 

TiO2 –0.76 –0.20 –0.18 –0.02 –0.02 –0.02 –0.02 
Al2O3 –0.18 0.97 –0.47 –0.15 –0.01 –0.07 –0.10 
FeO –0.51 0.00 0.66 0.86 0.06 –0.41 –0.36 
MgO –0.17 –0.03 0.41 –0.14 –0.71 –0.32 –0.15 
CaO –0.22 0.12 0.33 –0.33 0.70 0.79 –0.08 
Na2O 0.17 –0.04 –0.18 –0.12 –0.04 –0.19 0.91 
K2O 0.13 –0.02 –0.09 0.32 –0.10 0.25 0.06 
Note: T is in K, and λi values are in m2/s. Eigenvectors are for independent components with SiO2 as the dependent 
component.  
 

-27

-26

-25

-24

-23

-22

-21

0.56 0.58 0.6 0.62 0.64 0.66 0.68

λ1
λ2
λ3
λ4
λ5
λ6
λ7

ln
(λ

) (
λ 

in
 m

2 /s
)

1000/T (T in K)



	 45	

 In summary, major progresses have been made in recent years on multicomponent diffusion 

in silicate melts, including natural basalt. Even in an extensively studied basalt, there is still 

uncertainty in the eigenvectors and eigenvalues, likely due to additional complexity introduced 

by near degeneracy of eigenvalues. There are still misfits in reproducing experimental diffusion 

profiles, especially in mineral dissolution experiments. Future work will need to rigorously test 

whether eigenvectors in natural silicate melts depend on temperature as well as melt 

composition. If eigenvectors do not depend on temperature or composition, then we would be 

well on our way to use multicomponent diffusion matrix to treat major oxide diffusion in natural 

silicate melts in various magmatic processes. 

 

TRACER AND EFFECTIVE BINARY DIFFUSION DATA 

 In volume 72 (titled “Diffusion in Minerals and Melts”) of Reviews in Mineralogy and 

Geochemistry published in 2010, five chapters (Behrens 2010; Lesher 2010; Liang 2010; Zhang 

and Ni 2010; Zhang et al. 2010) thoroughly reviewed diffusion coefficients in silicate melts, 

covering noble gases (He, Ne, Ar, Kr, Xe, and Rn, Behrens 2010), H, C, and O (Zhang et al. 

2010), plus diffusion data on 59 other elements. For most elements, some diffusion data were 

available. However, no diffusion data were available for N, As, Bi, Se, I, V, Cu, Mo, In, Tm, Ru, 

Rh, Pd, Ag, Os, Ir, Pt, Au, and Hg (plus most synthetic elements) in natural or nearly natural 

silicate melts as of 2010. The order of elements/oxides ranked by tracer diffusivity and POCGD 

from high to low is roughly as follows in rhyolite melt (Zhang et al. 2010; Behrens et al. 2010; 

Ni et al. 2017):  

   H2 > He > Li ≈ Na > Cu > K > Ne > Ar ≈ CO2 ≈ Cl ≈ Rb ≈ Sb ≈ F > Ba ≈ Cs ≈ Sr > Ca   

  > Mg > Be ≈ B ≈ Ta ≈ Nb ≈ Y ≈ REE > Zr ≈ U ≈ Hf ≈ Ti ≈ Ge ≈ Th ≈ Si ≈ P.  (27) 
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Rare earth elements have similar diffusivity, but there is consistently slight decrease of 

diffusivity from DLa to DLu. H2O diffusivity is not included in the sequence because it depends 

strongly on total H2O concentration (see discussion below). In other melts, the sequence is 

similar, although there may be small variations. For example, in basalt melt, the updated 

sequence is roughly (Behrens 2010; Zhang et al. 2010, and new data):  

  He > Ne > Li > Na ≈ Cu > F≈ Cd > Cl ≈ Mn ≈ Co ≈ Ca ≈ Sr > Rb ≈ Br ≈ CO2 ≈ Ba > V ≈   

  Tl ≈ Cs ≈ Pb ≈ Y ≈ REE > Sc > Te ≈ Ti ≈ O ≈ U ≈ Nb > Th ≈ Zr ≈ Ta > Hf  > P ≥ Si, (28)  

where the position of Cu, Rb, V, Sc, U, Nb, Th, Zr, Ta, Hf, P and Si are based on new data 

(Watson et al. 2015; Holycross and Watson 2016, 2018) to be reviewed below. Many empirical 

fit equations were given in Behrens (2010), Zhang and Ni (2010), and Zhang et al. (2010) for the 

purpose of estimating elemental diffusivities.  

  Since the reviews in 2010, new diffusion data and models have been reported for H2O 

(Persikov et al. 2010, 2014; Fanara et al. 2013; Ni et al. 2013; Zhang et al. 2017; Ni and Zhang 

2018; Kuroda and Tachibana 2019; Newcombe et al. 2019), Li (Holycross et al. 2018), F and Cl 

(Bohm and Schmidt 2013), Al (Yu et al. 2016), Si (Gonzalez-Garcia et al. 2017; Yu et al. 2019), 

P (Watson et al. 2015), S (Frischat and Szurman 2011; Lierenfeld et al. 2018), Cl (Yoshimura 

2018), Cu (Ni and Zhang 2016; Ni et al. 2017; Ni et al. 2018), Zr (Zhang and Xu 2016), Sn 

(Yang et al. 2016), Sr and Ba (Fanara et al. 2017), and Mo and W (Zhang et al. 2018). Hence, Cu 

and Mo no longer belong to the list of elements with no diffusion data. Still, diffusion of 16 

nonradioactive elements (N, As, Bi, Se, I, V, In, Tm, Ru, Rh, Pd, Ag, Os, Ir, Pt, Au, and Hg) has 

not been investigated yet, most of which are chalcophile and siderophile elements. Absence of 

Tm diffusion data is not expected to be much missed because REE diffusivities are highly 
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consistent and Tm diffusivity can be predicted from diffusivities of other REE’s (see Eqns. 45a-

45c later). 

 In addition, some papers reported diffusion data on a large number of elements. Holycross 

and Watson (2016) determined trace element diffusivity (close to TED1) of 25 elements (Sc, V, 

Rb, Sr, Y, Zr, Nb, Ba, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Yb, Lu, Hf, Ta, Th and U) in 

nominally dry basalt melt. Holycross and Watson (2018) measured trace element diffusivity 

(close to TED1) of 21 elements (Sc, V, Y, Zr, Nb, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, 

Yb, Lu, Hf, Th and U) in hydrous rhyolite melt.  Gonzalez-Garcia et al. (2017, 2018) obtained 

effective binary diffusivities (OEBD) of 19 major and trace elements (Si, Ti, Fe, Mg, Ca, K, Rb, 

Cs, Sr, Ba, Co, Sn, Eu, Ta, V, Cr, Hf, Th, U; other elements show uphill diffusion) in shoshonite-

rhyolite diffusion couples. Posner et al. (2018) evaluated self diffusivity of O, Si, Mg, and Ca, 

and interdiffusivity of Ni and Co in a peridotite melt at very high pressures of 4- 24 GPa and 

very high temperatures (≥2150 K). These heroic efforts greatly expanded the diffusion database.  

  We review below experimental diffusion data since 2010. The following review will not be 

nearly as systematic as the several chapters in 2010 (Behrens 2010; Lesher 2010; Liang 2010; 

Zhang and Ni 2010; Zhang et al. 2010), but will focus on new advances on diffusion in natural or 

nearly natural melts in recent years. In addition, more emphasis will be on TED1 and POCGD 

because they only depend on the bulk composition and not on concentration gradients. As it will 

be seen, the Holy Grail of determining the composition dependence of diffusivity is still elusive, 

and empirical equations accounting for compositional dependence developed in earlier papers 

often cannot predict later published data in melts with different compositions.  

  

H2O diffusion  
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  H2O diffusion is the best example of multi-species diffusion. Due to the importance of H2O 

diffusion in volcanic eruption dynamics, exsolution of hydrothermal fluids, bubble growth as 

well as the importance of H2O in controlling magma evolution, and due to the complexity of the 

H2O diffusion process, H2O diffusion has been investigated extensively and is probably the best 

studied diffusion problem in geology literature (e.g., Shaw 1974; Delaney and Karsten 1981; 

Karsten et al. 1982; Stanton et al. 1985; Wasserburg 1988; Zhang and Stolper 1991; Zhang et al. 

1991a, 1991b; Jambon et al. 1992; Nowak and Behrens 1997; Zhang and Behrens 2000; Freda et 

al. 2003; Behrens et al. 2004, 2007; Liu et al. 2004; Okumura and Nakashima 2004, 2006; Ni 

and Zhang 2008; Ni et al. 2009a,b; Wang et al. 2009; Persikov et al. 2010, 2014; Zhang and Ni 

2010; Fanara et al. 2013; Ni et al. 2013; Zhang et al. 2017, 2019; Ni and Zhang 2018; Kuroda 

and Tachibana 2019; Newcombe et al. 2019). Because there is major advancement since 2010, 

below we briefly summarize the earlier developments and then focus on recent progress since the 

review of Zhang and Ni (2010). The compositions of silicate melts that have been investigated 

for H2O diffusion are listed in Table 7. 

 Dissolved H2O component in silicate melts is present as at least two species, neutral and free 

H2O molecules (referred to as H2Om), and charged and bonded hydroxyl groups (referred to as 

OH) (Stolper 1982a,b). The two species interconvert in the melt structure: 

  H2Om (melt) + O (melt) ! 2OH (melt), (29)  

with an equilibrium constant  

  K = [OH]2/([ H2Om][O]),  (30) 

where brackets mean mole fractions, increasing with temperature (Zhang et al. 1995, 1997). Due 

to the above speciation reaction, OH is the dominant species at low total H2O content (referred to 

as H2Ot hereafter; H2O refers to the component) such as ≤ 1 wt%, and H2Om is the dominant 
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species at high H2Ot such as ≥ 5 wt%. According to the above reaction, the mole fraction of H2Ot 

is expressed as:  

  [H2Ot] = [H2Om] + 0.5[OH].  (31)  

 

