

X-57 Whirl Flutter & Propeller Stability Assessments

Josiah Waite NASA Langley

Andrew Kreshock Army Research Lab Jinwei Shen & Kyle Nelson University of Alabama

WHERE WE WERE 3 YEARS AGO...

Whirl Flutter Analysis Overview

Wing Structure

- Reduced order model is only as good as the FEM
 - The rotational component of the mode shape at the hub nodes is critical
 - No structural damping is assumed
 - Mod IV NASTRAN cruise nacelle FEM has not been experimentally validated
 - Because the FEM is not validated a flutter speed margin of 50% is used
- CAMRAD II currently limited to 100 modes (software variable limitation)
- DYMORE 5 analysis used all 183 modes from NASTRAN output

Aerodynamics

- No wing aerodynamics
- Rotor Aerodynamics
 - 2D airfoil tables generated from CFD, only limited validation against FUN3D
 - Not valid around stall
- No aerodynamic interaction between rotors
- Blade Aerodynamics based on BET (Blade Element Theory)

Rotor Structure

- Blade Modeling of Cruise Prop
 - Beam properties not available and estimated based on NASTRAN frequencies
 - Geometry is based on VSP model and not validated against as built
- Blade Modeling of High Lift Prop
 - Beam properties not available. Assumed rigid based on cantilevered testing.
 - The folding hinge of the high-lift propellers assumes a single torsional spring constraint without a friction model

Trim Simulation

- Trim: HL props tend to produce excess thrust and so the vehicle thrust was trimmed with the cruise props only. Also trimmed to 0 thrust versus 0 torque.
- Simulations including the high-lift propeller will use a constant 5400 RPM for flight speeds above 120 KTAS

Cruise and HL Prop Shaft Boundary Condition (BC)

- Free Shaft DOF is representative of unpowered shaft (equivalent to Pinned BC beam)
- A free shaft is a conservative whirl flutter BC assumption, because shaft is allowed to flex at motor connection point
 - The unpowered shaft BC decouples the roll motion from the pitch and yaw motion
 - Including the roll motion always has a stabilizing effect for whirl flutter

Validation

- No experimental validation for whirl flutter
- Aeroelastic analysis results are compared between two (2) codes

Dymore – Time domain perturbations

		Cruise props			
		Cruise, 2250 RPM	Takeoff, 2700 RPM	Overspeed, 3080 RPM	
	0 RPM	8,000	8,000	2,372 8,000 15,000	
HL props	Scheduled RPM	8,000	8,000	8,000	
	Overspeed, 5940 RPM	8,000	8,000	2,372 8,000 15,000	

RPM combinations for high-lift (HL) propellers and cruise propellers for analyses conducted at various altitudes.

X-57 Mod IV flight envelopes with open/closed circles indicating where whirl flutter analyses were conducted. Green axis and line indicate the scheduled RPM values for the HL props at 8k ft altitude.

			Cruise Prop	
d			Take off	
2 2		Cruise RPM	RPM	Overspeed
#		2250	2700	3080
	0 RPM	Wind Milling	Wind Milling	Wind Milling
gh	Scheduled HL Prop	Wind Milling	Wind Milling	Wind Milling
Ï	Overspeed 5940 RPM	Wind Milling	Wind Milling	Wind Milling

			Cruise Prop	
•		Cruise RPM	Take off RPM	Overspeed
5 D		2250	2700	3080
_ift Pı		Net Thrust =	Net Thrust =	Net Thrust =
	0 RPM	Aircraft Drag	Aircraft Drag	Aircraft Drag
۲ ۲		Net Thrust =	Net Thrust =	Net Thrust =
Hig	Scheduled HL Prop	Aircraft Drag	Aircraft Drag	Aircraft Drag
-		Net Thrust =	Net Thrust =	Net Thrust =
	Overspeed 5940 RPM	Aircraft Drag	Aircraft Drag	Aircraft Drag

Velocity is in true airspeed (KTAS) Altitude is at 8k All Rigid Blades (High Lift Props have hinges)

