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Objectives

• Test previously developed reversionary propulsion control modes for 
an aircraft with an electrified powertrain in a piloted flight simulator

• Investigate how current certification requirements apply to a concept 
aircraft with a turboelectric powertrain
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Background—Aircraft Description

• Single-aisle Turboelectric AiRCraft with Aft 
Boundary Layer propulsor (STARC-ABL)
• NASA concept with 2035 entry into service
• 150-passenger class commercial transport
• Traditional “tube-and-wing” shape

• Partial turboelectric powertrain
• Thrust sources are two underwing geared 

turbofans and an electric, boundary layer 
ingesting tailfan

• Geared turbofans produce thrust and power to 
drive the tailfan

• There is no energy storage
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Background—Baseline Powertrain Control

• Inceptors provide the speed 
setpoint for each turbofan; the 
tailfan speed setpoint is based 
on the two turbofan speeds

• The baseline control design 
works well around the flight 
envelope for the nominal 
powertrain

• However, a powertrain 
subsystem failure could lead to 
potentially catastrophic 
cascading failures with the 
baseline control at some flight
conditions

STARC-ABL Acceleration 
Response under Nominal 

Operating Conditions with 
Baseline Control

STARC-ABL Acceleration 
Response under Power 
System 1 Failure with 

Baseline Control
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Background—Reversionary Control

• Reversionary control modes
• Control modes designed for off-nominal cases such as 

sensor/actuator/subsystem failures, which the baseline control was 
not designed for

• Were developed to activate in case of subsystem failures in STARC-
ABL powertrain and subsequently demonstrated*

• The reversionary control modes have modified
• Control limits
• Schedules

• The reversionary control
• Maintained system thrust response
• Increased robustness to each type of subsystem failure
• Produced less thrust than baseline

*Simon, D.L., and Connolly, J. W., “Electrified Aircraft Propulsion Systems: Gas Turbine Control 
Considerations for the Mitigation of Potential Failure Modes and Hazards,” ASME Turbo Expo 2020, 
Turbomachinery Technical Conference and Exposition, GT2020-16335, September 21-25, 2020. STARC-ABL Acceleration 

Response with Power 
System 1 Failure and 
Reversionary Control5



Testbed—Flight Simulator Setup

Piloted testing of the STARC-ABL with powertrain failures Custom STARC-ABL instrumentation6



Certification Standards
Title 14 of the Code of Federal Regulations (CFR) 

• Which, if any, are applicable?
• Part 25, Airworthiness Standards: Transport Category Airplanes

• Part 33, Airworthiness Standards: Aircraft Engines

• magniX Special Condition—relates to electric motor, controller, and high-
voltage systems installed on the aircraft for use as an aircraft engine

• One-Engine-Inoperative (OEI) requirements

• Is the STARC-ABL a two- or three-engine aircraft?

• Which is the critical engine?
• the engine whose failure would most adversely affect the performance or 

handling qualities of an aircraft 
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Addressing Certification Standards

• Given the magniX Special Condition, the 
tailfan is an engine ➔ the STARC-ABL is a 
three-engine aircraft

• Either wing-mounted gas turbine engine is the 
critical engine because
• its failure will result in a thrust asymmetry

• it provides power to the tailfan

• it provides significantly more thrust than the 
tailfan at low altitude, low speed conditions where 
a failure is most serious
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Testing Process

• Test control system robustness with 
reversionary control modes active to 
powertrain subsystem failures
• Power system

• Gas turbine engine

• Tailfan

• Test specifically OEI requirements for 
three-engine aircraft
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Testing—Power System Failure

• Abrupt power 
system failure 
occurs in both 
cases

• With 
reversionary 
control inactive, 
catastrophic 
cascading failures 
occur

• With 
reversionary 
control active, 
failure did not 
propagate
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Testing—Geared Turbofan Failure

• Abrupt geared 
turbofan failure 
occurs in both 
cases

• With 
reversionary 
control inactive, 
catastrophic 
cascading 
failures occur

• With 
reversionary 
control active, 
failure did not 
propagate
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Testing—Tailfan Failure

• Abrupt tailfan
failure occurs in 
both cases

• With 
reversionary 
control inactive, 
catastrophic 
cascading 
failures occur

• With 
reversionary 
control active, 
failure did not 
propagate
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Testing—Missed Approach at 
Denver
• Although Denver is a high altitude airport, the baseline 

control system is pretty robust to subsystem failures

• However, meeting the missed approach climb requirement 
is harder than at lower altitudes

• Abrupt geared turbofan failure occurred 

• With reversionary control 
active, failure did not 
propagate

• Aircraft was able to climb 
and successfully exceed 
minimum steady climb 
gradient for one engine 
inoperative
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Other Testing

• Additional testing focused on those 14 CFR Part 25 regulations having 
to do with in-flight handling/controllability and maneuvering with 
OEI, especially the critical engine

• The pilot was able to maneuver without difficulty in all cases
• change flight conditions

• bank and turn
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Conclusions

• The reversionary control modes worked properly under all conditions 
tested and were robust to cascading failures

• Cascading failures demonstrate that control and health management 
schemes will be enabling for electrified aircraft propulsion technology 
to progress

• For the relatively traditional looking STARC-ABL, despite having an 
electrified powertrain, the current 14 CFR Parts 25 and 33 can 
reasonably be applied, but require interpretation

• The STARC-ABL met all tested requirements for one engine 
inoperative with reversionary control modes active

• Current certification standards will be insufficient as the diversity of 
aircraft designs increases
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