Table 7. Chemical composition in H2O diffusion studies in geology literature 
 SiO2  TiO2  Al2O3 FeO MgO CaO Na2O K2O XSi W Ref. 
Melt wt% wt% wt% wt% wt% wt% wt% wt%  g/mol  
rhyolite14a 76.6 0.07 13.2 0.64 0.05 0.57 4.15 4.83 0.711 32.52 1-12 
CBS-NSL 75.9 0.20 10.2 4.33 0.0 0.09 5.19 4.61 0.704 33.23 13,14 
GMR-MAC 72.7 0.16 15.2 1.02 0.16 0.76 4.21 4.01 0.686 32.60 11,13 
dacite5 67.5 0.77 15.7 4.28 1.43 4.40 3.58 2.15 0.632 33.49 15 
HA2 66.3 0 17.6 0 1.38 2.50 10.45 0 0.592 33.05 12 
Ab75Di25 65.8 0 15.1 0 3.17 7.0 8.93 0 0.582 33.53 16 
dacite3a 65.4 0.73 15.9 4.44 2.02 4.96 3.88 2.59 0.608 33.84 17-19 
andesite7 62.5 0.7 16.7 5.55 2.97 6.48 3.2 1.69 0.583 34.13 12 
HA1a 62.3 0 19.8 0.02 2.30 10.2 4.12 1.00 0.570 33.55 20,21 
Ab50Di50 62.2 0 10.5 0 6.79 14.2 6.34 0 0.555 34.45 16 
trachyte0b 60.5 0.48 17.8 7.14 0.21 1.72 5.22 7.28 0.553 35.25 22 
trachyte0a 59.9 0.39 18.0 3.86 0.89 2.92 4.05 8.35 0.555 34.94 23 
phonolite1a 58.9 0.76 19.9 3.61 0.69 3.90 5.96 6.87 0.529 35.04 24 
andesite1a 57.2 0.84 17.5 7.58 4.27 7.59 3.31 1.60 0.530 34.98 17 
haplobasalt3 52.0 1.06 16.3 0.03 11.2 15.3 2.79 0.89 0.465 35.04 24 
basalt11 50.6 1.88 13.9 12.5 6.56 11.4 2.64 0.17 0.475 36.59 25 
An36Di64 49.6 0.02 17.5 0.03 9.89 23.8 0.07 0.01 0.448 35.55 26 
green glass 48.3 0.39 8.17 15.9 17.4 8.98 0 0 0.450 37.16 27 
basalt0 46.1 1.50 16.1 10.8 7.60 13.3 3.56 0.76 0.423 37.15 15 
LB2a 43.6 3.46 8.96 21.8 13.1 8.74 0.01 0.00 0.419 38.59 26 
yellow glass 43.5 3.11 7.86 21.9 13.2 8.24 0.44 0 0.422 38.69 27 
Compositions are listed in decreasing SiO2 order. Similar melt compositions (defined to be ≤ 1.5 wt% difference in 
every oxide concentrations) are averaged, e.g., rhyolite14a includes many high-silica rhyolites and 
AOQ(Ab38Or34Qz28). HA: haploandesite. LB, green glass, and yellow glass: lunar basalts.  XSi is cation mole 
fraction of Si on dry basis. W is mass of the melt per mole of oxygen on dry basis (Stolper 1982a,b; Zhang 1999).  
See footnotes in Table 2 for more explanation of melt names. 
References: 1. Shaw 1974; 2. Delaney and Karsten 1981; 3. Karsten et al. 1982; 4. Stanton et al. 1985;  5. Zhang et 
al. 1991a;  6. Jambon et al. 1992;  7. Nowak and Behrens 1997;  8. Zhang and Behrens 2000;  9. Okumura and 
Nakashima 2004;  10. Behrens et al. 2007; 11. Ni and Zhang 2008;  12. Persikov et al. 2014;  13. Behrens and Zhang 
2009;  14. Wang et al. 2009;  15. Okumura and Nakashima 2006;  16. Persikov et al. 2010;  17. Behrens et al. 2004;  
18. Liu et al. 2004;  19. Ni et al. 2009a;  20. Ni et al. 2009b;  21. Ni et al. 2013;  22. Fanara et al. 2013;  23. Freda et 
al. 2003;  24. Zhang et al. 2017;  25. Zhang and Stolper 1991;  26. Newcombe et al. 2019; 27. Zhang et al. 2019. 
		

  On the other hand, the mass fraction of H2Ot is expressed as:  

  wH2Ot = wH2Om + wOH,  (32) 
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where wOH does not mean the actual OH mass fraction, but by convention it means the mass 

fraction of H2O that is present in the melt or glass as OH (Stolper 1982a,b;  Zhang 1999). The 

mole fractions are defined on a single oxygen basis as follows:  

   [H2Ot] = (wH2Ot/18.015)/{wH2Ot/18.015 + (1–wH2Ot)/W},  (33a) 

   [H2Om] = [H2Ot]wH2Om/wH2Ot,  (33b) 

  [OH] = 2{[H2Ot] – [H2Om]},  (33c) 

  [O] = 1 – [H2Om] – [OH],  (33d) 

where 18.015 is the molecular mass of H2O in g/mol, and W is the mass of the dry melt per mole 

of oxygen in g/mol. Values of W for investigated melts are listed in Table 7.  

 Experimental studies of H2O diffusion before 1990 (Shaw 1974; Delaney and Karsten 1981; 

Karsten et al. 1982; Stanton et al. 1985) found that H2O diffusivity depends strongly on H2O 

concentration in addition to the temperature dependence. Zhang et al. (1991a) investigated H2O 

diffusion in rhyolite14a containing ≤ 1.7 wt% H2Ot. Based on measured H2Om and OH 

concentration profiles by FTIR, they considered the contribution of both H2Om and OH and 

treated one-dimensional diffusion of H2Ot using the following multi-species diffusion equation:  

  
 

∂[H2Ot ]
∂t

= ∂
∂x

DH2Om

∂[H2Om ]
∂x

+ DOH
∂[OH]/2

∂x
⎛
⎝⎜

⎞
⎠⎟ , (34) 

where DH2Om and DOH are the diffusivity (POCGD) of H2Om and OH. Hence, DH2Ot is related to 

species diffusivities as follows: 

   
 
DH2Ot

= DH2Om

d[H2Om ]
d[H2Ot ]

+ DOH (1−
d[H2Om ]
d[H2Ot ]

) . (35)  

The differential in the above equation can be found as (Wang et al. 2009):  
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d[H2Om ]
d[H2Ot ]

= 1− (0.5 − X)

X(1− X)( 4
K

−1)+ 0.25
,  (36)  

where X = [H2Ot]. Zhang et al. (1991a) found that in rhyolite melt and glass, DH2Om was roughly 

constant in their samples (0.1 to 1.7 wt% H2Ot), and DOH is too small (compared to DH2Om) to be 

resolved. That is, OH diffusion is negligible and the diffusion of the H2O component is 

accomplished by H2Om diffusion and interconversion of OH and H2Om. Even when H2Ot is as 

low as 0.18 wt%, meaning that more than 90% of H2Ot is present as OH, contribution of OH 

diffusion to H2Ot diffusion is still negligible and unresolvable. The speciation-diffusion model 

leads to a proportionality between DH2Ot and H2Ot content at low H2Ot (e.g., <2 wt%). 

  Nowak and Behrens (1997) found that DH2Ot is no longer proportional to H2Ot when H2Ot is 

> 3 wt%. Zhang and Behrens (2000) extended the multi-species H2O diffusion model in rhyolite 

to high H2Ot, and found that H2Om diffusivity (DH2Om) is no longer a constant, but depends on 

H2Ot concentration exponentially:  

  DH2Om = DX=0eaX,  (37)  

where X =[H2Ot], a is a constant depending on T, and DX=0 is DH2Om at zero H2Ot. DOH was still 

not resolved from the experimental data. This formulation has been adopted by subsequent 

studies until 2013 (Okumura and Nakashima 2004, 2006; Behrens et al. 2004, 2007; Liu et al. 

2004; Ni and Zhang 2008; Wang et al. 2009; Ni et al. 2009a,b; Persikov et al. 2010a,b; Fanara et 

al. 2013).  

  Behrens et al. (2004) hinted at OH contribution to H2O diffusion in diffusion couple 

experiments in andesite1a melt at 1608-1848 K. Ni et al. (2013) were the first to resolve the 

noticeable role of OH diffusion contributing to H2Ot diffusion in a haploandesite melt (HA1a in 

Table 7) when H2Ot is low (< 1 wt%) at 1619-1842 K and 1 GPa. They assumed constant OH 
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diffusivity and found DOH/DX=0 (note that DX=0 is DH2Om at zero H2Ot) ranging from 0.09 to 0.24. 

Zhang et al. (2017) (note that this Zhang is L. Zhang) investigated H2O diffusion in haplobasalt3 

melt containing 0.03-2.02 wt% H2Ot and quantified both OH and H2Om diffusivities, obtaining 

DOH/DX=0 ranging from 0.10 to 0.17. The success in resolving OH diffusivity in haploandesite 

(Ni et al. 2013) and haplobasalt (Zhang et al. 2017) confirmed the importance of OH diffusion in 

depolymerized melt at magmatic temperatures and low H2Ot. 

  Ni and Zhang (2018) constructed a general model for H2O diffusivity in calc-alkaline silicate 

melts and glasses using literature data. The model did not include trachyte (Freda et al. 2003; 

Fanara et al. 2013), phonolite (Fanara et al. 2013), or peralkaline rhyolite (Behrens et al. 2009; 

Wang et al. 2009). The model parameterized K, a and DX=0, and DOH as a function of the cation 

mole fraction of Si in dry melt (XSi; values are listed in Table 7), T and P as follows:  

  
 
lnK = XSi(2.6 −

4339
T

) ,  (38a)  

  
 
a = −94.07 + 74.112XSi +

198508 −166674XSi

T
, (38b)  

  
 
lnDX=0 = 8.02 − 31XSi + 2.348XSiP +

121824XSi −118323 XSi − (10016XSi − 3648)P
T

, (38c)  

  
 
ln DOH

DX=0
= −56.09 −115.93XSi + XSi (160.54 −

3970
T

) ,  (38d)  

where P is in GPa, T is in K, and DX=0 and DOH are in m2/s. Once K, a, DX=0 and DOH are 

calculated from Equations (38a)-(38d), DH2Om can be calculated from Equation (37), and then 

DH2Ot can be calculated from Equation (35) with the differential from Equation (36). A 

supplementary excel file is available in Ni and Zhang (2018) for the calculation. Calculations 

indicate that OH contribution to H2O diffusion increases with increasing temperature and 
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decreasing SiO2 concentration. Ni and Zhang (2018) concluded that in rhyolite and dacite glass 

and melt, contribution of OH to H2O diffusion is rarely noticeable, whereas in andesite and 

basalt melt, contribution of OH to H2O diffusion becomes important at T ≥ 1200 K.  

 The synthesis model of H2O speciation and diffusion by Ni and Zhang (2018) represents a 

major step forward. Nonetheless, the model is unlikely to be the last word on H2O diffusion. In 

their model, data to constrain OH diffusivity are limited. In addition, the compositional coverage 

by the model does not include peralkaline rhyolite, or phonolite, or trachyte. Newcombe et al. 

(2019) investigated H2O diffusion in An36Di64 melt and lunar mare basalt, and found their data 

on An36Di64 are in reasonable agreement with the model, but those on lunar mare basalt (lower 

SiO2 and Al2O3 and much higher FeO) are off the model by a factor of 6. Zhang et al. (2019) 

determined H2Ot diffusivity in lunar green glass and yellow glass, and their data are off the 

model of Ni and Zhang (2018) by a factor of 3 to 8. Future improvement is expected to require 

more data at low H2Ot to better resolve OH diffusivity and how it depends on H2Ot, as well as 

more compositional coverage (e.g., the role of Al2O3, FeO, and alkalis). 