Wind Milling Trim

- Cruise prop are trimmed to Thrust = 0
- Free Shaft DOF for all rotors

Drag Trim

- Thrust = X*q = (2 rotors)*1.92 ft^2*q
- Cruise Props take up the vehicle drag and thrust from HL props are in excess
- Free Shaft DOF for all rotors

Whirl Flutter Cases, Wind Milling

			Cruise Prop	
High Lift Prop		Cruise RPM	Take off RPM	Overspeed
		2250	2700	3080
	0 RPM	Wind Milling	Wind Milling	Wind Milling
	Scheduled HL Prop	Wind Milling	Wind Milling	Wind Milling
	Overspeed 5940 RPM	Wind Milling	Wind Milling	Wind Milling

DYMORE ASym. Torsion

CAMRAD ASym. Torsion

- Whirl flutter analyses conducted with 50% margin on airspeed and altitude, and with 10% margin on rotor speed
- No whirl flutter concerns at high speeds
- Small instability (negative damping) predicted at low speeds—within assumed margin of at least 1% structural damping
- Whirl flutter stability boundary lies beyond the margins imposed in these analyses

High Lift Propeller Rotor Stability

PREDICTED HIGH LIFT PROPELLER STABILITY

Instability was found in the Isolated High Lift Propeller at 0 knots. This is primarily due to the hinge geometry and built-in pitch/twist

- Isolated high-lift propeller on a fixed test stand.
- Rotor Speed varied from 1500 5000 RPM
- Test Setup / Procedure
 - 0.5s 'Air-On' of compressed air to excite the blade folding mode at a specific azimuthal location
 - ➤ 1.5s 'Air-Off'

Experimental Damping was between 8-14%

In order to tune the viscous damper (c) a value of c = 0.058411 ft-lb/rad was used @1500 RPM and varies with RPM.

Ultimately the viscous damper (based on a friction model) stabilizes the isolated rotor both experimentally and analytically.

PREDICTED HIGH LIFT PROPELLER STABILITY

Instability was found in the Isolated High Lift Propeller at 0 knots. This is primarily due to the hinge geometry and built-in pitch/twist

Whirl Flutter Conclusions

- Whirl flutter analyses conducted with 50% margin on airspeed and altitude, and with 10% margin on rotor speed
- No whirl flutter concerns at high speeds
- Small instability (negative damping) predicted at low speeds—within assumed margin of at least 1% structural damping
- Whirl flutter stability boundary lies beyond the margins imposed in these analyses

Rotor Stability Conclusions

 Rotor stability tests indicated that there is very little risk of rotor instability at zero forward velocity

NASTRAN Modeling

- Carol Wieseman
- Keerti Bhamidipati
- X-57 Structural Dynamics Team

DYMORE Support

Olivier Bauchau

Testing Support

- John Swartzbaugh
- Low Speed Aeroacoustics Wind Tunnel personnel

Project Support

Jeff Viken

BACKUP SLIDES

Elastic vs Rigid Blades

RIGID BLADES VS ELASTIC BLADES

Additional Cases – Altitude Variation

WING MILLING & 15K ALTITUDE

WING MILLING & 15K ALTITUDE

		Cruise Prop		
do		Cruise RPM	Take off RPM	Overspeed
Pre		2250	2700	3080
Lift	0 RPM			WM
gh	Scheduled HL Prop			
Ĩ	Overspeed 5940 RPM			

WING MILLING & 2K ALTITUDE

				Cruise Prop	
	do		Cruise RPM	Take off RPM	Overspeed
	Prc		2250	2700	3080
	Lift	0 RPM			
	ghl	Scheduled HL Prop			
	Ϊ	Overspeed 5940 RPM			WM

WING MILLING & 2K ALTITUDE

			Cruise Prop	
đ		Cruise RPM	Take off RPM	Overspeed
Pre		2250	2700	3080
Lif.	0 RPM			WM
gh	Scheduled HL Prop			
Ï	Overspeed 5940 RPM			

