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Presentation Overview



• DC supply

• Motor drive

• Electric machine (PMSM)

• Dynamometer

• Controllers

• Cooling system
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SPEED Testbed
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Impedance Measurement Approach 

Components

• DC Supply: source

• Load: drive and PMSM

• IMS

Impedance Measurement System (IMS)

• Low level sinusoidal signal

• Power amplifier

• Transformer to inject signals

• Voltage and current measurements

• Load and source impedances calculated
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Impedance Measurement Configuration 

Safe facility operation

• Dyno the pacing element

• Test points (w, T) beneath dyno max

• Corner avoided

Safe IMS operation

• Frequency limits (30 Hz-100 kHz)

• Transformer temperature monitoring

• defining injected signal level:
• Z not known in advance

• Concern large variation with load impedance

• Conservative experimental approach to guide selection

• Approach warranted
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Load Z Measurement: Impact of Load Power

Load Z measured at all test points

• Data similarity
• Representative data selected

• Magnitude variation: 3 orders of magnitude

• Low f: looks capacitive (input cap 280 uF)

• High f: looks inductive (~0.2 uH )

• Resonance point ~22 kHz

• Load Z as a function of delivered power
• magnitude decrease with increased P

• phase angle increase with increased P
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Load Z Measurement: Drive Tuning Setup

• Gains selected: current loop Kp and Ki

• Nominal tuning: Kp = 2000, Ki = 100

• Varied over a large range

• Motor operating point: 1000 rpm, 5 Nm

• Load Z measured at all points
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Load Z Measurement: Impact of Drive Tuning

• All 17 data points shown (left)

• Significant tuning impact at lower frequencies

• Increased Kp & Ki drive load Z toward capacitive behavior

• Example Kp on phase angle, while Ki, w, T constant (below)

• Not exhaustive tuning study

• Limited f range

• One operating point

• Additional gains available (speed loop gains, field weakening gains)

• Measurements indicate low f Z shaping via drive controller tuning possible
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Load Z Measurement: Impact of Field-Weakening

Constant torque region & several points in field-
weakening (constant power) region

• Consistent motor operating point (6 krpm, 5 Nm)

• Bus voltage decreased in steps

• Drive/machine impedance measured

• Watch modulation index and d-axis current

Increased field weakening impact: < 1 kHz

• Impedance magnitude decreased

• Phase angle moves away from pure capacitive

• Effect on Z load similar to
• increased machine loading

• decreased current loop Kp and Ki



Source Z Measurement: Impedance

Two level injection scheme selected by experiment
• breakpoint lower (1 kHz 175 Hz)

• avoided load low Z region (~22 kHz)

• commonality in the source Z measurement

High frequency source Z behavior compared to load
• Similar: inductive behavior >5 kHz

• Differences

• L 10x higher (0.2 2 uH)

• fres lower

Low frequency source Z behavior compared to load

• More resistive than capacitive
• flat impedance magnitude

• phase angle closer to zero than to -90°
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Stability Assessment 

Analysis: stability performance not an
original design requirement

Bode plot ZS and ZL

• top dashed: |ZS/ZL|

• bottom dashed: Z angle difference

Nyquist plot of ZS/ZL

• Arbitrary stability margins defined

• 6 dB and 45° selected

Small phase margin: Nyquist plot shows
criteria not met, as expected

SPEED Lab very successful
• Small stability margin did not impact performance

• Identified potential improvement areas (e.g.
adding filtering) in future work

Measured ZS (green) & ZL (blue); Dashed: 
top, |ZS/ZL|; bottom, phase angle difference

ZS/ZL Nyquist plot
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Bus Current Spectra

Bus current spectra
• Goal: understanding potential forcing frequencies injected by power supply

• Four machine speeds (1, 3, 6, and 8 krpm) and three torque levels (0, 5, and 10 Nm)

• Captured DC current on high speed scope & post-processing

• Results at low frequency, and higher frequency (centered around fSW)
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Bus Current Spectra

Conditions: 2 speeds and 2 loads (T)

Low frequency data

• Dominant peaks fe & 6fe (= fm)

• Increase with increased w & T

High frequency data

• Centered at the motor drive
switching frequency fSW

• fSW matches specs (12 kHz)

• Also at fSW ± 3fe

• Increase with increased w & T



1. Source and load impedance measurements in the NASA GRC SPEED Lab

2. DC supply, motor drive, PMSM, dynamometer

3. Load Z impacts from w, T, drive controller tuning, field weakening

4. Source Z results

5. Stability analysis

6. DC bus current spectra under various loading conditions

7. Future work:
1. Testing at lower frequency, higher power

2. Further tuning; field-weakening impacts to system stability

3. Load susceptibility to bus ripple, input filter impacts
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Conclusions and Future Work
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