 
Diffusion of alkalis 

  Zhang et al. (2010) reviewed alkali diffusion data. Li tracer diffusivity does not vary much 

with composition in dry Ab39Or61, albite, rhyolite, dacite, andesite and basalt melts (Zhang et 

al. 2010), and Rb tracer diffusivity does not vary much with composition in dry jadeite, albite, 

rhyolite, haploandesite, trachyte and phonolite. The primary dependence is on temperature. Rb 

diffusivity increases with H2O content. Na, K, and Cs tracer diffusivity depends more on melt 

composition.  

  Ni (2012) reevaluated existing data on alkali tracer diffusion and developed specific models 

for each alkali element. The new empirical equation for calculation of DLi is (Ni 2012):  
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lnDLi = −13.09 − 9722.7 +1171.4 f1 + 4943 f2

T
,  (39)  

where  

  
 
f1 =

K#
K# + 0.1(1− K#)

,  (39a)  

and  

  
 
f2 =

Ca#
Ca# + 3(1−Ca#)

,  (39b)  

where K# = K/(K+Na), Ca# = Ca/(Ca+K+Na), with Na, K and Ca being cation mole fractions. 

For Na, K, Rb, and Cs, Ni (2012) developed the following empirical equations:  

  
 
lnDNa = −13.77 − 8815.8 +1308.2 f1 +15164 f2

T
, (40)  

  
 
lnDK = −14.81− 11125 +1277.6 f3

T
,  (41)  

  
 
lnDRb = −15.73− 11376 + 4022.9 f3

T
, (42)  

  
 
lnDCs = −11.87 − 5352.8 f1 + 233.52F − 30124AI

T
, (43)  

where  

 
 
f3 =

Na#
Na# + 0.1(1− Na#)

= 1− K#
1− 0.9K#

,   

F = SiO2+TiO2+Al2O3+P2O5 in wt%, and AI is peralkalinity defined to be the greater of  (Na+K–

Al)/O (where Na, K, Al and O are atomic fractions) and zero.  

  Holycross et al. (2018) studied Li trace element diffusivity (TED1) in wet rhyolite (6.0 wt% 

H2O). The data are not used to evaluate the model of Ni (2012) because the latter does not 

contain data from hydrous melts. Gonzalez-Garcia et al. (2018) obtained OEBD of Rb in 
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shoshonite-rhyolite diffusion couple using the Boltzmann-Matano method. These OEBD values 

are not expected to be similar to tracer diffusivities, and hence are not used to test the model of 

Ni (2012). Holycross and Watson (2016) reported new Rb trace element diffusion (close to 

TED1) data in nominally dry basalt melt, which can be used to test Equation (42). The predicted 

Rb diffusivity using Equation (42) is lower than the experimental data by 0.87 to 1.52 lnD units, 

which is not too bad. On the other hand, due to the weak dependence of Rb diffusivity on melt 

composition, if the Rb Arrhenius equation for rhyolite (Eqn. 13 in Zhang et al. 2010) is used to 

predict Rb diffusivity, the predicted values are lower than experimental data by only 0.51 to 1.16 

lnD units, better than the predicted values using Equation (42). Hence, except for its ability to 

reconcile Rb diffusivity in orthoclase melt, the Rb diffusivity model by Ni (2012) does not 

improve prediction compared to simply assuming no variation from rhyolite to basalt.  

 
Cu diffusion 

  The absence of Cu diffusion data in natural silicate melts has been remedied by three recent 

papers (33 data points). Ni and Zhang (2016) investigated Cu diffusion in basalt1a (composition 

listed in Table 8) melt using diffusion couples. Ni et al. (2017, 2018) reported Cu diffusion data 

in various rhyolite melts. The diffusion data in the three papers may all be viewed as POCGD, 

and they are highly consistent (note that Ni et al. 2017 and Ni et al. 2018 are different authors 

from different laboratories). Fig. 10 shows all available Cu diffusion data in natural melts (and 

comparison with Li, Na and K diffusivity shown as numbered lines). Cu diffusivity is very high 

in rhyolite to basalt melts, higher than H2Ot diffusivity at the same H2O concentration. In dry 

basalt, Cu diffusivity is similar to Na diffusivity (overlapping in Fig. 10). In dry rhyolite, Cu 

diffusivity lies between Na and K and closer to K (Ni et al. 2017). These observations can be 

explained by Cu diffusion as univalent cation Cu+. For the composition (including H2O) effect, 
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Ni et al. (2017) found that a single compositional parameter Si+Al–H seems to adequately 

capture the dependence of DCu on composition, where Si, Al and H are cation mole fractions on 

wet basis. The pressure effect was not well resolved by Ni et al. (2017). Their equation without 

including the pressure effect predicts the later published data in Ni et al. (2018) well (within 0.22 

lnD units) except for the data at low pressures of 0.15 GPa. Following Ni et al. (2017) but 

including the pressure effect, the following empirical equation is obtained for Cu diffusivity in 

dry basalt and dry and wet (up to 6 wt% H2O) rhyolite at 973-1848 K and ≤1.5 GPa:  

 
 
lnDCu = −16.68 + 2.872(Si+Al–H)− 5103+ 8259(Si+Al–H)+ 411.7P

T
,  (44) 

where P is in GPa and D is in m2/s. The above equation predicts all Cu diffusion data in Ni and 

Zhang (2016) and Ni et al. (2017, 2018) to within 0.23 lnD units (1σ error 0.12 lnD units). This 

accuracy is among the highest of all empirical predictive equations for diffusivity data across 

different compositions. We recommend its use to predict Cu+ diffusion in other natural silicate 

melts if no experimental data are available. 

	
Table 8. Chemical compositions (on dry basis) for trace element diffusion studies 
 SiO2 TiO2 Al2O3 FeO MnO MgO CaO Na2O K2O Ref. 
rhyolite14b 76.8 0.15 13.3 0.78 0.08 0.08 0.62 4.04 3.91 1 
rhyolite8a 73.2 0.11 13.8 2.14 0.08 0.18 0.92 4.22 5.31 2 
NCO 72.9 0.22 14.2 1.93 0.06 0.18 0.86 4.73 4.24 3 
rhyolite3a 70.4 0.29 16.3 1.21 0.00 0.59 1.69 3.93 5.15 4 
dacite3a 65.0 0.54 16.5 3.88 0.10 2.23 4.97 4.49 1.52 5 
phonolite2 58.5 0.68 19.9 3.53 0.21 0.36 0.74 9.90 5.67 6 
shoshonite 53.3 0.69 16.4 8.14 0.21 4.64 8.04 5.46 3.05 2 
basalt8a 50.0 1.62 16.0 9.40 0.25 8.50 10.79 3.00 0.20 7,8 
basalt11 49.9 1.83 13.5 12.9 0.22 6.81 10.8 2.65 0.17 3 
basalt6 48.5 2.7 13.8 12.7 0.00 7.55 10.9 2.50 0.41 9 
basalt1a 46.9 1.65 17.66 10.6 0.00 5.86 10.6 4.43 2.02 10 
peridotite 46.1  4.0 8.8  37.5 3.6   11 
 References:  1. Holycross and Watson (2018);  2. Gonzalez-Garcia et al. (2017, 2018);  3. Yu et al. (2019);  4. 
Zhang et al. (2018);  5. Lierenfeld et al. (2018);  6. Bohm and Schmidt (2013);  7. Watson et al. (2015); 8. Holycross 
and Watson (2016); 9. Lesher et al. (1996); 10. Ni and Zhang (2016); 11. Posner et al. (2018). The peridotite 
composition includes 1 wt% NiO on one side and 1 wt% CoO on the other side. See footnotes in Table 2 for melt 
names.  
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  A note about the calculation of cation mole fractions of Si, Al and H. Often the oxide wt% is 

given on the dry basis for easy comparison with other melts and then H2O wt% is separately 

given. In such cases, calculation of cation mole fractions on dry basis is straightforward. 

However, for the calculation of cation mole fractions on wet basis (i.e., cation mole fraction of H 

is also calculated), the non-H2O oxide wt% must first be calculated by multiplying (1-wH2O), 

where wH2O is the mass fraction of H2O. Then the reported H2O wt% and the recalculated wt% of 

other oxides are used to calculate cation mole fraction. If the oxide wt% is given on wet basis 

(actual concentrations), then no such conversion of multiplying by (1-wH2O) is needed. 

 

 

Figure 10. Cu diffusivity in rhyolite to basalt 
compared with diffusivity of Li, Na, and K. 
Red color for dry basalt. Black color for dry 
rhyolite. Blue color for wet rhyolite. Points 
with solid lines are for Cu diffusion data (Ni 
and Zhang 2016; Ni et al. 2017, 2018). The 
two lines for Cu diffusivity in dry rhyolite 
overlap and cannot be seen individually. 
Numbered lines are for diffusion data of Li, 
Na and K. 1 (red short-dash line): Li 
diffusivity in dry basalt (Lowry et al. 1981);  2 
(black long-dash line): Li in dry rhyolite 
(Jambon and Semet 1978);  3 (red long-dash 
line): Na in dry basalt (Lowry et al. 1982). 
(Line 3 cannot be seen because it overlaps 
with Cu diffusion line in basalt);  4 (black 
short-dash line): Na in dry rhyolite (Jambon 
1982);  5 (black dot-dash line): K in dry 
rhyolite (Jambon 1982). 
 

  
 In addition to the above studies, Von der Gonna and Russel (2000), and Kaufmann and 

Russel (2008, 2010, 2011) obtained Cu diffusivity in SiO2-Na2O, SiO2-CaO-Na2O, SiO2-Al2O3-

Na2O, SiO2-Al2O3-CaO-Na2O melts using square wave voltametry. The Cu diffusivity data 

determined using the voltametry method are for a mixture of Cu+ and Cu2+ at subequal 

proportions, and Kaufmann and Russel (2011) derived them to roughly equal to 2DCu2+, meaning 

that these diffusivities are expected to be much smaller than diffusivity of Cu+ determined by Ni 
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and Zhang (2016) and Ni et al. (2017, 2018). Furthermore, the compositions are very different 

from natural silicate melts. Equation (44) cannot be applied to predict these diffusivities. 

  

Diffusion of Sc, Y, and REE 

  Holycross and Watson (2016, 2018) produced high quality trace element diffusion data in 

both dry basalt8a and wet rhyolite14b containing ~4.1 wt% H2O and ~6.2 wt% H2O using 

diffusion couple experiments. The compositions of basalt8a and rhyolite14b are listed in Table 8. 

The chemical concentration gradients are only on some 20 trace elements, not on major 

elements. In principle, the presence of concentration gradients of other trace elements could 

affect the diffusivity of a given trace element. However, such effect is unlikely to be significant. 

Hence, the diffusivities are close to TED1. Holycross and Watson (2016, 2018) reported a large 

number of diffusion data and they are highly self consistent. Diffusion coefficients decrease 

slightly from La to Lu, by about 20% in dry basalt8a melt (Fig. 11), and slightly more in wet 

rhyolite14b melt.  