Additional Cases - Drag Trim

			Cruise Prop	
dc		Cruise RPM	Take off RPM	Overspeed
Pre		2250	2700	3080
Lift	0 RPM	Drag	Drag	Drag
gh	Scheduled HL Prop	Drag	Drag	Drag
Ĩ	Overspeed 5940 RPM	Drag	Drag	Drag

			Cruise Prop	
do		Cruise RPM	Take off RPM	Overspeed
Prc		2250	2700	3080
Lift	0 RPM	Drag	Drag	Drag
gh	Scheduled HL Prop	Drag	Drag	Drag
Ĩ	Overspeed 5940 RPM	Drag	Drag	Drag

			Cruise Prop	
do		Cruise RPM	Take off RPM	Overspeed
Prc		2250	2700	3080
Lift	0 RPM	Drag	Drag	Drag
gh	Scheduled HL Prop	Drag	Drag	Drag
Hi	Overspeed 5940 RPM	Drag	Drag	Drag

			Cruise Prop	
do		Cruise RPM	Take off RPM	Overspeed
Pre		2250	2700	3080
Lift	0 RPM	Drag	Drag	Drag
gh	Scheduled HL Prop	Drag	Drag	Drag
Ξ	Overspeed 5940 RPM	Drag	Drag	Drag

_				Cruise Prop	
	do		Cruise RPM	Take off RPM	Overspeed
	Prc		2250	2700	3080
	Lift	0 RPM	Drag	Drag	Drag
	gh	Scheduled HL Prop	Drag	Drag	Drag
	Ï	Overspeed 5940 RPM	Drag	Drag	Drag

Frequency

				1		
		÷				
50	100	150 2 Vel	00 25	50 30	0 35	50 40

		Cruise Prop							
d		Cruise RPM	Take off RPM	Overspeed					
Pre		2250	2700	3080					
Lift	0 RPM	Drag	Drag	Drag					
gh	Scheduled HL Prop	Drag	Drag	Drag					
Ï	Overspeed 5940 RPM	Drag	Drag	Drag					

20				÷					*	*	*	*			*									*	*	¥
25			• •	ļ	•			ļ	•	•	•	•			•	ļ	•			+	•-•			•	•	• •
35				ł				ţ	ţ	į	ţ	i			ţ	ł				ł				į	i	
40 E				1				1	1	1	1					1				1			1	1	1	-
45				¥		Ĩ	Y	¥	¥	¥	¥	¥			¥	¥		Ť	Ŷ	¥		Ĭ	Y	¥	¥	<u> </u>
55																X										
60		Ě	×	Ŷ	æ	×	R	Ŷ		Ş	Ş	Ş	ļ	×	Š	Ŷ		×	Ķ	Ŷ		×	Ę	Ş	Ş	<u> </u>

			Cruise Prop	
dc		Cruise RPM	Take off RPM	Overspeed
Pre		2250	2700	3080
Lift	0 RPM	Drag	Drag	Drag
gh	Scheduled HL Prop	Drag	Drag	Drag
Ï	Overspeed 5940 RPM	Drag	Drag	Drag

15	-	•—											
	-	+ + +									
	_	i 🗕		4 1							X		
	-												
10	_		* * *										
	-	T											
	-												
	_		• • •	1 1			• • •				1		
	-	•		÷ = =							- • •		
5	_						_		_		_		
-	_			T							- T		
	_												
	_	• •		• • •							- +		
	_			• • •									
٥		ŧ 🗖 .		<u></u>									
0	0 5	50 -		00	1	50	20	00	25	50	300	35	50 40
							Velo	ocitv					

		Cruise Prop									
dc		Cruise RPM	Take off RPM	Overspeed							
Prc		2250	2700	3080							
Lift	0 RPM	Drag	Drag	Drag							
gh	Scheduled HL Prop	Drag	Drag	Drag							
Ξ	Overspeed 5940 RPM	Drag	Drag	Drag							

