

KU LEUVEN

Insights into the hydrology of the Congo peatlands through land surface modeling and data assimilation

Sebastian Apers, Gabriëlle J. M. De Lannoy, Alexander R. Cobb, Greta C. Dargie, Rolf H. Reichle, and Michel Bechtold

BG3.23 | Tropical peatlands: Past, Present, Uncertain Future Tuesday, 25 April 2023, 08:45-08:55

DEPARTMENT OF **EARTH AND ENVIRONMENTAL SCIENCES** KU Leuven - BELGIUM

Contact: sebastian.apers@kuleuven.be michel.bechtold@kuleuven.be

Development of a tropical peat-specific land surface model (LSM)

Evaluation of the tropical peat-specific LSM

Further improve hydrological estimates over the Congo peatlands

- Adapt LSM structure and update input parameters
 → PEATCLSM_{CO.Nat} development
- 2. Combine LSM with satellite observations
 - → SMOS L-band Tb data assimilation
 - 2010-2022 ~ 3-day revisit time 43 km spatial resolution

1. PEATCLSM_{CO,Nat} development: scalar parametrization of water table dynamics

2. SMOS L-band Tb data assimilation with PEATCLSM_{Trop,Nat}

KU LEUVEN

Upstream river water influence on the Congo peatlands water cycle

Hypotheses

- Upstream river water is an important process of the Cuvette Centrale peatlands water cycle
- PEATCLSM_{Trop,Nat} does not simulate influence of upstream river water
 - → Influence of river stage on peatland water level is "seen" via assimilating SMOS L-band T_b ?

- No model precipitation error over peat area
- Normal river stage
- → no DA water level increments

- Negative model precipitation error over peat area
- Normal river stage
- → positive DA water level increments

- No model precipitation error over peat area
- **High river stage** (due to positive upstream P anomaly)
- \rightarrow positive DA water level increments

- Negative model precipitation error over peat area
- **High river stage** (due to positive upstream P anomaly)
- → positive DA water level increments

Long periods of temporally-autocorrelated total water storage (TWS) increments

Positive correlation of TWS increments and river stage height anomalies

Conclusions

- Data assimilation (and likely LSM advancements) improve hydrological estimates over the Congo peatlands
- Data assimilation diagnostics indicates influence of river stage height on peatland water tables
- ightarrow In situ precipitation is key and missing for both approaches

References

- Apers, S., De Lannoy, G., Baird, A.J., Cobb, A.R., Dargie, G.C., del Aguila Pasquel, J., ... & Bechtold, M. (2022). Tropical Peatland Hydrology Simulated With a Global Land Surface Model. Journal Of Advances In Modeling Earth Systems, 14 (3), Art.No. e2021MS002784. doi: 10.1029/2021MS002784
- Bechtold, M., De Lannoy, G. J. M., Koster, R. D., Reichle, R. H., Mahanama, S. P., Bleuten, W., ... & Devito, K. (2019). PEAT-CLSM: A specific treatment of peatland hydrology in the NASA Catchment Land Surface Model. *Journal of Advances in Modeling Earth Systems*, *11*(7), 2130-2162.
- Cobb, A. R., & Harvey, C. F. (2019). Scalar simulation and parameterization of water table dynamics in tropical peatlands. Water Resources Research, 55(11), 9351–9377. https://doi.org/10.1029/2019wr025411
- Dargie, G.C., Lawson, I.T., Rayden, T.J. et al. Congo Basin peatlands: threats and conservation priorities. Mitig Adapt Strateg Glob Change 24, 669–686 (2019). https://doi.org/10.1007/s11027-017-9774-8
- Dargie, G. C., Lewis, S. L., Lawson, I. T., Mitchard, E. T., Page, S. E., Bocko, Y. E., & Ifo, S. A. (2017). Age, extent and carbon storage of the central Congo Basin peatland complex. *Nature*, *542*(7639), 86-90.
- Davenport, I. J., McNicol, I., Mitchard, E. T. A., Dargie, G., Suspense, I., Milongo, B., et al. (2020). First evidence of peat domes in the Congo Basin using LiDAR from a fixed-wing drone. Remote Sensing, 12(14), 2196.
- Huffman, G. J., Bolvin, D. T., Nelkin, E. J., & Tan, J. (2015). Integrated Multi-satellitE Retrievals for GPM (IMERG) technical documentation. Nasa/Gsfc Code, 612(47), 2019.
- Koster, R. D., Suarez, M. J., Ducharne, A., Stieglitz, M., & Kumar, P. (2000). A catchment-based approach to modeling land surface processes in a general circulation model: 1. Model structure. Journal of Geophysical Research, 105(D20), 24809–24822. https://doi. org/10.1029/2000jd900327