 

 
Figure 11. Diffusion coefficients of rare 
earth elements in basalt8a at three 
temperatures (Holycross and Watson, 
2016) as a function of trivalent ionic 
radius in octahedral sites. Y diffusivity is 
also shown (almost overlapping with Ho). 
Error bars at 1σ level are shown at 
1773K, and they are similar at other 
temperatures. Another measure of error is 
by comparison of the five experiments at 
1573 K with different durations. It 
appears that Ce has the highest diffusivity 
among the REE, but the difference 
between Ce and La diffusivity is tiny 
(~0.04 lnD units) compared to the error 
(~0.3 lnD units). From La to Lu, lnD 
decreases by about 0.2.  
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 The activation energy E and pre-exponential factor D0 based on diffusivities extracted from 

diffusion profiles for each element are listed in Table 9. From E and D0 listed, D at a given 

temperature can be calculated using Equation (5). Holycross and Watson (2016) showed that 

both E and logD0 depend roughly linearly on the REE-O bond length (Ciccico et al. 2013). For 

hydrous rhyolite, the relations with REE elemental sequence shown in Holycross and Watson 

(2018) are slightly curved. Because REE-O bond lengths are not available for all REE, we use 

ionic radius to fit all trivalent REE (excluding Eu) diffusion data in the three different melts:  

  
 
lnDREE3+

dry basalt8a = −10.03− 25131−1738r
T

,  (45a) 

 
 
lnDREE3+

rhy14b+4.1wt%H2O = −9.12 − 24194 +16516(1.097 − r)
2

T
, (45b) 

  
 
lnDREE3+

rhy14b+6.2wt%H2O = −8.35 − 23250 + 21657(1.069 − r)
2

T
, (45c) 

where r is trivalent ionic radius of REE in Å in octahedral site from Shannon (1976) (listed in 

Table 9 for convenience), T is in K, and D is in m2/s. Trial fittings show that adding a 

dependence of lnD0 on the ionic radius does not improve the fitting. Equation (45a) reproduces 

all the diffusivities in Supplementary Table B of Holycross and Watson (2016) to within 0.22 

lnD units, and the REE diffusivities in Supplementary Table A to within 0.24 lnD units. Equation 

(45b) reproduced experimental data of trivalent REE diffusivity in rhyolite14b containing ~4.1 

wt% H2O within 0.28 lnD units. Equation (45c) reproduced experimental data of trivalent REE 

diffusivity in rhyolite14b containing ~6.2 wt% H2O within 0.31 lnD units. Such high accuracy 

reflects the high self-consistency of the REE diffusion data in Holycross and Watson (2016, 

2018). Equations (45a)-(45c) should be able to predict Eu3+ (and hence assess the contribution of 

Eu3+ and Eu2+ to Eu diffusion) and Tm diffusivity even though no Tm diffusion data were 
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available in the literature. All three equations predict Y diffusion data in Holycross and Watson 

(2016, 2018) well, within 0.24 lnD units, and Equation (45a) also predicts Sc diffusivity within 

0.28 lnD units. Using Equations (45b) and (45c) to predict Sc diffusivity would lead to large 

errors (1.0 lnD units). Equations (45a)-(45c) mean that there is larger difference in La to Lu 

diffusivities in wet rhyolite14b melts than in dry basalt8a. 

 
 
Table 9. Diffusion parameters for some trace elements  
  basalt8a  rhy14b+4.1wt%H2O  rhy14b+6.2wt%H2O 
 r (Å) E logD0  E logD0  E logD0 
Li        39.31 -7.35 
Rb  178.33 -4.69       
Sr  161.7 -5.10       
Ba  181.1 -4.67       
V 0.640 203.3 -4.06  185.0 -4.90  222.4 -2.67 
Sc 0.745 202.6 -4.14  228.8 -3.42  211.4 -3.24 
Y 0.900 195.1 -4.39  188.3 -4.66  165.7 -5.09 
La 1.032 191.41 -4.43  188.31 -4.51  203.34 -3.21 
Ce 1.01 192.75 -4.41  201.66 -3.97  198.90 -3.33 
Pr 0.99 193.18 -4.40  194.63 -4.27  202.07 -3.28 
Nd 0.983 193.36 -4.40  203.61 -3.93  200.60 -3.35 
Sm 0.958 194.30 -4.37  206.69 -3.84  205.46 -3.18 
Eu  188.98 -4.41  166.10 -4.98    
Gd 0.938 194.87 -4.37  209.08 -3.79  193.84 -3.74 
Tb 0.923 195.55 -4.35  201.13 -4.14  203.97 -3.32 
Dy 0.912 196.42 -4.33  214.66 -3.60  185.72 -4.17 
Ho 0.901 196.77 -4.33  210.90 -3.80  190.93 -3.91 
Er 0.890 197.42 -4.31  201.01 -4.22  210.29 -3.98 
Yb 0.868 198.07 -4.30  218.59 -3.54  171.42 -4.90 
Lu 0.861 198.86 -4.29  209.63 -3.93  196.97 -3.82 
Zr  219.7 -3.85  182.4 -5.45  155.2 -6.36 
Hf  223.8 -3.81  231.1 -3.52    
Th  213.4 -4.02     176.7 -5.10 
U  212.0 -3.98  228.8 -3.42  267.8 -1.06 
Nb  206.1 -4.18  214.5 -4.03  179.5 -4.91 
Ta  218.2 -3.92       
P  147.0 -6.30       
The unit of E is kJ/mol. The unit of D0 is m2/s. Note logD0 values rather than lnD0 are listed following the original 
authors. Compositions of basalt8a and rhyolite14b (rhy14b) are listed in Table 8. Data are from Holycross and 
Watson (2016, 2018), except for Li (Holycross et al. 2018) and P (Watson et al. 2015). For REE, E and logD0 are 
based on ratio-fitting method in Holycross and Watson (2016, 2018), which have better consistency. Ionic radii are 
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for trivalent cations in octahedral sites from Shannon (1976). A single coordination (octahedral) is used for 
consistency with no implication on the real coordination number.  
  

Diffusivities of Li, Rb, Sr, Ba, Sn, V, Zr, Hf, Th, U, Nb and Ta 

  Holycross and Watson (2016, 2018) also reported high quality trace element diffusion (close 

to TED1) data for Rb, Sr, Ba, V, Zr, Hf, Th, U, Nb and Ta in dry basalt8a (Table 8), V, Zr, Hf, 

U, and Nb in rhyolite14b (Table 8) containing 4.1 wt% H2O, and V, Zr, Th, U and Nb in 

rhyolite14b containing ~6.2 wt% H2O. Watson et al. (2015) determined P diffusivity (POCGD) 

in dry basalt8a using diffusion couple experiments.  The activation energies and pre-exponential 

factors for these elements in dry basalt8a and wet rhyolite14b are listed in Table 9. The 

diffusivities of tetravalent and pentavalent ions (HFSE) in basalts are shown in Fig. 12. They are 

similar to each other (within ~0.5 lnD units in basalt8a), with  

  DU ≈ DNb > DTh ≥ DZr ≥ DTa > DHf > DP.  (46) 

Si diffusivities in basalts with slightly different compositions (self diffusivity in basalt6 in Table 

8, and POCGD in basalt11 (Juan de Fuca MORB), and interdiffusivity in synthetic basalts) are 

also shown in Fig. 12 for comparison. Due to slightly different compositions, direct comparison 

of HFSE diffusivities with Si diffusivity is not possible. By correcting to the same composition 

using Yu et al. (2019), Si diffusivity is equal to or slightly smaller than P diffusivity. The 

information is used in updating the diffusivity sequence in basalt (Eqn. 28). Fig. 12 also shows 

the high self-consistency in Si self diffusion and Si POCGD, but high variability in Si 

interdiffusivity in a given melt.  
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Figure 12. Comparison of HFSE diffusivities. 
Diffusivities of Zr, Hf, Th, U, P, Nb and Ta are for 
basalt8a (Table 8) at 1 GPa and are from 
Holycross et al. (2016) and Watson et al. (2015). 
Si self diffusivities are for composition basalt6 
(Table 8) at 1 GPa from Lesher et al. (1996). Si 
POCGD values are for basalt11 (Table 8) from 
quartz dissolution experiments at 0.5 GPa by Yu et 
al. (2019). Si interdiffusivity values are for 
basalt11a and haplobasalt2 (Table 2) at 0.5 to 1 
GPa from multicomponent diffusion experiments 
of Guo and Zhang (2016, 2018, 2020). The large 
variability of Si interdiffusivity is due to different 
counter-diffusion component. 

 

  Holycross et al. (2018) conducted Li diffusion couple experiments in wet rhyolite14b 

containing 6.0 wt% H2O at 1063-1148 K and 1.0 GPa, and acquired Li trace element diffusivities 

(TED1) in addition to Li isotope fractionation profiles. Li diffusivities (TED1) in wet rhyolite at 

1 GPa are higher by 1.8 lnD units than Li tracer diffusion data in a dry rhyolite at 1 atm (Jambon 

and Semet 1978). The activation energy and pre-exponential factor are listed in Table 9. 

 Yang et al. (2016) carried out diffusive cassiterite dissolution experiments in various dry and 

wet rhyolites to determine Sn diffusivity. Sn diffusivity depends on its oxidation state (Sn2+ and 

Sn4+). It was inferred that when graphite capsule is used, Sn in rhyolite melt is mostly divalent. 

The main concentration gradient is in SnO, and other components are diluted by additional SnO. 

Hence, the diffusion data are POCGD. Divalent Sn diffusivity in various reduced rhyolites at 

1023-1373 K, 0.5 GPa, and 0-5.9 wt% H2O can be described as follows:  

  
 
lnDSnO

silicic melts = −18.194 +17(0.76 −wSiO2
)−
19418 −138900wH2O

T
, (47) 
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where wSiO2 and wH2O are mass fraction (not wt%) of SiO2 and H2O, T is in K, and D is in m2/s.  

  Zhang and Xu (2016) carried out diffusive zircon dissolution experiments in various dry and 

wet rhyolites to determine Zr diffusivity. Even though zircon also contains SiO2, the dissolution 

leads to mainly ZrO2 concentration gradient and the rest are mostly dilution by ZrO2. Hence, 

these diffusivities are close to POCGD’s. They considered all Zr diffusion data available at the 

time and came up with the following equation to relate Zr POCGD with T (1270-1890 K), P 

(0.5-1.5 GPa), and melt composition in various dry and wet rhyolites:  

  
 
lnDZr

rhyolites = −14.42 − 38784(Si+Al)−1836P − 3172
T

,  (48)  

where Si+Al is the sum of Si and Al cation mole fractions calculated on wet basis (i.e., H+ mole 

fraction is counted), P is in GPa, and T is in K. The effect of H2O on Zr diffusivity seems to be 

simply its dilution of the network formers. The above equation reproduces the experimental Zr 

diffusion data of Zhang and Xu (2016) to within 0.59 lnD units (1σ error 0.29 lnD units). On the 

Zr diffusion data in rhyolites by Holycross and Watson (2018), the equation predicts six out of 

seven diffusivity values in the ~6.2 wt% H2O rhyolite to within 0.27 lnD units, but for the three 

diffusivities in the ~4.1 wt% rhyolite and the other diffusivity in the ~6.2 wt% H2O rhyolite, the 

error ranges from 0.88 to 1.88 lnD units. More effort is needed in the future to derive more 

accurate general expressions on the compositional dependence of Zr diffusivity.  