		Cruise Prop							
do		Cruise RPM	Take off RPM	Overspeed					
Pre		2250	2700	3080					
Lift	0 RPM	Drag	Drag	Drag					
gh	Scheduled HL Prop	Drag	Drag	Drag					
Ĩ	Overspeed 5940 RPM	Drag	Drag	Drag					

Appendix – Additional Info

NASTRAN												
Mode	7	8	9	10	11	13	14	15	16	21	22	25
Freq	2.28751	4.847326	6.126883	7.563687	9.898156	12.563896	12.810463	13.470976	13.545998	20.34602	22.14168	24.93236
NASTRAN												
Mode	31	32	33	34	35	36	39	41	42	44	45	47
Freq	29.413616	30.376893	31.471862	31.874522	32.761669	33.176606	34.760869	36.58744	36.672267	40.69428	41.00187	41.34609
NASTRAN												
Mode	48	51	54	55	56	57	58	59	61	62	63	67
Freq	41.449966	42.413348	43.526617	44.01836	44.735875	45.436412	45.650744	45.984773	46.63239	46.80055	47.71474	48.73529
NASTRAN												
Mode	68	70	72	73	74	75	76	79	81	82	84	85
Freq	48.850597	49.371877	50.114985	50.252796	50.586867	50.640985	50.952279	51.716223	51.891773	51.99303	52.2794	52.91955
NASTRAN												
Mode	86	88	89	91	92	95	96	103	105	108	111	112
Freq	53.13975	53.767423	53.987421	54.784403	55.447143	55.882392	56.198277	58.1278	58.432189	58.56422	58.92151	59.1678
NASTRAN												
Mode	120	123	128	133	137	138	149	150	151	163	166	167
Freq	60.859404	61.09643	61.695662	62.238816	63.444205	63.475583	65.778647	66.201089	66.336697	68.77904	69.6895	69.90349
NASTRAN												
Mode	168	169	170	171	175	176	177	180	183	184	185	186
Freq	70.022069	70.186049	70.319571	70.82668	72.960714	72.974057	73.09487	73.996564	74.765809	75.27459	75.30127	75.3195
NASTRAN												
Mode	187	188	191	192	193	195	196	198	199	200	203	206
Freq	75.430694	75.629349	76.09066	76.366363	77.151826	77.738601	77.879505	77.972896	78.220315	78.51638	78.78656	79.27521
NASTRAN												
Mode	207	208	209	210								
Freq	79.336535	79.35709	79.565536	79.665223								

- Step 1. Sum all Translation & Sum all Rotation at hub nodes
- Step 2. Select grid point for sorting (right hand cruise prop)
- Step 3. Keep all modes with sum of Translation > 0.7 (ft/ft) Keep all modes with sum of rotation > 0.14 (rad/ft)
- Step 4. Sort all modes based on mode shape amplitude
- Step 5. Keep the highest largest N modes, (N = 100)

CAMRAD INPUT AERODYNAMIC MODELING

ALL RESULTS OVERPLOTTED, FOR ALL AIRFOILS, FOR ALL MACH NUMBERS, USING ARC2D NAVIER STOKES 2-DIMENSIONAL CODE

Angle of attack, degs

CFD results from Andrew Kreshock, November 5201

Using ARC2D Navier Stokes 2-dimensional code

Using ARC2D Navier Stokes 2-dimensional 5 code

Using ARC2D Navier Stokes 2-dimensional code

Using ARC2D Navier Stokes 2-dimensional code

Using ARC2D Navier Stokes 2-dimensional 8 code

Using ARC2D Navier Stokes 2-dimensional_code

Using ARC2D Navier Stokes 2-dimensional₂code

Using ARC2D Navier Stokes 2-dimensional_code

AIRFOIL 7 COMPARISON OF C81GEN (ARC2D) VS FUN3D

 Reason for Zero Thrust Trim was that the zero power condition could not be met until a higher velocity

Power vs Root Pitch

All stability runs with the HL prop use the scheduled RPM from July 2020. However there is minimal difference between the two and new rerunning the results were not deemed necessary.