  

SiO2 diffusion  

  Yu et al. (2019) carried out quartz dissolution experiments in nominally dry rhyolite (NCO 

listed in Table 8) containing 0.10 wt% H2O and nominally dry basalt11 (Table 8) containing 0.32 

wt% H2O, and determined effective binary diffusivity of SiO2. SiO2 is the major concentration 

gradient, and gradients of other oxides are largely due to the dilution of SiO2 (also due to 
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multicomponent diffusion effects, Fig. 6). Hence, technically SiO2 diffusivity is still POCGD 

even though the strong SiO2 concentration gradient causes diffusion of many oxides. Previously, 

it was thought that SiO2 diffusivity largely depends on SiO2 concentration (e.g., Watson 1982; 

Koyaguchi 1989; Lesher and Walker 1986; Richter et al. 2003; Macris et al. 2018). An SiO2 

concentration profile during any single experiment can indeed be modeled well assuming lnDSi is 

linear to SiO2 concentration (Fig. 5), and Boltzmann analysis of SiO2 concentration profile in 

every experiment using Equation (18) also shows such a dependence (Yu et al. 2019). However, 

when DSi values extracted from quartz dissolution in rhyolite are compared to those from quartz 

dissolution in basalt, it becomes clear that DSi depends on Si+Al rather than SiO2 alone. As 

shown in Fig. 13, when lnDSi is plotted against SiO2 concentration, the trends for DSi from quartz 

dissolution in rhyolite are offset from those for quartz dissolution in basalt. On the other hand, 

when lnDSi is plotted against Si+Al cation mole fractions, the trends in rhyolite roughly line up 

with those in basalt.  

  

 

Figure 13. Si diffusivity from functional fitting results (points) as a function of SiO2 concentration (left) and Si+Al 
mole fraction (right). Black points are from three quartz dissolution experiments in rhyolite (NCO, composition 
listed in Table 8) and red points are from two experiments in basalt (basalt11, composition listed in Table 8) melts at 
1404±10°C.  
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   Using Si+Al cation mole fraction on wet basis, Yu et al. (2019) obtained the following 

equation for SiO2 diffusivity (POCGD) in basalt to rhyolite at 1123-1873 K and 0.5 GPa:  

  
 
lnDSi

quartz dissolution = −11.41− 2.758(Si+Al)− 38829(Si+Al)− 3826
T

,  (49)  

where T is in K and D is in m2/s. The above equation reproduces experimental data points in Yu 

et al. (2019) within 0.95 lnD units (1σ error is 0.32 lnD units). Hence, the accuracy in predicting 

DSi using the above equation is much worse than that in predicting DCu using Equation (44), or in 

predicting REE diffusivities using Equations (45a)-(45c). Some of the inaccuracy is almost 

certainly due to the dependence of DSi on concentrations of other major oxides, but such 

dependence cannot be quantified yet. Limited data examined by Yu et al. (2019) seem to indicate 

that the above equation would work for wet rhyolite too, meaning that the effect of H2O on 

reducing DSi is largely due to its dilution of Si+Al cation mole fraction. Equation (49) reproduces 

Si self diffusivities at 1 GPa (Lesher et al. 1996) within 0.23 lnD units (excellent accuracy). The 

SiO2 EBD values during shoshonite-rhyolite diffusion couple experiments (Gonzalez-Garcia et 

al. 2017) cannot be reproduced well, with maximum deviation of 2.3 lnD units (one order of 

magnitude) and 1σ error of 0.66 lnD units, reflecting the dependence of OEBD on concentration 

gradients. Due to much higher pressure (4-24 GPa) and higher MgO contents (37 wt%), the SiO2 

self diffusivity in peridotite at ultrahigh pressures (Posner et al. 2018) also cannot be reproduced 

well by Equation (49) (which is for 0.5 GPa), with maximum deviation of 3.1 lnD units.  

  

Self diffusion of O, Si, Mg and Ca, and interdiffusivity of Ni and Co in a peridotite melt 

   Posner et al. (2018) investigated the self diffusion of O, Si, Mg, and Ca, and interdiffusion of 

Ni and Co in a peridotite melt at 2150-2623 K and 4-24 GPa using diffusion couple experiments. 

The melt composition is listed in Table 8, with one side of the diffusion couple containing 1 wt% 
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NiO and the other side containing 1 wt% CoO. These are difficult experiments at extreme 

conditions. The pressure and temperature of the experiments co-varied and hence it is difficult to 

separate the effects of pressure and temperature on the diffusivities. By fixing the activation 

energy to some values, the self diffusivities presented by Posner et al. (2018) show a complicated 

pressure dependence. The diffusivities decrease with increasing pressure from 4 to 8 GPa, then 

increase with increasing pressure from 8 to 12 GPa, and then decrease again. For Ni and Co 

interdiffusivity, the pressure dependence is weaker.  

  

Diffusion of Mo and W 

  Zhang et al. (2018) investigated Mo and W diffusion in a rhyolite melt (rhyolite3a in Table 

8) using both diffusion couple and Mo saturation experiments on both dry and wet melts at 1273-

1873 K and 1 GPa. Their work provided the first data (13 points) on Mo diffusion, and was the 

second investigation (4 points) on W diffusion in aluminosilicate melts. They found that in dry 

rhyolite3a melt, Mo and W have similar (within 0.16 lnD units) diffusivities. Adding H2O 

increases Mo diffusivity significantly. The Arrhenius relations for Mo and W diffusion are as 

follows:  

  
 
lnDMo

Dry & wet Rhyolite2 = −4.47 − 200wH2O −
44534 − 532358wH2O

T
, (50) 

  
 
lnDW

Dry Rhyolite2 = −2.95 − 47628
T

, (51) 

where wH2O is the mass fraction of H2O, T is in K and D is in m2/s. Equation (50) reproduces Mo 

diffusion data in Zhang et al. (2018) to within 0.63 lnD units (1σ uncertainty is 0.31 lnD units). 

Equation (51) reproduces W diffusion data in dry rhyolite3a in Zhang et al. (2018) to within 0.14 

lnD units. Mo and W diffusivities in rhyolite3a are compared with those of Nb and Zr in 
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rhyolite14b in Fig. 14. Note that rhyolite14b is much more silicic than rhyolite3a (Table 8). The 

activation energy for Mo diffusion in rhyolite3a containing ~5 wt% H2O is smaller than those for 

Nb and Zr diffusion in rhyolite14b containing ~4.1 and ~6.2 wt% H2O, leading to DMo > DNb at T 

< 1200 K, and DMo < DNb at T > 1400 K. Nonetheless, Mo and W diffusivities are small and are 

not very different from other HFSE.  

  

 

 
Figure 14. Mo and W trace element diffusivities 
(TED1) in rhyolite3a (Zhang et al. 2018) 
compared to Nb and Zr trace element diffusivities 
(TED1) in rhyolite14b (Holycross et al. 2018). The 
composition of rhyolite3a and rhyolite14b are 
listed in Table 8, and rhyolite14b is more silicic 
than rhyolite3a. The limited data shows smaller 
activation energy for Mo diffusion in wet 
rhyolite3a containing ~5.0 wt% H2O than Nb and 
Zr diffusion in wet rhyolite14b containing ~4.1 
wt% and ~6.2 wt% H2O. 

 

Diffusion of F, Cl, and S 

   Bohm and Schmidt (2013) studied F and Cl diffusion in a phonolite2 melt (Table 8) 

containing ≤ 2.4 wt% H2O using diffusion couple experiments at 1073-1473 K and 0.1 GPa. In 

dry phonolite2, F diffusivity is higher than Cl diffusivity by about an order of magnitude. The 

composition and H2O concentration range investigated are similar to those by Balcone-Boissard 

et al. (2009) but the diffusion data do not line up in one trend, either indicating subtle 

dependence on composition or inter-laboratory inconsistency. Bohm and Schmidt (2013) 

provided the following Arrhenius equations for F and Cl diffusivities:  

  
 
lnD F

dry phonolite2 = −18.24 − 12003
T

, (52a)  
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lnD F

phonolite2+2.1wt%H2O = −17.36 − 11678
T

,  (52b)  

  
 
lnD Cl

dry phonolite2 = −15.78 − 18413
T

,  (53a)  

  
 
lnD Cl

phonolite2+2.4wt%H2O = −13.72 − 18570
T

,  (53b)  

where T is in K and D is in m2/s.  

 Yoshimura (2018) examined Cl diffusion in a high-silica rhyolite containing ≤ 1.2 wt% H2O 

and also reported Ca diffusion data as a byproduct. The composition of the rhyolite is similar to 

rhyolite14b in Table 8. The Cl diffusion data in dry rhyolite in Yoshimura (2018) are 2-3 orders 

of magnitude lower than those in Bai and Koster van Groos (1994). Yoshimura (2018) explained 

this by compromising of the latter data by Na infiltration. After removing the data by Bai and 

Koster van Groos (1994), Cl diffusivity decreases from basalt to phonolite to rhyolite. 

 Lierenfeld et al. (2018) examined sulfur diffusion in wet dacite melt (4.5-6.0 wt% H2O) 

using diffusion couple experiments at 1223-1373 K, 0.20-0.25 GPa, and at logfO2 of FMQ-0.8 (S 

is dominantly S2-) and FMQ+2.5 (S is dominantly S6+). The composition of the dacite is listed as 

dacite3a in Table 7. The effect of oxidation state on sulfur diffusivity was anticipated but 

previously unresolved due to data scatter (Behrens and Stelling 2011). With well-designed 

experiments, Lierenfeld et al. (2018) clearly resolved the effect of logfO2 on S diffusivity, and 

found that S diffusivities at FMQ-0.8 is about 15 times those at FMQ+2.5. The equations to 

describe sulfur diffusivity in dacite containing 4.5 wt% H2O at 0.2 GPa are as follows 

(Lierenfeld et al. 2018):  

  
 
lnDS at QFM+2.5

Dacite+4.5wt%H2O = −13.63− 16513
T

, (54a) 
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lnDS at QFM−0.8

Dacite+4.5wt%H2O = −11.93− 15118
T

, (54b) 

where T is in K. Their sulfur diffusion data at 6.0 wt% H2O are scattered.  

  

Major and trace element diffusion (OEBD) in shoshonite-rhyolite diffusion couple 

  Gonzalez-Garcia et al. (2017, 2018) carried out shoshonite-rhyolite diffusion couple 

experiments in both dry and wet (≤ 2.0 wt% H2O) conditions at 1473 K and 0.05-0.5 GPa. The 

compositions of the shoshonite and rhyolite (rhylite8a) are listed in Table 8. Due to the presence 

of significant concentration gradients in all major oxides, the diffusivities belong to the other 

types of effective binary diffusivities (OEBD). Numerous elements (e.g., Al, Na, La, Ce, Pr, Nd, 

Sm, Gd, Tb) show uphill diffusion, and OEBD cannot be extracted for them. For 19 elements 

with monotonic concentration profiles (Si, Ti, Fe, Mg, Ca, K, Rb, Cs, Sr, Ba, Co, Sn, Eu, V, Cr, 

Hf, Th, U, Ta), they found that the shapes of the profiles indicate that the diffusivity of each 

element depends on the bulk composition, as expected since SiO2 concentration varies from 53 

to 73 wt%. They extracted a large number of diffusion coefficients using Boltzmann-Matano 

analysis. These diffusivities depend on the direction and magnitude of the concentration gradient 

of all major oxides in addition to the dependence on the bulk composition. Their best 

applicability is to investigate the kinetics and dynamics of shoshonite-rhyolite mixing. 

Importantly, Gonzalez-Garcia et al. (2017, 2018) provided data to examine how OEBD values of 

many elements depend on H2O concentration, which were previously unavailable. Such 

dependence might be applicable to the diffusion of these elements under other conditions (such 

as tracer diffusivity or POCGD).  

  Data by Gonzalez-Garcia et al. (2017, 2018) show that many components move in 

coordinated fashion with similar diffusivities, which are in agreement with observations by 
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Watson (1982), Koyaguchi (1989), Richter et al. (2003), Macris et al. (2018), Yu et al. (2019), 

among others. Gonzalez-Garcia et al. (2017) found that OEDB values increases with increasing 

H2O by 0.8-2.3 lnD units per wt% of H2O, and decreases with increasing SiO2 by 0.02-0.12 lnD 

units per wt% SiO2. The latter is roughly consistent with Yu et al. (2019), but predicted DSiO2 

using Equation (49) is on average lower than OEBD of SiO2 (Gonzalez-Garcia et al. 2017) by 

0.7 lnD units with large scatters, revealing the role of different concentration gradients in OEBD, 

or more generally, multicomponent effects. No general equations were provided by Gonzalez-

Garcia et al. (2017, 2018) to relate D with melt composition and pressure.  

  

DIFFUSIVE ELEMENTAL AND ISOTOPE FRACTIONATION  

DURING MAGMATIC PROCESSES 

   

  Diffusion is ubiquitous in magmas. Therefore, it is of interest to understand the possibility 

and magnitude of diffusive fractionation of isotopes and elements in magmas. Equilibrium 

fractionation of isotopes and elements is fairly well understood (e.g., Gast 1968; Shaw 1970; 

Allegre and Minster 1978, and numerous partitioning studies). On the other hand, attention on 

diffusive fractionation of isotopes and elements is more recent. Jambon (1980) first proposed that 

isotopes could be diffusively fractionated, which can be recorded by growing crystals from 

magmas. Richter et al. (1999) were the first to measure diffusive isotope fractionation of 

48Ca/40Ca in CAS system and 76Ge/70Ge in GeO2 melt using spiked isotopes. Chopra et al. (2012) 

investigated possible diffusive isotope fractionation in igneous rocks and showed that current 

instrumental capability can measure such fractionations. If isotope ratios can be fractionated, 
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elemental ratios and patterns can of course also be fractionated by diffusion. Holycross and 

Watson (2016, 2018) and Watson (2017) discussed diffusive elemental fractionation. 

  Diffusive fractionation requires different diffusivities. Elemental diffusivities for most 

elements are available (see reviews by Zhang et al., 2010 and this work) and can be used to 

discuss elemental fractionation.  For isotope diffusion, differences in diffusivities of isotopes 

cannot be resolved by measuring diffusivities of individual isotopes. Instead, the ratio of 

diffusivities of different isotopes is determined from experimental isotope ratio profiles and 

related to the mass ratio. If each isotope diffuses freely as individual atoms, diffusivities of heavy 

and light isotopes can be related by Graham’s law (Richter et al. 2003):  

  
 

DH

DL
= mL

mH
, (55) 

where mH and mL are the atomic masses, and DH and DL are the diffusivities of heavy and light 

isotopes. If heavy and light isotopes diffuse freely as individual neutral molecules, then  

  
 

DH

DL
= ML

MH
, (56) 

where MH and ML are the molecular masses of those containing heavy and light isotopes. If 

isotopes diffuse as clusters exchanging with other species, then (Richter et al. 2003)  

 
 

DH

DL
= ML(MH +M )

MH (ML +M )
,  (57) 

where M is the mass of the counter-diffusing species. However, silicate melts are complicated 

and the diffusion species and mechanisms are complicated (e.g., see multicomponent diffusion 

eigenvectors) and not accurately known. Hence, an empirical approach is used to characterize the 

relation between DH and DL as follows (Richter et al. 1999):  
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DH

DL
= mL

mH

⎛
⎝⎜

⎞
⎠⎟

β

,  (58) 

where β is an empirical fit parameter.  

 Consider isotope fractionation of a given element in a diffusion couple. Suppose the left hand 

side has a lower concentration and the right hand side has a higher concentration. Treat the 

diffusion as effective binary diffusion. The element diffuses from the right hand side to the left 

hand side. The light isotope diffuses more rapidly, and hence is enriched in the LHS. In other 

words, the LHS is depleted in the heavy isotope, and the RHS is enriched in the heavy isotope. 

Quantitatively, the concentration profile of each isotopes is an error function (Eqn. 7). Hence, if 

the effective binary diffusivity is roughly constant, the isotope ratio, using 41K/39K as an 

example, is expressed as follows:  

 

 

41K
39 K

=
0.5(C41,LHS +C41,RHS)+ 0.5(C41,RHS −C41,LHS)erf x − x0

4D41t

0.5(C39,LHS +C39,RHS)+ 0.5(C39,RHS −C39,LHS)erf x − x0
4D39t

,  (59)  

where x0 is the interface position, x increases from LHS to RHS, and subscript 41 and 39 means 

41K and 39K. Converting to the δ-notation and using the initial ratio as standard lead to:  

 

 

δ
41K
39 K

=

(1+ CRHS
CLHS

)+ (CRHS
CLHS

−1)erf x − x0
4D39(m39 /m41)

β t

(1+ CRHS
CLHS

)+ (CRHS
CLHS

−1)erf x − x0
4D39t

−1

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

1000‰ ,  (60)  

where CRHS/CLHS is the initial concentration ratio of the RHS to the LHD (or concentration 

contrast). Model calculations (Fig. 15) using Equation (60) show that the magnitude of diffusive 

isotope fractionation depends on two parameters, one is the β value, and the other is the 

concentration ratio of the high concentration side to the low concentration side of the diffusion 

couple. By increasing the β value, or the concentration ratio, the magnitude of isotope 
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fractionation increases. For example, if β = 0.12 and the concentration ratio is 60, then the total 

variation of δ41K/39K would be about 10‰. If β = 0.12 and the concentration ratio is 2, then the 

variation of δ41K/39K would be about 1‰. Both of these fractionations are measurable (Zhang et 

al. 2019). One example of real data and fit is shown in Fig. 16.  

 

  
Figure 15. Calculated isotope fractionation in a diffusion couple as a function of β and concentration ratio C2/C1 = 
CRHS/CLHS. If β = 0 or C2/C1 = 1, there would be no isotope fractionation using effective binary treatment.  
 
  

 

 
Figure 16. A 41K/39K isotope ratio profile (Zhang 
et al., 2019) in a multicomponent diffusion couple 
experiment by Guo and Zhang (2018). The 
measurement is made by Secondary Ion Mass 
Spectrometry at Caltech Microanalysis Center. 
The initial concentration of K2O is ~0.05 wt% at x 
< 0, and 3.06 wt% at x > 0. From Zhang et al. 
(2019). 
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 Richter et al. (1999) were the first to determine β values in CAS and GeO2 melts. Richter et 

al. (2003, 2008, 2009) experimentally evaluated diffusive fractionation of 7Li/6Li, 26Mg/24Mg, 

44Ca/40Ca, and 56Fe/54Fe in dry basalt-rhyolite diffusion couple and obtained: βLi = 0.215, βMg = 

0.05, βCa = 0.075, and βFe = 0.03. Watkins et al. (2009, 2011, 2014) examined 26Mg/24Mg and 

44Ca/40Ca fractionation in basalt-rhyolite, albite-anorthite, and albite-diopside diffusion couples 

and SiO2-CaO-Na2O system, and found that βi (where i is an element) increases with Di/DSi. 

Watkins et al. (2014) developed the theory to treat isotope diffusion in the context of 

multicomponent diffusion. More experimentally determined β values and the associated 

experimental conditions can be found in Table 10. 

  

Table 10. Experimentally determined β  values for diffusive isotope fractionation 
Isotopes β Di/DSi  Melt T (K) P (GPa) Ref 
7Li/6Li 0.215±0.005 290 basalt-rhyolite 1623-1723 1.2-1.3 1 
7Li/6Li 0.228 2560 wet rhyolite 1103  1.2 2 
26Mg/24Mg 0.05±0.01 ~1 basalt-rhyolite 1673 1.0-1.2 3 
26Mg/24Mg 0.10±0.01 1.5 albite-diopside 1723 0.8 4 
26Mg/24Mg 0.045 ~1 basalt-rhyolite 1773 1.45 5 
41K/39K 0.12 1.64 basalt 1623 1.0 6 
48Ca/40Ca ~0.08  CAS 1773 1.0 7 
44Ca/40Ca 0.075±0.025 1.6 basalt-rhyolite 1623-1723 1.2-1.3 1 
44Ca/40Ca 0.035±0.005 2.2 basalt-rhyolite 1723 1.0-1.3 8 
44Ca/40Ca 0.21±0.015 23 albite-anorthite 1723 0.8 4 
44Ca/40Ca 0.165±0.01 6.3 albite-diopside 1723 0.8 4 
44Ca/40Ca 0.10  NCS(Ca-Na) 1523 0.8 9 
44Ca/40Ca 0.035 ~1 NCS(Ca-Si) 1523 0.8 9 
56Fe/54Fe 0.03±0.01 1.3 basalt-rhyolite 1673 1.0-1.2 10 
76Ge/70Ge < 0.025  GeO2   1673 0.5 7 
Melt: CAS means CaO-Al2O3-SiO2 system; NCS(Ca-Na) means CaO-Na2O interdiffusion in Na2O-CaO-SiO2 
system; NCS(Ca-Si) means CaO-SiO2 interdiffusion in Na2O-CaO-SiO2 system;  
References: 1. Richter et al. (2003); 2. Holycross et al. (2018); 3. Richter et al. (2008); 4. Watkins et al. (2011); 5. 
Chopra et al. (2012); 6. Zhang et al. (2019); 7. Richter et al. (1999); 8. Watkins et al. (2009); 9. Watkins et al. 
(2014); 10. Richter et al. (2009) 
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 Diffusion also leads to elemental fractionation in magmas (Holycross and Watson 2016, 

2018; Watson 2017). Holycross and Watson (2016) examined the fractionation of La/Lu ratio in 

a diffusion couple and found that diffusive fractionation can be significant and measurable. Here, 

we use REE diffusion coefficients in Equations (45a)-(45c) to model diffusive fractionation of 

REE patterns in dry basalt to wet rhyolite along a diffusion couple profile. Eu diffusivity is 

assumed to be 2 times Eu3+ diffusivity. To illustrate an extreme (unrealistic) case, we set the 

initial concentration contrast to be 200: the left hand side initially has the same REE 

concentration as in chondrites and the right hand side initially contains 200 times chondrite REE 

concentration. Some calculated REE patterns in basalt and wet rhyolites are shown in Fig. 17. In 

this extreme case, the REE pattern is fractionated significantly, and more so in rhyolite than in 

basalt due to larger differences between La and Lu diffusivities in rhyolite. There is also a large 

Eu anomaly (Eu/Eu* ≈ 3). As the initial concentration contrast decreases, the maximum 

fractionation decreases and the location of the maximum fractionation moves closer to the 

interface. If the concentration contrast is reduced to a factor of 2, then the REE pattern is much 

less fractionated, with normalized (La/Lu)CI ratio fractionated by ≤ 2.1% in basalt and ≤ 8.4% in 

rhyolite+6.2 wt% H2O, and Eu/Eu* ≤ 1.074.  
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Figure 17. Calculated REE patterns due 
to diffusive fractionation in a diffusion 
couple. The initial concentrations in the 
diffusion couple are: same as chondrite at 
x < 0, and 200 times chondrite at x > 0. 
The diffusivities are calculated from 
Equations (45a)-(45c), at 1473 K for 
basalt, 1273 K for rhyolite+4.1 wt% 
H2O, and 1173 K for rhyolite+6.2 wt% 
H2O. DEu is set to be two times the 
diffusivity of Eu3+. The patterns shown 
here are at x = –1.5(Dt)1/2, where D is the 
average for all trivalent REE. This is 
roughly the position where the largest 
diffusive fractionation occurs.  
 

 

 

DIFFUSIVITY IN CRYSTAL-BEARING AND BUBBLE-BEARING MAGMAS 

   Many diffusion media in geology are heterogeneous media, either due to the presence of 

multiple phases (such as mantle rocks, or magmas containing phenocrysts and/or bubbles), or the 

presence of boundaries that show different diffusion properties (e.g., Dohmen and Milke 2010). 

In such a system, diffusion at a length scale much larger than the heterogeneity (i.e., grain size) 

may be characterized by a bulk diffusivity or effective diffusivity, which for a given component i 

may be defined by:  

  Ji,bulk = –Di,bulk∇Ci,ave,  (61) 

where Ji,bulk is the bulk flux, Di,bulk is the bulk diffusivity and Ci,ave is the average concentration 

(in kg/m3 or mol/m3) of component i. Ci,ave is defined as:  

  Ci,ave = φ1Ci,1 + φ2Ci,2 + ...,  (62) 

where φ1 and φ2 are volume fractions of phases 1 and 2, and Ci,1 and Ci,2 are concentrations (in 

kg/m3 or mol/m3). To treat bulk diffusion in a heterogeneous medium, it is necessary to know 
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how the bulk diffusivity is related to individual-phase diffusivity. To simplify the task, all φi’s 

are assumed to be constant so that growth and dissolution of crystals and bubbles are not 

considered in this section. Including growth and dissolution would require another set of kinetic 

equations to be solved together with diffusion and is beyond the scope of this review. 

 To the authors’ knowledge, Brady (1983) first introduced the treatment of diffusion in 

heterogeneous media to geology literature and derived relations between bulk diffusivity and 

individual-phase diffusivities using the similarity between diffusivity and thermal conductivity. 

Unfortunately, the similarity does not hold perfectly, leading to errors in the derived relations.  

These errors were also found in other studies and famous books (e.g., Bell and Crank 1974; 

Crank 1975, Chapter 12; Davis et al. 1975; Cussler 1997, section 6.5.2). Zhang and Liu (2012) 

identified the error by realizing a key difference between diffusivity and conductivity. During 

thermal conduction, the heat flux is written to be proportional to temperature gradient. During 

diffusion, mass flux is normally written to be proportional to the concentration gradient. The 

difference is that temperature is a continuous function when a phase boundary is crossed, but 

concentration of a component is not continuous at local equilibrium. The discontinuity means 

that earlier derived relations for bulk or effective diffusivity in heterogeneous media only apply 

when the partition coefficient is 1 between the phases. Once this is realized, because chemical 

potential is continuous across phase boundaries, new analogy equations can be written between 

diffusion mobility and thermal conductivity where diffusion mobility M is defined as:  

 
 
Ji = −Mi∇

µi
RT

, (63) 

Ji is mass flux, µi is chemical potential, and Mi is the mobility of component i. Zhang and Liu 

(2012) showed that in ideal and roughly ideal mixtures (note that Fick’s law only applies to ideal 

and roughly ideal systems),  
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  Mi ≈ DiCi. (64)  

Hence, in deriving the relation between bulk diffusivity and individual-phase diffusivity, DiCi 

together (rather than Di alone) should replace thermal conductivity in relating bulk conductivity 

and individual-phase conductivity. Zhang and Liu (2012) discussed some applications of the new 

analogy relations. Here we discuss bulk (or effective) diffusivity in crystal-bearing and bubble 

bearing magmas. We limit our discussion to low percentages of crystals and bubbles so that they 

do not interact with each other. What exactly is meant by low percentage is not precisely defined, 

but we expect that the derived relations are applicable at a volume fraction φ ≤ 0.1 and possibly 

at φ up to 0.2.  

  Thermal conductivity and electrical conductivity for heterogeneous media follow similar 

relations (Kerner 1956; Hashin and Shtrikman 1963). Maxwell (1873, p. 365) derived an 

expression for electrical resistivity when there are numerous spheres of phase 1 in phase 2, which 

can be written in terms of electrical conductivity:   

  
 
σbulk =

2σ2 +σ1 − 2φ(σ2 −σ1)
2σ2 +σ1 + φ(σ2 −σ1)

σ2 , (65) 

where σ means electrical conductivity, and φ means the volume fraction of phase 1 in the 

continuous phase 2. Using Zhang and Liu (2012) analogy between diffusivity and thermal 

conductivity, we obtain:  

  
 

Dbulk

D2
= 2 + KD1 /D2 − 2φ(1− KD1 /D2 )
2 + KD1 /D2 + φ(1− KD1 /D2 )

C2
Cave

, (66) 

where D1 and C1 are diffusivity and concentration (kg/m3 or mol/m3) in the dispersed phase 1 

(such as crystals and/or bubbles), D2 and C2 are diffusivity and concentration (kg/m3 or mol/m3) 

in the continuous phase 2 (the melt in this work), K = C1/C2 = ρ1w1/( ρ2w2) is the partition 

coefficient (taking into consideration the density difference between crystals and melt), and Cave 
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= φC1 + (1–φ)C2. The above derivation assumes that local equilibrium is reached between the 

dispersed spherical particles (all of which are the same phase, defined as phase 1) and the 

continuous melt (phase 2). That is, the diffusion distance in the continuous phase must be ≥ 10 

times the particle diameter, and that in the dispersed spheres must be about the same as the radius 

for the equation to apply.  

  The bulk diffusivity is further elucidated below. If one plots bulk concentration (Eqn. 62) 

versus distance, the diffusivity obtained from fitting the profile is the bulk diffusivity. In 

addition, if one plots the concentration in any individual phase versus distance, the diffusivity 

obtained from fitting the profile is also the bulk diffusivity. This is illustrated in Fig. 18 for the 

case of melt and one phenocryst phase, with four panels: (a) a hypothetical measured 

concentration profile as one moves along a line that encounters both phases (this profile has 

spikes and cannot be fit by a constant D), (b) the average concentration profile, (c) the 

concentrations measured in the melt, and (d) the concentrations measured in phenocryst grains. 

Note that the average concentration, the concentration in the melt, and the concentration in 

phenocryst grains, are all proportional to one another. Hence, the three profiles in Fig. 18b,c,d 

are identical when normalized to the concentration at x = 0, and this normalized profile is 

characterized by a diffusivity equaling Dbulk. Therefore, in the case of diffusion in crystal or 

bubble-bearing magma, assuming local equilibrium between crystals and melt and between 

bubbles and melt, the diffusivity obtained by measuring concentrations profiles in any single 

phase (continuous phase, or many discrete grains along a direction) is also the bulk diffusivity or 

the effective diffusivity.  
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Figure 18. Calculated concentration profiles in a microphenocryst-bearing magma for the case of semi-infinite 
diffusion from one surface. Equilibrium elemental partition is assumed and the concentration in the microphenocryst 
is 2 times that in the melt.  (a) A hypothetical measured profile when the measured points often encounter melt 
(glass) but occasionally encounter microphenocryst grains (spikes in the curve); (b) Calculated average 
concentration profile based on constant microphenocryst fraction;  (c) Concentration profile by measuring points in 
the melt; (d) concentration profile by measuring points (blue squares) in different grains of the microphenocryst and 
fit to the points. 
  

Crystal-bearing magmas 

  Here we apply Equation (66) to estimate bulk diffusivity in crystal-bearing magmas 

assuming equilibrium is reached between crystals and the melt. Let phase 1 be crystals, and 

phase 2 (continuous phase) be melt in Equation (66). Some limiting cases of interest are 

discussed below.  
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  At the limit of very small KDcrystal/Dmelt << 1 (this applies to essentially all components), 

Equation (66) becomes 

 
 

Dbulk

Dmelt
= 2(1− φ)
2 + φ

1
φK + (1− φ)

. (67) 

The above equation applies when the following conditions are satisfied:  

  (1) Diffusion distance in the melt is much greater than the diameter of the phenocrysts;  

  (2) Diffusion in the phenocrysts roughly reached the center of average phenocrysts, so that 

the phenocrysts are roughly in local equilibrium with the melt.  

  We temporarily define diffusion reaching the center to mean the center concentration 

reaching at least 72% equilibrium (which means that the whole phenocrysts reached >91.5% 

equilibrium), leading to Dcrystalt/a2 ≥ 0.2 where a is radius (Crank 1975, p. 92). For typical 

diffusivities in minerals and melts, when condition 2 is satisfied, then condition 1 is also 

satisfied. For example, if the average phenocryst diameter is 0.1 mm (a = 0.05 mm), Dcrystal =   

10-15 m2/s (Spandler and O’Neill 2010), and Dmelt = 5x10-12 m2/s, then Dcrystalt/a2 ≥ 0.2 means t ≥ 

5.79 days. After this time the diffusion distance in the melt is ≥1.58 mm, much greater than the 

phenocryst diameter. Therefore, condition 1 is also satisfied.  

  For a highly incompatible element (K<<1), Equation (66) becomes:  

 
 

Dbulk

Dmelt
= 1
1+ 0.5φ

. (68) 

To apply Equation (68), the two conditions listed below Equation (67) as well as K <<1 must be 

satisfied.  

  The variation of Dbulk/Dmelt as a function of φ and K is plotted in Fig. 19. It can be seen that 

Dbulk is always smaller than Dmelt. For K < 1, the effect of a small fraction of phenocrysts is 
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within uncertainty of diffusion data (~30%, Zhang et al. 2010). However, for highly compatible 

elements, Dbulk can be a factor of 3 lower than Dmelt at 20% vol% of phenocrysts. 

 

 

  

Figure 19. The dependence of Dbulk/Dmelt on the 

volume fraction of crystals and partition coefficient K 

= C1/C2 = ρ1w1/( ρ2w2) (where subscript “1” means 

crystal and “2” means melt) at the limit of KD1/D2 << 

1.  

 

 If there is no rough equilibrium between the phenocrysts and melt, condition 2 below 

Equation (67) is not satisfied. Then Equation (67) cannot be applied. We consider another 

limiting case of constant crystal composition during a short-duration experiment. Because the 

phenocryst particles do not participate in the diffusion, one may just consider diffusion in the 

melt by ignoring partitioning. In this case, the phenocrysts play the role of small inert (non-

active) blocks increasing tortuosity because atoms must diffuse around these particles, but do not 

participate in the compositional exchange. Mathematically, this may be treated using Equation 

(66) by adopting K = 0. Therefore, the effective diffusivity in the melt is given by Equation (68). 

That is, Equation (68) also describes how the tortuosity effect reduces the effective melt 

diffusivity in the limiting case that the crystals do not participate in the diffusion. Note that Cave 

is irrelevant in the case of nonreactive phenocrysts because concentrations in the phenocrysts 

may be high or low but they do not participate in diffusion. Hence, effective diffusivity in the 
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melt is a better term than bulk diffusivity to describe diffusion in this case. We temporarily 

define nonreactive crystals by Dcrystalt/a2 ≤ 10-4.  For example, if the average phenocryst diameter 

is 100 µm (a = 50 µm), Dcrystal = 10-15 m2/s = 10-3 µm2/s (Spandler and O’Neill 2010), then t must 

be ≤ 250 s, meaning diffusion distance in the crystal is (Dcrystalt)1/2 =0.5 µm, for Equation (68) to 

be applicable. In such a case, if φ = 0.2, then Deff/Dmelt = 0.91. Because experimental diffusivities 

in silicate melts often have a relative error of 30% (e.g., Chen and Zhang 2008, 2009; Zhang et 

al. 2010), the effect of ≤20% nonreactive crystals is within diffusion data/model uncertainty. 

  For the time regime of 10-4 < Dcrystalt/a2 < 0.2, one may use Equations (68) and (67) to find 

the lower and upper limits of Deff in the melt. For a more precise estimation, a weighted average 

of the upper and lower limits is taken using the degree of equilibrium of the phenocrysts as 

weight:  

 
 

Deff

Dmelt
= 2(1− φ)
2 + φ

1
φK + (1− φ)

(∆ Mt
∆ M∞

)+ ( 1− φ
1+ 0.5φ

)(1− ∆ Mt
∆ M∞

) , (69) 

where ∆Mt /∆M∞ (which may be estimated using Eqn. 13c or 14c) means the degree of 

equilibrium for diffusion in phenocryst grains.  

  

Bubble-bearing magmas 

   We now estimate bulk diffusivity in bubble-bearing magmas using Equation (66), with phase 

1 being bubbles, and phase 2 being melt. Equation (66) for this specific case can be written as 

 
 

Dbulk

Dmelt
= 2 + KDbubble /Dmelt − 2φ(1− KDbubble /Dmelt )
2 + KDbubble /Dmelt + φ(1− KDbubble /Dmelt )

1
φK + (1− φ)

, (70) 

where Ki = Ci,bubble/Ci,melt, where Ci,bubble and Ci,melt must be in kg/m3 or mol/m3. There is only one 

condition for Equation (70) to be applicable: the diffusion distance in the melt must be much 

greater than the diameter of the bubbles. Adopting the unit of kg/m3 for concentrations in both 
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phase, then Ci,bubble = WiXi,bubbleP/(RT) where Xi,bubble is mole fraction of component i in the 

bubble and Wi is the molar mass of i in kg/mol, and Ci,melt = wi,meltρmelt, where wi,melt is the mass 

fraction of i in the melt. Hence,  

  
 
Ki =

Ci,bubble

Ci,melt
= (

WiXi,bubbleP
wi,meltρmeltRT

) = Wi
SiρmeltRT

, (71) 

where Si = wi,melt/(Xi,bubbleP) is solubility of i in the melt in mass fraction per Pa. The estimated 

values of Ki for H2O and CO2 at some conditions are listed in Table 11. For CO2 and other gas 

species with solubility proportional to pressure, Ki is a constant in a given melt. For H2O, Ki 

increases as pressure increases. The values of KiDi,bubble/Di,melt are listed in the last column of 

Table 10 as Ratio. It can be seen that KiDi,bubble/Di,melt for gas species is much greater than 1. 

 
Table 11. Estimated values of Ki for H2O and CO2  
Melt Species P 

MPa 
T 
K 

Ci,bubble 
kg/m3  

Di,bubble 
µm2/s  

wi,melt Ci,melt 
kg/m3 

Ki  Di,melt 
µm2/s  

Ratio  

Rhyolite H2O 200 1100 394 72,000 0.0603 139 2.84 63.4 3,220 
Rhyolite H2O 50 1200 90.3 328,000 0.0256 58.8 1.53 16.7 30,100 
Rhyolite H2O 1 1400 1.55 2.07×107  0.00245 5.64 0.27 3.71 1.5×106 
Basalt CO2  200 1500 706 26,400 0.001 2.7 261 6.07 1.1×106 
Basalt CO2 1 1500 3.53 5.28×106 0.000005 0.0135 261 7.86 1.8×108 
H2O and CO2 solubilities are calculated based on Zhang et al. (2007). Bubble is assumed to be pure H2O for the first 
three cases and pure CO2 for the last two cases. Melt density is taken as 2300 kg/m3 for rhyolite and 2700 kg/m3 for 
basalt. Di,bubble is estimated using elementary theory of diffusion in gases (D=lv/3 where l is the mean free path and v 
is the mean thermal speed). Di,melt is calculated from Ni and Zhang (2018) for H2O, and Zhang and Ni (2010) for 
CO2. Ratio = KiDi,bubble/Di,melt.  
  

  For the limiting rare case of KiDi,bubble/Di,melt << 1 (i.e., for a component that does not go into 

the bubbles at all), Equation (70) simplifies to:  

 
 

Dbulk

Dmelt
= 1
1+ 0.5φ

. (72) 

Note that Equation (72) is the same as Equation (68), meaning that the presence of bubbles 

increases the tortuosity of the diffusion path. Because Di,bubble/Di,melt is typically >> 1 (decreasing 

with increasing pressure in the bubbles) and most components have some solubility in the vapor 
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phase, the applicability of Equation (72) is very limited because Ki would need to be really small 

(e.g., <10-6). For example, a rough estimation for TiO2 component in pure H2O fluid phase in 

equilibrium with a basalt results in a Ki ≈ 0.003 at 1273 K and 600 MPa (~100 ppm Ti in fluid, 

Antignano and Manning, 2008; ~2 wt% TiO2 in hydrous basalt, Ryerson and Watson, 1987) and 

KiDi,bubble/Di,melt > 3 depending on the pressure and how dissolved H2O in basalt melt increases 

DTi,melt. Hence, even for the TiO2 component that has low solubility in a fluid phase, Equation 

(72) still does not apply at 1273 K and 600 MPa.  

  A more widely applicable limiting case is KiDi,bubble/Di,melt >> 1. Then Equation (70) 

simplifies to:  

 
 

Dbulk

Dmelt
= (1+ 2φ)
(1− φ)

1
φK + (1− φ)

. (73) 

Equation (73) is expected to apply well to H2O and CO2 and most other gas components (some 

KiDi,bubble/Di,melt values are listed in the last column of Table 11). Note that accurate values of 

Di,bubble and Di,melt are not needed as long as KiDi,bubble/Di,melt >> 1. Fig. 20 displays how 

Dbulk/Dmelt depends on φ and K. Note that Dbulk may be greater or smaller than Dmelt depending 

the value of K. When K is large (e.g., > 100, for CO2), Dbulk/Dmelt can be much smaller than 1 

even at a few percent of bubbles. 
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Figure 20. The dependence of Dbulk/Dmelt on the 

volume fraction of bubbles and partition 

coefficient K at the limit of KDbubble/Dmelt >> 1. 

The relation applies to essentially all gas 

components. Table 11 gives some estimated K 

and KDbubble/Dmelt values. No K = 0 limiting 

curve is shown because it violates the condition 

that KDbubble/Dmelt >> 1. 

 

  In literature studies of H2O diffusion, often there were a few volume percent of bubbles 

present in the experimental charges. The authors stated that a few volume percent of bubbles 

would not affect the extracted diffusion coefficient of H2O significantly (e.g., Zhang et al. 

1991a). Our results in Fig. 20 show the presence of 2 vol% of bubbles would increase the bulk 

diffusivity by less than 10%, and hence validate their statement. On the other hand, the effect of 

2 vol% of bubbles could decrease the bulk diffusivity of CO2 in melt by a factor of 6. The 

reduction of bulk diffusivity in the melt may sound counterintuitive. The reason is that even at 2 

vol% of bubbles, most CO2 is in bubbles, rather than in the melt. Although diffusion in bubbles 

is rapid, bubbles are isolated from one another. Hence, CO2 transport is by diffusion in the melt, 

whereas bubbles buffer the CO2 concentration in the melt to some degree. Hence, as CO2 

diffuses in the melt, CO2 concentration in the melt does not change so much as in the case of no 

bubbles, leading to a decrease in the effective CO2 diffusivity. Because the presence of bubbles 

may significantly impact on CO2 diffusivity as well as diffusivity of other gases (such as noble 
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gases) with low solubility in silicate melts, it is critical to prevent bubbles in the experimental 

charges for diffusion of these gases (e.g., Spickenbom et al. 2010).  

 

CONCLUSIONS 

 This review on diffusion in silicate melts and magmas mostly covers the progresses since the 

publication of Diffusion in Minerals and Melts as volume 72 of Reviews in Mineralogy and 

Geochemistry in 2010. Major advancement has been made in a number of fields. 

Multicomponent diffusion studies have made it possible to roughly predict diffusion of all major 

components in basalt melt during mixing of different basalts or mineral dissolution and growth. 

Diffusive isotope fractionation in melts has been examined for various elements in different 

melts, and simultaneous treatment of isotope diffusion and multicomponent diffusion has been 

developed. Theory has become available to treat diffusion in crystal-bearing or bubble-bearing 

magmas. In terms of diffusion data, great efforts have been made by some authors to generate a 

large number of data, which have been applied to model and understand diffusive elemental 

fractionation and have applications in many other diffusion problems.  
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